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Abstract. Almost all combinatorial question can be reformulated as either a matching or a 
covering problem of a hypergraph. In this paper we survey some of the important results. 

1. Covers 

A hypergraph H is an ordered pair (X, ~ )  where X is a finite set (the set of vertices, 
or points, or elements) and Jt ~ is a collection of subsets of X (called edges, or 
members of H). We will often use the notation X = V(H), ~ = E(H). The rank of 
H is r(H) = max{IE[: E ~ ~ } .  If every member of J f  has r elements we call it 
r-uniform, or an r-graph. The 2-uniform hypergraphs are called graphs. In almost 

all cases we will deal with hypergraphs without multiple edges. 2x and (Xr) denote 

the family of all subsets (all r-subsets) of X, resp. 
A set T is called a cover (in other words a transversal or a blocking set) of 

H if it intersects every edge of H, i.e., T N E ~ ~ for all E ~ ~ .  The minimum 
cardinality of the covers is denoted by z(H), and called the covering number of H. 

/ / ~ T N \  

z ( ( X r ) )  = I X [ -  r + 1, and it is easy to see that z (PG(2 ,r -1) )=r ,  where E.g., 
\ k  l l  

PG(2, q) denotes the hypergraph having as edges the system of lines of any finite 
projective plane of order q. (See later in Section 3). If a family ovf is intersecting 
(i.e., H N H' ~ ~ for every H, H' ~ ~'f~) then z(Jf)  _< minE~g [E[. On the other hand 
we can get a trivial lower bound for the covering number considering the sub- 
families of pairwise disjoint edges. If EI ,  . . . ,  E v E ,)~, E i n Ej -- ~ (1 _< i < j  __ v) 

then r ( g )  _> v. 
The great importance of the covering problem is supported by the fact that 

apparently all combinatorial problem can be reformulated as the determination of 
the covering number of a certain hypergraph. The calculation of the covering 
number of an arbitrary hypergraph is an NP-hard problem even in the class of 
graphs. (For those who are not familiar with the notions of algorithm theory, we 
remark that NP-hard means, roughly saying, that the solution of the problem seems 
to be hopeless in general. See [-260]). Hence every result which determines T(o~) for 
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a certain class of hypergraphs, e.g. the K6nig-Hall  theorem about  bipartite graphs 
(see [188]) is especially valuable. 

Definition 1.1. The family of sets o~ is >critical if each of its subfamilies has a smaller 
covering number,  i.e., r(o~ - {E}) < r(Jg) for all E ~ J4 ,°. 

Examples 1.2. The following ones are >critical hypergraphs. 
(i) The family consisting of z disjoint edges, 

t ' ~ T \  

,ii, t  comp' te  rap ¢r)w ere  
\ / 

(iii) the circuit of length 2r - 1, C2,-t,  
(iv) (see Erd6s and Lovfisz [108]). Let S be a set with 2z - 2 elements. For  each 

partit ion 7r = {P,P'} of S where PUP'  = S, [P[ = [P'[ = z - 1 take a new 
element x~. Let X = S U {x~: for all 7r} and define a f  to consist of all z-tuples 

of the form PU {x~}, where rr = {P,P'} is a partition. Then [~t ~] \ z - 1 ) '  
_1 {2z - 2"~ 

I X [ = 2 r - 2 + 2 k z _ l j ,  Z ( * ) = z .  

Theorem 1.3 (Bollobfis [44]). I f  J/f is a q-critical hypergraph of rank r then 

I~1 <- 
r 

Here equality holds only in the case when ~ is a complete r-graph over z + r - 1 
vertices (in notat ion g ~ K~+'-l). Theorem 1.3 means that  every family ovt ° of 

rank r has a relatively small subfamily ~ c Yf, I o~l < such that  
r 

z(~-) = z(Cf). In other words, if ~ is a family of rank r and every subfamily of 
/ 

( r  ~ members has a (t + 1)-cover then T ( g ) _ < t  + 1. The theorem w a s  proved 
k / 

for the case of graphs (r = 2) by Erd6s, Hajnal  and M o o n  [104]. 

Pro@ Here we only reformulate the statement, the theorem will follow from 
Corollary 1.5. Let g = {At . . . . .  Am} be z-critical, i.e., z(~, ° - {Ai}) < ~ for all 
1 < i < m. Hence there exists a (r - 1)-element cover Bi of ~¢f - {Ai}. This means 
Aj fl B~ ¢ N for all j ¢ i. Moreover  B~ does not  cover all the edges of ~tf, hence 
A i Cl Bi = N holds. Thus the system {Ai, Bi} t _<~_< m fulfils the constraints of corollary 

1.5 with r = a, z - 1 = b, which will yield m _< . []  
r 

Theorem 1.4. Let A 1 . . . . .  Am and B 1 . . . . .  Bm be finite setssuch that 

A~fqB~=fg and A, f l B j ~ f g  f o r a l l i ~ j .  (1.1) 

1/([A'[ + [Bi['] < I. Then V 
/ \  IA,I ,] 

Corollary 1.5. Let AI . . . . .  A m and Bt, . . . ,  Bm be finite sets with [&l < a, IBel < b 

satisfying (1.1). Then m < . [] 
a 
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Proof of Theorem 1.4. This proof is due to Katona [163] and Jaeger and Payan 
[159]. Let X = (U Az)U(UB~), IAil = a~, IB~t = b~, IXI = n. Consider a permuta- 
tion ~z of X. We say it has type "i" if each element of Ai precedes each element of 
B~ (Fig. i.1). 

Ai 

o o  o o o o o  o o o o o  

\ \ \ / /  
Bi 

Fig. 1.1 

We claim that ~ has at most one type. Suppose on the contrary that n has two 
types i and j. Let x~ (and)9) be the maximum element of A~ (Aj)in n, resp., and 
suppose that either x~ = )9 or x~ precedes xj. Then each element of A~ precedes each 
element of Bj yielding A i n Bj = ~,  a contradiction. Count how many permuta- 

tions have type l . T h i s n u m b e r i s (  n ) /(a~+bi) ..... X ( n  - -  a i - -  b i ) ] a i ! b i !  = n! 
ai + bi ai  

Summing up these we get all permutations at most once 

~n!//(ai + bi) <- a i [] 

Because of its importance Corollary 1.5 and Theorem 1.4 were several times 
rediscovered (Jaeger and Payan [159], Katona [163], Tarjan [233], Griggs, Stahl 
and Trotter [146]). Even it was stated as a conjecture several years later than 
Bollob~is proved it (Ehrenfeucht and Mycielski [92]). However, only the original 
proof yields that equality holds in Corollary 1.5 iff the sets A~ and B~ are all the 
a-element and b-element subsets of a given (a + b)-set. (Bollob/ts used induction on 
n = I(U A,) u (U  

In the rest of this chapter first we mention 3 simple applications of Theorem 
1.4 and a nice new version of it (which also has interesting applications.) 

Minimal Kk-saturated r-graphs (Bollob~is [44] for all r, Erd6s, Hajnal and Moon 
[104] for r = 2). Call the hypergraph H Kk-saturated if it does not contain a copy 

o fK  k as subgraph, but E(H)U {F} does it for all Fe(Xr)\E(H). An example is: 
x - - ]  

w e e ,sa.xed(  r, set 

Theorem 1.6. If H is a Kk,-saturated r-graph over n vertices then [E(H)[ > 
( ~ ) - ( n - k + r )  [] 

Hell), families of maximal size. We say that ~ff has the k-Helly property if in every 
subfamily ~ '  c o~ff with empty intersection one can find a subfamily ~¢g'" c ~ff' 
consisting of at most k members whose intersection is also empty. In other words, 
if every k members of out ,' have a common vertex than N ~f'' # ~. 
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Theorem 1.7 (Bollob~ts and Duchet [52], for a generalization see 1-53], Mulder 1-204] 

and Tuza [239]). I f k < r a n d J g ° C ( A r ) i s a  k-Hellyfamily o n n  vertices, then 
x - - /  

(: (: I) [~,'f{ < . I f  I~1 = then all edges have a common point. [] 

Maximum number of unrelated chains (Griggs, Stahl, and Trotter 1,146]). The famous 
theorem of Sperner [226] states that if ~g c 2 x is a collection of subsets, [XI = n, 
no two ordered by inclusion, (i.e., for H, H' e ~¢~ H ~ H' is impossible), then o~ 

h a s a t m o s t ( [ r n 2 j )  edges. A c h a i n i n 2 X o f l e n g t h k + l i s a c o l l e c t i o n o f s e t s  

E o ~ E 1 ~ . . .  ~ E k(c X). Denote by fk(n) the maximum number of unrelated 
chains of length k + 1. I.e., we seek the maximum m such that there exist subsets 
E} c X, 0 _< j < k, 1 < i _< m, satisfying E~ c E~ c . . .  ~ E~ and for all i :~ i' 

El:. 

We can obtain such a collection of [(n - k)/2j unrelated chains of length k + 1 

as follows: Let X = A U B, IAI = k, IBI = n - k, A = {ax,...,  ak}. The sets E~ are 
the [(n - k)/2]-subsets of B, and for j > 1, E} = E~ U {a~ .. . .  , aj}. The following 
theorem states that this example is optimal: 

n - k  ) 
Theorem 1.8. A(n) = [(n - k)/2] " []  

Griggs et al. use this theorem to determine the dimension on some partially 
ordered sets. On dimension theory of posets see [ 165]. Note that Sperner's theorem 
is a corollary of Theorem 1.8 (k = 0). The following theorem which is due to Tuza 
gives a very useful variant of Theorem 1.4. Although, this result was first formulated 
by Tuza, it appeared in implicit form (at least the case p = q = 1/2) much earlier 
in 1,164], and in [15], too. 

Theorem 1.9 (I-241]). Let A1, . . . ,  Am and B 1 . . . . .  B,, be finite sets such that 

Ai fq B i = ff5 and for all i # j either (1.2) 

A~ N Bj = ;g or Aj f) Bi # fg holds. Let p, q >>_ 0 be reals, p + q = 1. Then ~ plA,IqlS, r < z 
i 

holds. 

Proof. We are going to use the so called probabilistic method. (Actually, here it is 
easy to replace it by a double counting.) Let X = (U  Ai) t3 (U Bg). Define a random 
set S c X as follows: 

prob(a ~ S) = p for all a ~ X. 

Then consider the events E~= { A ~ c S ,  B i f lS=2~} .  Clearly prob(Ei)= 
plA,l(1_ p)IB,L. These events are disjoint by (1.2), so we obtain ~plA,IqlB,l_ 

prob(E,) <_ 1 [] 
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Corollary 1.10 ([15], [164] and [241]). Let Ai, Bi (1 < i < m) finite sets satisfyin9 
(1.2) and IA,I + Inil <- k. Then m <_ 2 k. [] 

Local Ramsey-number of  odd cycles. (Katona and Szemer6di [164]). Consider 
E(K~), the edge-set of the complete graph on n vertices, and color it by k colors, 
E(K~) = G, U ' "  U Gk. Then it is immediate that n > 2 k implies that there exists a 
Gi which has chromatic number at least three and therefore contains an odd cycle. 
A generalization of this is the following. 

Theorem 1.11 ([164]). Suppose n > 2 k and let E(K~) = Ga U G 2 U--" be a partition of  
the complete oraph in such a way that for every vertex x e V(K~) the edoes {x, y} 
belono to at most k different G~ - s. (I.e., every point oets at most k colors.) Then there 
exists a G i which contains an odd cycle. [] 

Touchin9 simplices in R a. Two simplices S~ and S 2 in the d-dimensional space are 
touching if they do not have common interior point, int St N int $2 = N, but they 
have facets F1, F2 (d - 1-dimensional faces) such that int F1 f-) int F 2 ¢ N. In other 
words there exists a hyperplane H c Nd which separates int $1 and int $2 but for 
a point p e H and a small ball B(p) around p we have B(p) c $1 U $2. Using induc- 
tion on d one can construct 2 e pairwise touchingsimplices in R e. (See Zaks [248]). 

Denote the maximum number of pairwise touching simplices in R e by t(d). It 
has been repeatedly conjectured that t(d) = 2 d (see e.g., Bagemihl, 1956 [18]). The 
following theorem is due to Perles and was published in [209]. 

Theorem 1.12. 2 d _< t(d) <_ 2 d+l. 

Proof. Let S 1 . . . . .  Sm be a family of touching simplices, and consider all the 
hyperplanes of their facets: H1 . . . . .  Hv (v < (d + 1)m). Every hyperplane Hi divides 
the space into two halfspaces, call one of them the positive, the other the negative 
side of Hi. Define the following sets Ai, Bi (1 < i < m): 

Ai = {Hi: Hj contains a facet of Si and int Si lies on the positive side of Hi} 

Bi = { H / H  s contains a facet of Si and int Si lies on the negative side of Hi}. 

Clearly A~ f3 B i = ~,  [A~ U Bi[ = d + 1, and (1.2) holds. Then Corollary 1.10 implies 
m < 2 d+l. []  

Previously the best hound was f(d) < ~(d + 1)! (Zaks [247]). Baston [23] 
wrote a book on this topic, proving t (3)<  9. It was recently established that 
f(3) = 8 (Zaks [249]). More about  this problem, see 1-250]. 

Note that the above argument gives that i f ~  is a family of polytopes in R d, each 
of them having at most k facets and any two of them are touching then [~j < 2 k. 
Moreover, the proof uses a weaker assumption: it is sufficient to state that for any 
two simplices, say P and Q, there exists a hyperplane H c R d containing a facet of 
both P and Q, such that H separates int P and int Q. 

One could think that a stronger version of Corollary 1.10 would supply an 
improvement of the upper bound of t(d). Indeed, we know that for all i ¢ j either 
[AiNBj[ = 1 or [AjfqB~] = 1 holds in the proof of Theorem 1.12. But the following 
example, due to Tuza [271], shows that this approach is not so simple. 
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Example 1,13. For every d there exists a family {At, Bt} where 1 < i < 2 d with the 
following properties: Ai A B, = ~, and for all i # j either At A B i = ~ and I Aj A Bil = 1 
or [A~ABj[ = 1 and A j A B  t = ~ hold. Moreover, ]Z~[ + 1811 = d for all 1 < i < 2 d. 
It is easy to construct such a family for d -- 1. Then we can use induction on d. 
Consider {A;,B~} (1 < i < 2 d) and take another (disjoint) copy of it {A;,B~}. Now 
add a new element x to all Ai and B~. 

Tuza has other examples with equality in Theorem 1.9. We can ask in general: 

Problem 1.14. Describe the families {A,, B~} for which (1.2) and ~ pla,lqln,t = 1 hold.  
i 

Problem 1.I5. Let s (a ,b )= max{m: there exists a family At, . . . ,  A,,, BI, . . . ,  B,, 
satisfying (1.2)and Ia,I - a, Intl -< b}. Determine s(a,b). 

Tuza proved 

{' ( ' )  ( )} s(a,b) < a + b)"÷ba~b b - ,  ~b a t a + b - bi a + b - i 
i=o a ' i b ' 

and s(a, 1) = 2a + 1. 

Some further results and problems. Alon [12] found the following generalization of 
Corollary 1.5. 

Theorem 1.16 ([12]). Suppose that 1/1 . . . . .  V~ are disjoint sets and let a 1 . . . . .  a,, 
bl, . . . ,  b r be positive integers. Let  A i . . . .  , A m and B1 . . . .  ,Bm be finite sets satisfying 
(1.1) and [AtA Vii _< aj, [BiA Vii <_ bjfor every 1 <_ i <_ m, 1 <_j <_ r. Then 

t=l \ at 

A special case of this (r = 2, al = a2 = 1) was conjectured by ErdSs, Hajnal and 
Moon [104] and was proved by Bollobgts [45] and Wessel [243]. One can prove 
Theorem 1.16 by the method of the proof of Theorem 1.4. But Alon also proved that 
Theorem 1.16 remains valid if we suppose that (1.1) holds only for 1 _< i _<j <_ m. 
The proof uses multilinear techniques (see the next chapter.) 

Call an r-graph Yt ~ r-partite if there exists a partition V(~)  = 1/1 U . "  13 ~ such 
that I V~ A El = 1 holds for all E e W, 1 _< i _< r. 

Problem 1.17. Determine f ( t ,  z) =: max {IJ¢l: J¢ is z-critical, r-partite}. 

Theorem 1.3 this maximum is smaller than ( z  + r - 1~. The K6nig-Hall By 
\ r / 

theorem imples that f(2, z) = z. Another possible generalization is to consider three 
or more families instead of 2. Using the above method one can prove 

Theorem 1.18., Suppose we have set A~, 1 <_ i <_ m, 1 <_ ~ <_ k. Suppose further that 
for every 1 <_ i <_ m 

A~ A A~ = ffJ for l <_ a < fl < k 

and for every i # j there exist ~ # fi such that 

ArnA  ¢ Z. 

Then for arbitrary reals satisfying Pi, . . . ,  P, > O, ~P i  = 1 we have 
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This theorem (in a slightly weaker form) appeared in [15]. A corollary of this 
is a generalization of Theorem 1.11: 

Theorem 1.19. Suppose n > r k and E(K~) = G1 U Ga O ' "  is a coloring of the edge-set 
of the complete graph in such a way that for every vertex x ~ V(K~) the edges {x,y} 
belong to at most k G~-  s. Then there exists a G i whose chromatic number is at 
least r + 1. [] 

The following question emerged in computer science: Suppose that the family 
{A~, Bi} (1 < i <  m) satisfies the assumptions of Corollary 1.10 (i,e., Az N Bi = 0 ,  
[Ail + I Bd < k, for all i • j either A~ t3 Bj ¢ Z o r  Aj 0 B~ ~ 0). Suppose further that 
A, ¢ O for all i, and denote f ( k ) =  max{z(d):  d = {al  . . . . .  a,.} as above}. It is 
easy to see that 

2k - 1 <_ f(k) < 2 

Conjecture 1.20. f(k) = 2k - 1. 
Even the inequality f{k) < k 1+~ would have some applications. (See [261]). 

Another problem concerning Corollary 1.10 arises from the study of comma-free 
codes (see [172]). Suppose that the family {&,/3/} (1 < i _< m) satisfies the following 
assumptions: A i f3 Bi = 0,  Ai, B~ c X where X is a k-element set, and for all i # j 
exactly one of the following two conditions holds, either A~ f~ Bj # O or A t f3 B~ ¢ 0. 
This family is called a {0, 1, .} tournament code. Let t(k) denote the size of the largest 
{0, 1, .} tournament code of length k. Corollary 1.10 implies t(k) _< 2 k. The best 
upper bound known for t(k) is due to Graham [144], who has shown that there is 
a constant c > 0 such that t(k) < k c~°gk for k sufficiently large. It is easy to see 
that t(k) > O(k)(see [172]) and Collins, Shor and Stembridge [74] gave a construc- 
tion proving t(k) > (i - o(1))k 3/2. 

Problem 1.21. What is the order of magnitude of t(k)? Is t(k) = O(k:) true? 

Maximum spanned cycle in the Kneser graph. Let A,, A2, . . . ,  A,. be k-sets with 
the property that A~ f'l Ai+x = O (1 _< i < m), A,. f3 A1 = O but A~ fl Aj ~ O in any 
other case. Denote the maximum value of m by g(k). Corollary 1.5 implies that 

P. Alles [11] proved by induction on k that g(k) > 2 k + 2. 

Conjecture 1.22 ([11]). g(k) = 2 k + 2. 

2. Geometric Hypergraphs 

The most fruitful generalization of Theorem 1.3 was given by Lovfisz [181, 185]. 
He introduced the notion of geometric hypergraph. This means that the vertices 
of H are embedded into a (real) projective space. (Instead of real space one can 
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consider other spaces over arbitrary fields, or even matroids). We illustrate his 
method showing an improvement of Corollary 1.5. 

The following theorem was conjectured by BollobAs [46, 50] and Pin [211] and 
was proved (independently) by Frankl and Kalai using a slightly modified version 
of Lovfisz' geometrical method. 

Theorem 2.1 ([116], [162]). Let A, , . . . ,  A,, and B1,... , B,~ be finite sets with ]Ail< a, 
InJ < b satisfying 

A, N B I = ~  and Aif3Bj¢:;~ for l<<_i<j<m.  (2.1) (a+b) 
Then m < . a 

Proof. First we recall some definitions. Consider the vectorspace V d of multilinear 
polynomials over R. That is, every member of V d is a polynomial of the form 

f(x) =/c{l~,...,d} Cs(i~ Xi) ' where cs~N. This is a 2a-dimensional vectorspace, 

so we have two operations on the elements of V a, multiplication by a real number 

( i f (x)  = ~  acsx , )and addition ( f ( x ) +  f ' ( x ) = ~  (cs+ cj)x,) .  Here i~, [-1 xi is 

denoted by xs. 
Define a noncommutative but associative and distributive operation, the so- 

called wedge product ^ .  If f(x) = E cix,, and f '(x) = ~, c'ix, then 
I 

S(x) ^ S'(x)= E E c,c;(x,  ^ 
# J 

Moreover 

I O if I f3 J # ;~ 

xs ^ xx = xm~ or - x r2x i f I f 3J  = 
according as {I, J} is an even 
or odd permutation of I U J 

e.g., f ^  f = 0 ,  c ^ XI=CXI, x 2 ^X{1,3}"---X 2 A X 1 /k X3 "~---X{1,2,3 }. For the proof 
of the existence and uniqueness of ^ see, e.g., [190]. Now we are ready to prove 
Theorem 2.1. We can suppose that IAi[ = a, [Bi[ = b holds for all i. Consider 
P = (U AI )o (U B,). We can suppose that P is finite. Choose a vector v(p)~ R "+b 
for every element p e P in such a way that every a + b of them are linearly 
independent. Associate a polynomial f~(x) with every Ai: 

I, ,+b "k 

similarly let 

f a+b ", 
gi(x) = l,,lt,A tj~, v(p)ixj). 

(2.1) implies that f~ A gj ---- 0 for i < j ,  but f~ A gi # O. We claim that the system 
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{f~(x): 1 < i < m} is linearly independent over R. Suppose on the contrary that 
eifi(x) = 0, and let s be the maximal index for which e~ ¢ 0, i.e., s = max { j: ej ¢ 0}. 

Then 

which leads to e~ = 0, a contradiction. All f~ belong to a -dimensional 
a 

subspace of V "+b, namely f~ ~ W, "+b = {f(x):f(x) = y' e~xt where e, = 0 if IIl ¢ a}. 

They are linearly independent in W~"+b'hencem<( a+b)a" [] 

With the same method Lov~isz proved the following geometric versions: 

Theorem 2.2. Let A1 . . . . .  A m be a-dimensional and let B1, . . . ,  B m be b-dimensional 
subspaces of  a linear space with the property dim(A i f )Bj)= 0 iff i = j .  Then 

m . [] 
a 

Theorem 2.3. Let A1, . . . ,  Am be a-dimensional subspaces of a linear space and 
B 1 . . . .  , B m be b-element point-sets with the property A~ fq Bj = ~ iff i = j. Then 

m<_ . [] a 

The first step of the proofs of these theorems is a projection into a (a + b)- 
dimensional hyperplane of general position. Frankl and Sterkin [126] conjectured 
that the following generalization is also true: 

Theorem 2.4 (Fiiredi [132]). Suppose that t is a nonnegative integer, a, b > t, 
A x . . . . .  A m is a collection of a-sets, B 1 . . . . .  B,, is a collection of b-sets such that 

' A i f 3 B " < t a n d ' A i N B j ' > t f ° r i ~ j "  T h e n m < ( a + b - 2 t )  " a - t  

The case t = 0 c°rresp°nds t° the previ°us the°rems" The b°und ( a +  a - t  b - 2 t )  

is best possible. Let S be an a + b - 2 t ,  T a t-element set S N T = ~ .  Let 

( S a _ t ) = { D 1  . . . . .  D m } a n d d e f i n e A i = D i U T ,  B i = ( S - D i ) U T .  O n e o f t h e g e o -  

metric generalizations is also true. 

Theorem 2.5 ([132]). Let A 1 . . . . .  A,, be a-dimensional and let B 1 . . . . .  13,, be b- 
dimensional subspaces of the real Euclidean space. Suppose that dim(A i 7) Bj) < t i f f  

( a + b - 2 t )  
i = j. Then m <_ 

a - - t  

The generalization of Theorem 2.3 leads to new problems (see Problem 2.13.) 
In each statement we can eplace the assumptions JAil = a, IBil = b, dim Ai = a ' "  
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by JAil < a, [Bi[ < b, dimAi _< a and so on. All the above Theorems 2.2-2.5 are 
valid even if we suppose our assumptions only for 1 <_ i < j < m. 

Proof of Theorem 2.4. It follows from Theorem 2.5 in the same way as Theorem 
2.2 implies Theorem 2.1. That is, let P = ( ~  Ai)U(U Bi). Let us assign a vector 
v(p) ~ ~P to each p ~ P so that {v(p): p ~ P} forms a basis of ~P. Let ~ (and/~) be 
the subspaces generated by {v(a): a ~ A~). Then Theorem 2.5 can be applied. 

Proof of Theorem 2.5. Suppose that A~, Bj ~ ~N. We can suppose that N is finite. 
For a subspace C let us define C ± = {y e ~N: (c,y) = 0 for each e ~ C} the ortho- 
gonal complement of C. Two subspaees D and C of dimensions d and c are in 
general position if dim(DfSC)= max{0,d + c - N). 

There exists a subspace C of dimension N - t which is in general position 
with respect to each A~, B~ and A~ fq Bi. Let A; = A~ fq C and B; = B~ fq C. Then 
dim A; = a - t, dim B; = b - t, dim(A; fq B;) = 0 and for i ~ j we have dim(A; f3 Bj) = 
dim((Ai f)Bj)fq C) > 1. Now Theorem 2.2 can be applied to (A;, B~}. [] 

An application of Theorem 2.1. (DisjointIy representable sets). 

Theorem 2.6 (Fiiredi and Tuza [1393). Let o~ be a family of sets of rank r. I f  

I~1 > k , then there exist Fo, F 1 . . . . .  Fk+ 1 ~ o~, and points pl, P2 . . . . .  Pk+l 

such that Pi e Fi but Pl ~ Fj for i -¢ j. 

Pro@ Suppose that ~ does not contain such a subsystem. Without loss of generality 
we can suppose that ~ = {F1,..., Fro} where ]Fil _< I~1 for i < j. We claim that there 
exists an Ai, IA:I < k, A i n f :  = ~ but AiNFj ¢ Z for all i < j .  Indeed, consider 
the family ocg = {Fj - Fi:j > i}. e ¢ o~ whence r ( ~ ) i s  finite. Let A~ be a minimal 
cover of o~, IAi[ = , ( ~ ) .  Then for every p e A, there exists an Fj(p)(j > i) such that 
A~ Cl Fj~p) = {p}. By the indirect assumption the family {F~} U {Fj~p): p e Ai} has at 
most k + 1 members, i.e., IA~I <- k. Finally, we can apply Theorem 2.1 for the family 
{A,,F~}. [] 

The following examples show that the bound in Theorem 2.6 is exact. 

Example 2.7. H = ~ KI +k-1 (0 < i _< r). 

Example 2.8. Let Y~ = {y~,. . . ,y,},  Xj = {x~,. . . ,xj} ,  Y, fqX~+k_ 2 = ~. Set ~ , j  = 

A simple proof of the upper bound theorem. This application of Theorem 2.1 is due 
to Alon and Kalai [14]. Let P be a convex polytope in d-dimensional Euclidean 
space. Denote the numbers of/-dimensional faces of P by f~(P), i.e., fo(P) = # of 
vertices, fd-~(P) = # facets, put f_~(P) = fd(P) = 1. 

Theorem 2.9 (McMullen [192]). I f  P c Nd is a convex polytope with n vertices then 

d - j - 1  
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where 

I(n +il) °ri dJ 2 i  
n 1 for i > d/2. 

d 

This was conjectured by Motzkin in 1957 [200]. The following example (the so- 
called cyclic d-polytope) shows that the bounds in Theorem 2.9 are sharp. 

Example 2.10 (Gale [140]). For x • N let p ( x ) •  R d be the following point p(x )=  
(x, x2 ,x  a . . . .  ,xd). Set P = conv{p(i): i =  1,2 . . . . .  n}. 

Using Theorem 2.12 one can easily obtain that for this P equality holds in (n) 
Theorem 2.9. Indeed, it is easy to see that f~(P) = i + 1 for i + 1 _< [d/2], so 

we can calculate the gl - s and hence the remaining f~(P) - s. 
The first step of the proof of Theorem 2.9 is that without loss of generality 

we may restrict our attention to simplicial polytopes. This means we can suppose 
that every face of P is a simplex. Indeed, a slight perturbation of the vertices of P 
makes it simplicial and does not decrease f~(P). 

With the simplicial polytope P we associate a hypergraph c~, the simplicial 
complex of P. Suppose P = cony{p,: 1 <_ i < n} and let V(Cg) = {1,2 . . . . .  n}, ~ = 
{S c {1,2,...,n}: {p~: s • S} is a face of P}. Clearly fi(P) = # (i + 1)-element 
members of rg. In general, a hypergraph o~ is called a simplicial complex if H • o,~e, 
H' ~ H implies H' • ~ for all H, H'. A member S ofa  simplicial complex oct' is free 
if S is contained in a unique maximal face M of o~f. The operation of deleting S 
and all faces that contain it is called an elementary collapse. If the size of S is s and 
the size of M is m, it is called an elementary (s, m)-collapse. A collapse process on 

is a sequence o~¢t " = ~o  = o~gl = "'" = ~ of simplicial complexes such that for 
1 _< i < t ~ is obtained by an elementary collapse. 

We say that aug is shellable if its maximal faces are all of dimension d - 1, and 
they can be ordered H1, H2, . . . ,  ~ so that for all 1 < k _< t - 1 

2Hk f? 2n' = U 2°~'J 
j=l  

where Gk, 1 . . . .  , Gk,~k are some distinct d - 1 subsets of Hk. In this case define 
Jut~i = U 2HJ (i'e', aft = ~)" F°r  l < i < t - l let S~ = F i -  0 G~,j, and let St = ;g. 

j> i  1 <_j<_s i 

On6can easily check that S~ is a free face of ~v~_l and ~ is obtained from ~_~ by 
deleting Si and all faces containing it, i.e., by an elementary ([S/[, d)-collapse. 

Theorem 2.11 (Bruggesser and Mani [-65]). Every simplicial polytope P c ~ is 
shellable. 

Proof(outline). Let H~ and H r be two arbitrary facets of P and x • int H1, y ~ int Hr 
Consider the line l through x and y. Let x(H) be the point where l meets the 
hyperplane containing the facet H. We can choose x and y such that these points 
are all distinct. The points x(H) have a natural ordering if we go along I beginning 
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at x = x(H1) and going further from y and returning to the other end of 1 and 
ending the process at y = x(Ht). This ordering defines the desired order of the faces 
H1, H2, . . . ,  Hr. [ ]  

The above defined shelling has the property that its reverse order is a shelling, 
too. If in the i-th step in the shelling we had an ($i, Hi) collapse then in the second 
shelling in the (t - i)-th step we have an (Hi - St, H~) collapse. This implies the 
following: Denote by g1 the number of elementary (i, d) collapses of the shelling 
defined first. 

Theorem 2.12. (Dehn-Somerville equations see [145], Section 9.2]). gi = gd-i. 

Proof. Indeed, the number of j-dimensional faces deleted in an elementary (i, d) 

( d - /  ) hence collapse is J + l - i  ' 

fJ(P)=i=o j + l - i  Ov (2.2) 

( (  d - i  ) )  isregular, so the sequence (9o, 91 .... ,gd) The matrix j + 1 - i -l~j~d-l.0~t<_d 

is uniquely determined by the sequence (f~(P))-lSi<_d-1. So the value of g, is 
independent of the actual shelling process. Denote by g~ the number of elementary 
(i, d)-collapses in the second shelling defined above. Then gt = g~ = gd-v So the 
above formula holds for every shelling of c¢ e. [] 

Returning to the proof of Theorem 2.9, we can rewrite (2.2) using Theorem 2.12 
and the notation #i = ~ = 0  g~. 

( , ) ]  fJ=i=o - j -  - d - j - 2  ~iforoddd,  

f~ = i=o - j - - d - j - 2  #i + d - j - 1  #a/2 for even d. 

In order to prove Theorem 2.9 it is enough to show that 

0 i < (  n - d + " (2.3) 

Proof  o f  (2.3). Let Sl and Ml be the free and the maximal face corresponding 
to ~he l-th elementary collapse, 1 _< l < t. Let (S~j, M~) be the subsequence of 
(S~,M~)~ ~, ~, consisting of those pairs with ISll < i, 1 < j < gi. One can easily check 
that Aj = SIj, B~ = {1,2,... ,n} - MI~ satisfy the hypothesis of Theorem 2.1. [] 

Intersection patterns o f  convex sets. Using the above method Alon and Kalai [14] 
gave also a simple proof of a theorem conjectured by Katchalski and Perles and 
proved independently by Eckhoff [87] and Kalai [162]. This theorem asserts that 
if vY" is a family of n convex sets in R d and J¢" has no intersecting subfamily of size 
d + r + 1, then the number of intersecting k-subfamilies of Yf for d < k _< d + r 
is at most 
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~=o i k - i  
8 

Equality holds, e.g., if ~ = {Kz,K2 . . . . .  K,} where K1 = ... = K, = •a and 
K,+I . . . . .  Kn are hyperplanes in general position in R d. 

The generalization of Theorem 2.3 leads to the following problem. 

Problem 2.13. Let A1 . . . .  , A u be a-dimensional subspaces and B1 . . . .  , Bu  be 
b-element sets with the property I Ai f3 B~I < t and I A~ fl Bjl > t for i # j. Determine 
Mr(a, b), the greatest number m such that such a family exists. 

Clearly '(a+b-2t)<-Mt(a'b)<-( a , b u t t h e r e i s n o e q u a l i t y i n  

general. E.g., construction of Burr, Griinbaum and Sloane [66], which consists 
of b + 3 points and 1 + [b(b + 3)/6] line such that every line contains exactly 
3 points, shows that M1(2, b) _> 1 + [b(b + 3)/6]. An elementary construction can 
be found in Fiiredi, Palfisti [138]. On the other hand, trivially M~(2,b) _< 1 + 
(~) ( a + b - t )  

< . More generally we can ask: a 

Problem 2.14. Let A1, A2 . . . .  , A m and BI, . . . ,  B~ be finite sets with IA~I < a, 
I B~I --- b satisfying [A~ fq Bil < t and l At fl BjI > / f o r / #  j, where 0 < t < I. Determine 
mt,~(a, b), the greatest number m such that such a family exists. 

A generalization for hypersurfaces (Deza and Frankl [80]). A more advanced gen- 
eralization of Theorem 2.2 is due to Deza and Frankl [80]. Let U: be a commutative 
field (finite or infinite) and let P = P(n, D:) be the n-dimensional projective space 
over ~:. Every point x e P can be expressed by n + 1 homogeneous coordinates 
x =(xz  . . . . .  x,+l) not all zero and (x1,x2,...,Xn+l)=(,~Xl,AX2 . . . . .  ,~.Xn+l) for 
0 # 2 e 0:. By a hypersurface of degree d we simply mean the set of points x ~ P 
with f(x) = 0, where f is a homogeneous polynomial of degree d of the variables 
X 1 , . . . , X n + l .  

Theorem 2.15. Suppose that H1, ..., H m are hypersurfaces of degree at most d in P 

sothattheinterseetionofanychoice o f ( n + d )  d of them is non-empty. Then 

  H ee. 
= !  

The bound in Theorem 2.15 is best possible. The above theorem is a Helly type 
result. (About Helly type theorems in geometry, see [76]). Theorems 2.1-2.6 all 
have Helly type reformulations; for example Theorem 2.2 is equivalent to the 
following. 

Corollary 2.16. Let ~¢ = {Az, A 2 . . . .  } be a family of a-dimensional subspaces. Suppose 

that foreverysubfamilyg#c~,with ]~1 <_(a+b)a thereexistsab-dimensional 
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subspace C such that dim(C fq B) > 1 for all B • ~ .  Then there exists a b-dimensional 
subspace D for which dim(O N A) >_ 1 for all A • d .  

The structure of  z-critical graphs and hypergraphs. The investigation of z-critical 
graphs was initiated by Erdrs and Gallai. In 1961 they proved 1-100] that if G is 
a z-critical graph without an isolated vertex then I V(G)l < 2z(G), an~d here equality 
holds iff G is the disjoint union of z edges. Gallai suggested to classify z-critical 
graphs according 6(G)= 2z(G)-  [ V(G)[. Denote by deg~(x)the number of edges 
through x in the (hyper)graph G. Hajnal proved [ 150] that in every z-critical graph 
G (without isolated vertices), degG(x) < 6(G) + 1 holds for every vertex. This implies 
that ifG is z-critical and 6(G) = 1, then G consists of an odd cycle and disjoint edges. 

Without loss of generality we can investigate only connected z-critical graphs. 
Gallai conjectured and Andr/tsfai [16] proved that all the connected z-critical 
graphs with 6(G) = 2 can be obtained from K 4 by subdividing each edge by an even 
number of new points. 

It is easy to see that we can eliminate vertices of degree 2 from a z-critical graph 
keeping its 6. Namely if G is a z-critical graph and x ~ V(G), deg(x) = 2, {x, y}, 
{x,z} • E(G) then delete x and (x,y}, {x,z} and identify y and z. The inverse of 
this operation also keeps z-criticality (see, e.g., Plummer [213]). So the above result 
of Andr~isfai can be reformulated as follows: if G is a z-critical connected graph 
with 6(G) = 2, every vertex of which has degree at least 3, then G = K 4. Gallai 
conjectured the following finite basis theorem: 

Theorem 2.17 (Lov~sz [183]). Let 6 > 2. Then the number of connected z-critical 
graphs with minimum degree > 3 and with 6(G) = 6 is finite. 

Using the above operation to generate vertices of degree 2 we can obtain all 
z-critical graphs. The case 6 = 3 was proved by L. Sur~nyi [230] (actually he proved 
that in this case there exist at most 12 such graphs.) He also has a nontrivial 
construction showing that there are at least 62/4 such graphs [231]. (Lov~tsz' upper 
bound is huge, about 2~'). In the proof of 2.17 Lov/tsz uses geometric graphs. The 
following theorem has an important role also. For A c V(G) we call A independent 
if it does not contain an edge of G. F(A) =: (y: y ~ V(G) - A, there exists an edge 
(x,y} ~ E(G) with x e A}. 

Theorem 2.18 (Lov~isz [1831 Sur/myi 1-230]). I f  G is a z-critical graph (without 
isolated vertices) and A c V(G) is an independent set then for all a ~ A we have 

dego(a) <_ IF(A)I- [AI + 1. (2.4) 

This is a generalization of another theorem of Hajnal [150]. 
Much less is known about z-critical hypergraphs. Call a set A c V(H) strongly 

independent if no edge intersects it in more than one element. Moreover, for 
B = Y(H)define F(B) =: {E - {b}: b ~ B,b e E ~ E(H)}. Then Gy~rfhs, Lehel and 
Tuza [148] proved that (2.4) holds for every z-critical r-graph if A is a strongly 

independent set. Using this result they proved that I V(H)I < z r - 2 + z'-l" 

Recently, Tuza determined maxl V(H)I appart from a constant factor. 
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T h e o r e m  2.19 ([2743). Suppose that H is a z-critical r-graph (without isolated vertices). 

Thenlg(H)l _< r -  1 + r - 2  ' 

Let v(r, z) be the maximum number of (nonisolated) vertices of a r-critical 
r-graph (with covering number z). Theorem 2.19 implies the theorem of Erd6s and 
Gallai (v(2, T) = 2z) and improves a result of Petruska and Szemer~di [210] on 
3-graphs (they proved v(3, z) _< 8z 2 + 2z). The following construction shows that 
Theorem 2.19 yields the right order of magnitude of v(r, z) for all r and z. 

Example 2.20 (Tuza [240]). Consider the complete ( r - / ) - g r a p h  K~2~ -1-i on 
(z + r - 1 - i) vertices. Add i new vertices to each edge. We obtain a r-critical 

hypergraph with i ( z + r - l - i )  z 1 + z + r - 1 - i vertices. 

It is conjectured that this construction is optimal. 
Conjecture 2.21 (Gyfirffis Lehel, Tuza [148]). 

[[r(z--1) l ) [ J 

L 
I T / \  z -  1 + z - + z  - 

Tuza [240] proved (see Section 4) that v(r, z) < . The ratio of the upper 
r 

bound in Theorem 2.19 and the lower bound given by Example 2.20 is always less 
than 4. 

Erd6s and Gallai [100] solved the case z = 2 proving v(r, 2) = [(r + 2)2/4]. 

Intersecting and k-wise intersecting families. A hypergraph is k-wise intersecting if 
any k edges of it have a non-emptyintersection. It is obvious that for an intersecting 
family ~ we have 

z (~)  _< m i n v ~ l F [ .  

For k-wise intersecting families we have (see, e.g. [186]) 

v(~)  < 1 + ( m i n F ~ : l F I -  1)/(k - 1). (2.5) 

Hence if ~ is at least (min IFI + 1)-wise intersecting then z (~)  = 1. 

Multi-transversals. Let s > 1 be an integer, H a hypergraph. The set A is an 
s-multitransversal of H if either IA fq HI > s or A = H holds for all H s E(H). A 
1-multitransversal is a cover. Define z's(H)=: min{IAl: A is a s-multitransversal 
of H}, the s-multitransversal number of H. Lehel [ 170, 171] introduced the following 
functions: 

m(s, z ) =  max {-o's(H): H is r-critical with z (H)=  z}, 

mk(s,z) = max{z:(H): H is r-critical, z(H) = z and 

H is k-wise intersecting}. 

T h e o r e m  2 . 2 2  (Lehel [170, 171]). 
(i) Every r-critical hyperoraph has a 2-multitransversal of at most [(z + 2)2/4] points. 
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(ii) Every z-critical hypergraph with z = 2 has an s-multitransversal with cardinality 
at most 1,(s + 2)2/4]. Both estimates are sharp, i.e.., m(2,z)= [(z + 2)2/4] and 
m(s,2) = 1,(s + 2)2/4]. 
(iii) re(s, z) <_ z s, 
(iv) m2(2, 3 )=  5, m2(3,3)-- 9, 

s + 1 ifs _< k 

mk(s,2)= ~(k + l ) ( s - k  + l) ifk <s<_2k 

[. 1,(s + 2)5/4] if s >_ 2k. 

Tuza 1-240] has additional results (see later in Theorem 4.14) and it looks hopefui 
to determine mR(S, ~) for other values of z. Another variation of the above problem 
is the following: 

Define u(r,s) = max {~(H): H is intersecting of rank r, ~(H) _> s}. 

Problem 2.23. Determine u(r, s). 

It is easy to see that u(r,2) = 3r - 3 for r >_ 2 (see Lovfisz 1-1863). 
Problem 2.24 (Roudneff 1,219]). What  is the maximum number  of edges of a z-critical 
linear hypergraph? (Linear means that I E N E'I _< ! for all E, E' z E(H), E # E'.) Let 

re(z) = maxlE(H)l: H is linear, z-critical and z(H) < z. Then (z + 1) < re(z) < z 2 - 
/ 

- -  2 o _ _  

z + 1. The conjectured value of re(z) is the lower bound. 
/ 

3. Nontrivial Coverings and Designs 

Nontrivial coverings in symmetric designs. Suppose that the hypcrgraph H = (X, g) 
is ). intersecting. Then clearly, every set T which contains an edge of H is a 2- 
multitransversal. So we call T a nontrivial 2-multitransversal (for). = 1, non-trivial 
cover) if 

A <_ ITnEI < IEI 

holds for every E E g. 
An (r, ).)-design is a pair (X,~)  where X is a set of v elements, ~ is a collection 

of subsets of X called blocks, for every x e X we have deg~(x) = r and every pair 
{x, y} = X is contained in exactly 2 members of ~ .  It is well known (see, e.g., 
Ryser 1,,220]) that I~¢1->IX I. In the case I~1 = I XI we say (X,~)  is a symmetric 
(r, 2)-design. Then v = (r 2 - r + 2)/2, and two members of ~ intersect in exactly ). 
elements, and for every B e ~ has r elements. 

A projective plane of order n, PG(2, n), is a symmetric (n + 1, 1) design. The 
Desarguesian projective plane, DPG(2, q), is obtained from the finite field ~q. The 
points of this plane are the equivalence classes in ~:~ - {(0, 0, 0)} of the relation " ~ "  
defined by (x ,y ,z)~ (x ' ,y ' ,z ' ) i f  there exists c ¢ 0 in ~:~ such that (x' ,y ' ,z ')= 
(cx, cy, cz). The lines of DPG(2, q) have equations of the form ax + by + cz = 0 in 
Sq with (a,b,c) # (0,0,0). 

A more general example of symmetric (r, ).)-designs is the t-dimensional finite 
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projective space of order q, PG(t,q), where q is a primepower and r = q t +  
qt-1 + ... + I, 2 = qt-t + ... + q + 1. This hypergraph is t-wise intersecting (and 
i-wise ( q "  + . . .  + q + 1)-intersecting for 2 < i < t). 

The investigation of the covers and non-trivial covers of block designs was initi- 
ated by Pelikfin [208]. Beyond other results he observed that there is no non-trivial 
cover T of the projective plane of order 3, and for n > 4 I TI > n + 1 + x / ~ -  
The following theorem which sharpens and generalizes this result was proved for 
)` = 1 by Pelikfin (unpublished) and Bruen [60], [611 for all )` by deResmini [214], 
and the case of equality (for)` > 1) was characterized by Drake [83]. 

Theorem 3.1. Let (X, ~)  be a symmetric (r, )`)-design, and suppose that 1 ~ IT n 81 < I B] 
holds for all B e ~ .  Then I TI _ (r + , , / r  - )`)/2. Moreover if I TI -- (r + x / r  - 2)/)` 
holds then T induces a Baer subdesign (i.e., { T n B: I T n B I > 1, B ~ ~}  is a symmetric 
(1 + , / r -  )`,)`)-design). 

It is easy to check that a Baer subdesign is always a (non-trivial) cover, so 
Theorem 3.1 yields a characterization of Baer subdesigns. In the case if T is a 
non-trivial cover in a projective plane of order n Bierbrauer [253] improved 3.1 to 
IT] > n + x/~ + 2. C. Kitto [166] (a student of D. Drake) has proved IT] > n + 
x/~ + 3 ifn is not an integer square, n > 36 and if T is of maximal type. A non-trivial 
cover T is of maximal type if I TI --- n + k and if some line of the projective plane 
contains k points of T. 

Proof of 3.1. For an arbitrary set T c X we have 

~ I T A B I  = r lZl ,  
B 

and 

('ITN 

(3.1) 

(3.2) 

Using linear combinations of(3.1) and (3.2) we can express any polynomial of degree 
2 of the form F ~ ( ~ I T n B I  ~ +/~ITNBI + ~,). For example we have (t = ITI, v = 

B 

(r ~ - r + )`)/)`) 

; ([TNB] - 1)= t r -  v, (3.3) 
B 

E ( I T A B I -  1)]TN B[ = )`t 2 - )`t. (3.4) 
B 

We need the following. 

Proposition 3.2. For every B ~ ~ we have IT n BI < t)` - r + 1. 

Proof. Indeed, let x ~ B\  T (it is non-empty!). Consider the blocks B = B1, B2, . . . ,  B, 
through x. These blocks cover X \ { x }  exactly ),-times, i.e., 

2 t = 2 [ T l =  ~ t B i n T [ > [ T n B l + r - 1 .  0 

Every term of (3.3) and (3.4)is non-negative, hence 
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/ \ 

2t 2 -  2 t =  ~ ( I T N B ] - - I ) , T N B I N / ~ ( I T N B [ - - 1 ) ) m a x l T N B I  

<_ (tr - v)(2t - r + 1) (3.5) 

Rearranging we obtain 

0 ~ 2t  2 -- 2r t  + v 

which gives that either t _> (r + x/r  - 2)/2 or t < (r - x/rr - 4)/2. But Proposition 
3.2 

implies t >_ r/2, hence t > (r + x/r  - 2)/2 must hold. 
In the case of equality (3.5) implies that for all B either [TNB[ - 1 = 0 or 

[T N B[ = t2 - r + 1 = x/r  - 2 + 1 holds, implying the second part Theorem 3.1. 
[] 

Using the above method we can prove. 

Theorem 3.3. Let (X, ~) a symmetric (r, 2)-design, and suppose that i < IT N BI < [BI 
holds for all B ~ ~ ,  i < 2. Then 

[T[_>~ r + ( i _ 0 / 2 + x / ( i _ l ) Z ; - + - i ( r _ i ) ( r  - 1 ) / ( r - 2 )  " 

This is a slight improvement on the trivial I TI > ir/2 by a term of about v/~/2.  
Theorem 3.1 is a consequence of 3.3 (with i = 1). For i = ). we have 

Corollary 3.4. Let T be a non-trivial 2-multitransversal of  a symmetric (r, 2)-design. 
Then 

r - 2  
I T l > r  + ( 2 -  1)/2 + ~ / ( 2 -  1 ) 2 / 4 + ) , ( r - 1 ) "  [] 

Corollary 3.5. A symmetric (r, 2)-design is a maximal k-intersecting family of  r-sets. 

This means that if T is an arbitrary set satisfying ]T[ < r, [TNB[ >_ 2 (for all 
B ~ ~)  then T is a member of ~'. 

Proof of  3.3. We can proceed as in the proof of 3.1. Instead of Proposition 3.2 
we have 

max]TAB[ _< t2 -- ir + i 

Using the notation t = (Jr + x)/2 (3.1) and (3.2)imply 

2 ( I B N  T I -  i) = rx + i r - i 2  
B 

(IB n r l -  0 2 = x 2 + (r - ;,)x + i(r - -  i ) ( r  - -  2), 
B 

so we obtain 

0 < ( r - - 1 ) x  2 + ( r - 2 ) ( i -  1)x -- i(r -- i)(r -- 2) 

This implies 3.3. []  
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Drake [83] found a generalization of Theorem 3.1 for some non-symmetric designs. 
His result was extended by Jungnickel and Leclerc [161] to all (r, ),)-designs. The 
proofs are very similar to the proofs of Theorems 3.1 and 3.3. Another generaliza- 
tion of Theorem 3.1 is due to Beutelspacher: 

Theorem 3.6 ([39]). Suppose that T is a subset of points of a &'dimensional projective 
space of order q, which intersects all the (d - t)-dimensional subspaces but does not 
contain a t-dimensional subspace (d > t >_ 1). Then 

IT] _>q~+ "'" + q +  1 +qt-lx//~. 

He also characterized the case of equality. Bruen and Rothschild [64] proved 
that the covering number of the M6bius plane of order q is 2q - 1 (if q > 3). 

If P is a Desarguesian projective plane of order q, and q is a square then its 
vertices has a partition into q - x/fq + 1 Baer subplanes. (See e.g., [157].) The union 

of k disjoint Baer subplanes intersects every line in k or k + x/q elements. Hence 
z~,(P) _< k(q + x/q + 1). Lasker and Sherk have the following: 

Conjecture ([169]). Let P be an arbitrary projective plane of order q, and suppose 
that I r ,q  LI >_ 2 for every line L. Then I r l  > 2(q + x ~  + 1) holds (q >_ 8). 

A very special case was proved in [215], but the conjecture is still open. 
deResmini [215] constructed 2-multitransversals on the Hughes-planes of size 
2(q + x/q + 1) which do not split into two disjoint Baer subplanes. She [216] also 
has a 3-multitransversal of 36 points in the Ostrom-Rosati  plane of order 9 which 
does not contain any line. 

The covering number of an affine plane. An affine plane of order n is a hypergraph 
" 

( X , d )  where IXl = n 2, Is¢l = n 2 +  n, d c and any two members of s¢ 

(any two lines) have at most one common element. The Desarguesian affine plane 
of order q is denoted by DAG(2, q), and obtained as follows: X = y2 and the lines 
have the form {(x,y): ax + by + c = 0}, (a,b) ¢ (0,0). 

The disjointness is an equivalence relation over the lines, so d can be decom- 
posed into n + 1 n-element set ~ = 501U"- U 50,+1 where I~1 = n, U ~ = X, 
A fl A' = N for A, A' e ~ (1 < i < n + 1). These classes are called parallel classes. 
It is easy to prove that 

Suppose I T[ < n, T f) A ~ N for all A e d - 50i. Then Te  50i. (3.6) 

Trivially, z ( d )  > n. Theorem 3.1 implies that 

z ( d )  > n + x/~ (3.7) 

holds for every affine plane d of order n. Jamison [160] and independently, 
Brouwer and Schrijver [59] proved that for DAG(2, q) much more is true, proving 
a conjecture of J. Doyen. The case q = 7 was proved by Hansen and Lorea [151] 
using an extensive computer search. 

Theorem 3.7 ([160], [59]). For the Desar#uesian affine plane of order q, DAG(2, q) 
we have z(DAG(2,q)) = 2q - 1. 
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Proof. z(d)  < 2q - 1 is trivial (consider a line A e L~ together with q - 1 additional 
elements, one from each line L ~ £a~ _ {A}). Suppose that T is a cover of DAG(2, q), 
T c 0:2. Without loss of generality we can suppose that (0, 0) ~ T. Define the poly- 
nomial P(xl, xz) over ~:~ as follows 

P(xl,x2) = I-I (t lx 1 + teX 2 - 1) 
(h,t2) e-r\{(o, o)} 

As T intersects every line, P(xl, x2) = 0 for all (x 1, x2) e IF~, except P(0, 0) = ( -  1) lrl-1. 
We claim that every polynomial with these properties has degree at least 2(q - 1), 
so we obtain 

I T I -  1 = degP > 2 q -  2 

proving the theorem. P has a decomposition 

e ( x , , x , _ )  = + + 

where for every term cx~xi2 of J one has 0 < i,j < q - 1. Moreover degP > degJ. 
Clearly 

J(xl ,x2) = 0 for all ~:~\{(0,0)}, J(O,O) ¢ 0 

holds. Hence J is divisible by the polynomials xg - 1 -  1 and x~ - 1 -  1, so 
deg J >_ 2q - 2. [] 

The above method gives that the covering number of the hypergraph consisting 
of the hyperplanes of AG(d, q) is d(q - 1) + 1. Actually Jamison proved much 
more. Namely, that if A~ . . . . .  A,~ are k-dimensional subspaces of AG(d,q), and 
L.)A, = AG(d ,q ) -  {0} thenm > qd-k 1 + k(q - 1) (for 0 < k < d). 

Problem 3.8. Determine T(~¢) for other affine planes. Describe the minimal ((2q - 1)- 
element) covers of DAG(2, q). 

Bruen and deResmini [63] showed that Theorem 3.7 is not valid for arbitrary 
affine planes. They constructed 16-element covers on all the three known non- 
Desarguesian affine planes of order 9. 

Problem (P. ErdSs). It is true that there exists an absolute constant C such that in 
any finite projective plane there is a cover T such that I T fq L[ < C for every line 
of P? 

Using a simple probabilistic argument Erd6s, Silverman and Stein [257] proved 
that there exists a cover T with I Tn  LI < (2e + o(1))logq, where q is the order of 
the plane. It was later improved for IT fq L[ < (2/log 2 + o(1))log q by Abbott and 
Liu [6] for Desarguasian PG(2, q), but this upper bound still tends to infinity. The 
only known construction is valid only a small class of the Desarguesian planes. 

Example (Bruen and Fisher [62]). Let q be a power of 3. Set 

7" = {(x,x 3, o): x u { ( x , - x 3 ,  0): x u {(0, 0,1)}. 

Then T is a cover of the Desarguesian projective plane P of order q and no line of 
P contains more than 4 points of T. 

E. Boros [254] generalized the above example proving the existence of a cover T 
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on the DPG(2, p~) such that I T n Ll _< p + 1 holds for each line L, whenever p is an 
odd prime. 

Maximal intersecting families. A hypergraph (V, d') is called an r-clique, or a maximal 
intersecting family (of rank r) if any two edges intersect in at least one point and it 
cannot be extended to another intersecting family by adding a new r-set. In other 
words the intersecting r-graph 8 is an r-clique if it does not have a non-trivial cover 
of size at most r. For example the complete hypergraph K, 2'-1, the finite projective 
plane of order (r - 1)(see Corollary 3.5)are r-cliques. Erdrs and Lov/lsz [108] have 
given bounds for the minimum number re(r) of edges in a r-clique. In particular 
they proved, that 

re(r) _ 3 r - 3, 

which was improved by Dow, Drake, Fiiredi and Larson [81], 

re(r) > 3r for r > 4. (3.8) 

So (3.8)and Example 3.9 give m(4) = 12. It is easy to check that m(2) = 3, m(3) = 7. 

The determination of the value of re(r) is one of the few questions dealing with 
the problem of determination of the minimal cardinality of set-families satisfying 
certain restrictions in which no set can be added to it without violating these 
restrictions. This type of problems were raised by Erdrs and Kleitman [106]. 

It was conjectured that re(r) _> r 2 - r + 1, and equality holds whenever a pro- 
jective plane of order r - 1 exists (Meyer [1931 [194], Erdrs [96]). The following 
example disproved this conjecture. 

Example 3.9 ([128]). (2n-clique of size 3n 2, see Fig. 3.1). Let (X,~¢) be a finite 

A i 

A2 

A~ 

Bn 

! l  I 
• qu I 

I • o r q  
I • o l a  

o i i  i l l  

D 

• 

D 

D D 

B 2  B 3 

' I "  r i I ! 
• I 10 

' I  . , i  i t , • IO ! 
• I 

• D O  

• ~ i i .  ° 

!.J" 
• . D D 

• 'I ,.i 
' ] • 

I ' 
i D 

• ID D ! I • D 

Fig. 3.1. Incidence matrix of a maximal clique of order 6 (Redrawn from Page 285 [128]) 



136 Z. Ffiredi 

affine plane of order n with parallel classes ~1, ~2 . . . . .  ~en+ 1. Let L1 . . . . .  Ln be 
the lines of ~+1 .  Consider three disjoint copies (Xl,~Ct), (X2,dz) ,  (XS, ~3) .  Let 

i _~!+i V=X1UX2kJX3and8  = { L i U L : L j ~ + ~ , L a _ j  f o r / =  1 ,2 ,3 , j=  1,2 . . . .  . n}. 
Then 181 = 3n2 and (E 8) is a 2n-clique. 

(To prove that this example gives an r-clique we can use (3.6).) S. Sane [221] 
showed that the 253 blocks of the Wilt design S(23, 7, 4) form a 7-clique. r-cliques 
with few edges seem to be deeply associated with finite projective planes, all the 
known (and small) constructions use affine or projective geometries. The presently 
known further 3 classes of r-cliques with size less than r 2 are the following: 

Example 3.10 (For n = 2 Babai and Fiiredi [128], for all n Drake and Sane 1-85]). 
An n-uniform projective Hjelmslev plane of order q is a (q" + q"-l)-clique. This 
implies that if q is the order of a projective plane then 

m(q~ + qn-1) < q2n -t- q2~-1 + q2n-2. 

Example 3.11 (Blokhuis [43]). If q is an odd primepower (q > 7)then m(q + 1) < 
3q2 + 3q + ¼. 

His idea is as follows: Start with PG(2,q), add some new r-sets (r = q + 1). 
Throw away lines that do not intersect the new sets. Finally add more r-sets 
(if necessary) until the family is maximal intersecting. 

This construction was the first counterexample of the conjecture of the author 
[128], that 18l -> IU el holds for all r-cliques. Using the above idea Boros, Fiiredi 
and Kahn [56] obtained. 

Example 3.12 ([563). ((q + 1)-  clique of size ½q2 + O(q)). Suppose q is a prime- 
power q + 1 =O(mod 6), q > 20. Consider DPG(2, q) and let C be a conic, e.g., 
C =: {(x,y,z): x 2 + y2 + z 2 = 0}. Let K be an affine regular hexagon inscribed to 
C (i.e., K c C). Then there exists a 6 element set L(K), L(K)NC = ~ with the 
property that a line through I and k where l ~ L(K), k ~ K, is either a tangent of C 
or intersects K in a second point. Define 

S0 = {all the lines which intersect CU L(K)} U {(C\K) U L(K)} 

q2 9 
Clearly, [e0[ = ~- + ~q + 0(1). Using a classification theorem of Wettl [244] about 

affine regular k-gons in PG(2, q), one can show that every (q + 1) element cover of 
80, which is different from the members of 80, can be obtained from an inscribed 
regular k-gon into C. Hence, adding less than q + 1 new sets to 80 we will provide 
a (q + 1)-clique. (Especially, if (q + 1)/6 is a prime we do not have to add any new 
members.) 

There exists a small r-clique for all r. Until this point the best upper bound for re(r), 

valid for all r, supplied by the complete r-graph, implying re(r) < < 
r 

From an r-clique 8 we can obtain an (r + 1)-clique in the following way: 8' = 
{EU {x}: E e 8 ,x  ~ E'} U {E'} where E' is an (r + 1)-set disjoint from all members 
of 8. Hence 

m(r + 1) < rm(r) + 1. (3.9) 
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Using the current best result from number theory, which says 
(3.10) ([263]) there is at least one prime between r and r - r ° for all sufficiently 
large integers r, with 0 23 -- 4-2, 
and repeatedly using (3.9) and the fact that m(q + 1) < q2 + q + 1 for q a prime 
one obtains that 

m(r) < r c'° 

holds for all r. Surprisingly, to prove a polynomial upper bound for re(r) is really 
elementary. 

Theorem 3.13 (Blokhuis [43]). For every r there exists an r-clique o f  size at most r 5. 

Proof. This proof is based on a significantly simplified idea of Drake [84]. We 
will use induction on r. r can be written as r = q + s where q is a prime and 
1 _< s _< q0.6. The case s = 1 is covered by the projective plane, so we suppose 
s > 2. Let(V, g) be an s-clique of size m(s) < s 5. Consider DA G(2, q) -- (X, d ) w h e r e  
d = ~1 U""  O ZPq+l is a partition of paraUel classes. Consider q + 1 disjoint copies 
of (V, 8) over the underlying sets 1/1, V2 . . . . .  Vq+ 1, suppose V~ N X = O for all i. 
Finally define a (q + s) clique ~ over Y = X U 1"1 U ' "  U ~+1 as follows: 

~ = {LU E: L ~  ~,e~,E e ~ , I  < i < q + I} 

Clearly ~- is an intersecting family of (q + @sets of size 

I:1 = (q2 + q)m(s) < (q + s) 2" s 5 < (q + s) 5. 

It remains to be shown that it is maximal. Let T be a cover o f ~  of size I TI < q + s. 
As I TI < 2q - 1 by Theorem 3.7 there exists a line L1, say L~ e ~ ,  such that 
L1 N T = 0.  Then considering the sets {L1 U E: E • 81 } we obtain that IT N VII > s. 
As I TI < s(q + 1) there exists a V~, say V2, such that IV2 N TI < s. Then T avoids a 
member E2 0f82, so considering the edges {L U E2: L • ~2} we obtain I TN XI > q. 
Now ITI < q + s implies ITOXI = q, ITN Vxl = s and thus TN V~ = O for i > 1. 
Now T O X intersects all the lines o f d  - ~1, hence T 0 X • ~1, by (3.6). Similarly, 
T N 1,'1 is a blocking set of 81 of size s, hence T N V~ • g~, i.e. Te o~. [] 

Remark. If we knew that for two consecutive primes Pk+l -- Pk = O(logpk z) holds, 
then the above proof would give 

re(r) <_ r2(logr) 4-+~. 

But this is still far from the lower bound (3.8). 

Problem 3.14. Determine the right order of magnitude of re(r). Is it true that 
m(r)/r ~ o0, or re(r) = o(r2)? The author believes that re(r)is closer to r 2. 

Proposition 3.15. [128]. Let  ( X , ~ )  be a r-clique. Then either ]~1 > r 2 or IXI > 
r2/2 log r. 

Proof. Suppose IXt ~ r2/21ogr. Count in two ways the number of pairs (F,A) 
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A family is a (r, 2)-clique if it is a 2-intersecting r-graph without any non-trivial 
2-multitransversal of size r. Denote by m~(r) the minimum cardinality of an (r, 2)- 
clique. By a slight modification of the above construction of Blokhuis one can 
obtain that 

ma(r) < r ~ 

holds for all r _> 2. (We simply add (2 - 1)common vertices to a (r - ), + 1)-clique 
~" defined in the proof of 3.13.) 

Minimal intersecting r-graps with covering number r. Erd6s and Lov~isz [108] 
introduced the function 

n(r, z) = min {[~'1: ~" is an intersecting family with r(~') = z}. 

Set n(r) = n(r,r). Of course, this function is defined when 1 < ~ < r. If we drop the 
intersecting property we obtain a trivial problem (the smallest example is z disjoint 
r-sets.) As n(r) ~ re(r)we have that 

n(r) < r 5 for all r, (3.11) 

and 

n ( r ) _ < r 2 - r + l  f o r r = q + l .  (3.12) 

Theorem 3.16 (Erd6s and Lovfisz [108]). For all r 

- 3 __ n(r) 

and if q is a primepower then 

n(q + 1)<  4qv/q log  q. 

Proof (sketch). Lower bound: Let xl be a vertex of maximum degree of ~ ,  let x2 be 
a vertex of maximum degree of~" - {F s ~ :  xl s F}, and so on. Ifl~-I is too small 
we obtain a cover of size less than r. 

Upper bound: Consider the family of lines of the finite projective plane PG(2, q). 

Set t = 4qx/q log  q. We can choose t lines in (q2 + q + 1\  t ) ways. One can show 

/ /  \ "  ( (q2  + q + 1 ) )cho ices  of t lines cannot be covered by fewer than that all but o t 
\ \  / /  

q + 1 points. [] 

Conjecture 3.17 ([108]). n(r)/r ~ ~ whenever r ~ m. 

P. Erd6s offered $500 [97] for the proof (or disproof) of this conjecture. They 
also believe that the following is true. 

Conjecture 3.18 ([ 108]). One can choose less than O (q log q) lines of PG(2, q) which 
cannot be covered by q points. 

ErdSs and Duke [86] defined the property C(s). The intersecting r-graph ~" has 
property C(s)if T(~) = r  and each (r - 1)subset misses at least s edges of ~ .  (If 
r(~') = r, and ~- is intersecting, then it has at least property C(1).) 

Example 3.19 (Frankl [unpublished]). (r - graph with property C(r) ). Suppose r is 
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even, let X 1, X2, X3 be three disjoint (r - 1)-sets and take as an edge eaqh r-set of 
X1 t3 X2 U X3 having exactly r/2 vertices in two of the X~ - s. 

Example 3.20 (Duke and Erd6s [86]). ( r -  graph with property C(r)). Suppose 
r = 2q + 2 where q is an order of a finite projective plane (X, ~). Let X~, X2, X3 
be three disjoint (q2 + q + 1)-sets and ~'~, ~2, ~3 three copies of ~ on the Xi - s. 
Form a (2q + 2)-graph with vertex-set X t U X2 t3 X 3 by taking as an edge each set 
which is the union of two lines from two different X~ - s. 

Problem 3.21 ([86]). What is the minimum cardinality of an r-graph with property 
C(r)? (They conjecture that it is less than r 4 for all r.) 

Problem 3.22 ([86]). What  is the maximum value of s (for a given r) such that there 
exists an r-graph with property C(s)? 

Cliques of  maximal size. Lov~sz [177] proved that the number of r-cliques is finite 
for any given r, by showing that for every maximal intersecting r-graph ~- we have 
[#-1 < r'. His result was generalized by Gy~rf~is [147]: 

Theorem 3.23 ([147]). Let ;/d be an r-graph (not necessarily intersecting) with 
z(d,~) = z. Then the number of  covers of  ;,~ with z elements is at most r e. 

Proof. eWe will prove by backward induction on i that every/-element set I is 
contained in at most r ~-~ z-element covers. It is obvious for i = z and the case i = 0 
gives the Theorem. If i < z then there exists an edge E ~ .,~ such that E fq I = ~.  
Now apply the inductional hypothesis for the sets E U {x}, x e E. [] 

The bound r ~ is best possible as it is shown by z disjoint r-sets. But for 
intersecting families one can expect a smaller value. 

Example 3.24 ([108], [177]). Let 1 < z < r and consider the disjoint sets S,_,+~, ..., S, 
where ]S~I = i(r - z + 1 < i < r). Define the intersecting r-graph o~(r, z) as follows: 

6~(r, z) = {E: I El = r, for some i: E = Si and [E fq Sj[ = 1 for i < j < r}. 

Conjecture 3.25 (Lovhsz [177] for r = z, Frankl [115] in general). Suppose g is 
an intersecting r-graph, with z ( g )  = z. Then .g~ has at most 

r ( r -  1 ) . " ( r -  z + 1) forz  < r  

( r ( r - 1 ) " ' ( r - i + l ) ) = [ ( e - 1 ) r ! ]  for z = r  
i=1 

different r-element covers. 

The case z = 1 is obvious, the case z = 2 was proved by Frankl [115]. 
The following result is a bit more general than Lov~tsz' theorem and 3.23. 

T h e o r e m  3.26 ([128]). Let us suppose for the hypergraph y,~ that for every E t . . . . .  

Ek+ 1 ~ .¥t a we have [U~,j(E i tq Ej)I > m a x r ~ r  IEI =: r. Then I~el _< k'. 

In the case of equality we can find pairwise disjoint k-element sets S~, . . . ,  S, 
such that 

X ~ = (h: Ihl = r, IANS~I = 1 f o r / =  1 . . . . .  r}. 
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Proof. The cases k = 1 or r = 1 are tricial. Apply induction on k. Once k is fixed 
apply induction on r. Let E o ~ A" fixed and define H(X) =: {E - Eo: E N E 0 = X} 
for all X c Eo. Then [H(X)I < (k - 1) '-Ixl. [] 

Although, it was easy to prove, Theorem 3.26 i sone  of the key lemmas for the 
celebrated result of Razborov [267] about the complexity of monotone Boolean 
functions. 

4. Matchings 

Let ~ be a family of sets. A subsystem Jr" ~ ~ is called a matchin9 if it consists of 
pairwise disjoint members, v(~), or briefly v, denotes the maximum number of 
disjoint edges in ~ and it is called the matehin9 number of ~ .  Clearly 

v _< z (4.1) 

holds for every hypergraph ~ ,  because in order to cover all the edges o f ,~  we have 
to choose at least one element from every member of the matching with maximum 
cardinality, 

The computation of the matching number of a given hypergraph is not so 
hopeless as the calculation of the covering number. E.g., for graphs there exists 
a minimax formula due to Berge [26] and a polynomial algorithm given by 
Edmonds [88]. The literature of matchings of graphs is very broad, a comprehen- 
sive book about  this topic was recently written by Lov~tsz and Plummet [188]. 

All the elements of the members of a maximum matching obviously form a 
cover, hence we have 

z < rv, (4.2) 

where r denotes the rank of the hypergraph. In both of (4.1) and (4.2) equality 
can hold. 

Examples 4.0: (i) We have v(~)  = 1 for every intersecting family ~ .  " 
(ii) For thecomplete r-graph on vr + r - 1 vertices v(K~ v+'-l) = v, z(K; v+'-l) = rv. 
(iii) The famous theorem of K6nig (see, e.g., in [188])says that v(ff) = z(ff) holds 
for every bipartite graph ft. 

For a set Sdefine the restriction ~ 'IS of ~" to S by 

~ I S  = {FNS:  F 6~,~}. 

The aim of the notion of z-critical hypergraphs and the investigation of their 
maximum cardinality is to find a small part of the hypergraph which forces the 
covering number to be big. Analogously, now we are looking for a small part S 
of the vertices of the hypergraph ~- such that ~ ' IS show that v(o~) cannot be big. 
Our first step in this direction is to investigate intersecting hypergraphs. 

The kernel of,intersectin O families. In 1964 Calczynska-Karlowicz [67] proved that 
for every r there exists an n(r) such that to every intersecting family ~ of rank r 
there is a set S of eardinality n(r) such that ~ I S  is also intersecting. This means that 
if ~- is intersecting then its members intersect each other on a small part of the 
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underlying set. The first explicit upper bound for n(r) was given by Ehrenfeucht and 
Mycielski [92]. This was improved by Erd6s and Lov/tsz [108]. The current best 
bounds are due to Tuza [240]. 

2r - 4 2r - 1 _12r - 4 
Theorem41[240]  ( 2 r - 4 ) + 2  <n(r)_< + r 2 "theA 

slightly 

weaker upper bound follows frum Theorem 4.8. Tuza s example giving lower 
bound is the following. 

Example 4.2 ([240]). Let X be a (2r - 4)-element set, and for each partition {E, E'} 
of X with IEI -- IE'l = r - 2, EU E' = X take four new elements x, x', y, y' and 
set EU{x,y} ,  EU{x ' ,y ' } ,  E 'U{x,x '} ,  e 'U{y ,y ' } .  The obtained family N has 

2 ( 2 2 5 ; ) m e m b e r s ,  a n d i f ~ l S i s i n t e r s e c t i n g t h e n S ~ ( U ~ ) h o l d s .  

1(2r-4  
Conjecture 4.3 ([240]). For r > 4, n(r) = (2r - 4) + 2 \ r -- 2 }" 

Hansen and Toft [1523 proved that n(2)= 3, n(3)= 7, n(4)= 16. For t-wise 
s-intersecting families the following generalization of the Calczynska-Karlowicz 
theorem was proved in [121]: 

If ~ is a t - wise s - intersecting family of r - sets then there exists a set S, 

ISl < r 2', such that IFx N...  n Ft N S[ _> s still holds for every F1 . . . . .  Ft ~ ~ .  (4.3) 

Denote by n(r, t, s) the smallest integer n such that replacing r 2" by n (4.3) remains 
true. With this notation n(r)= n(r,2, 1). The existence of n(r, t, s) was also proved 
by Frankl [114] (in an implicit form) and by Kahn and Seymour [264]. 

Define an edoe-contraction as the following operation on a family .~: we substitute 
an edge E ~ ~ by a smaller, non-empty E' ~ E, and thus we get the set-system 
~- - {E} U {E'}. A t-wise s-intersecting family is critically t-wise s-intersectin9 (or 
briefly, (t, s)-critical) if it has no multiple edges and any hypergraph obtained by 
contracting any of its edges is not t-wise s-intersecting. We can obtain a (t, s)-critical 
family from any t-wise s-intersecting family ~- by contracting its edges as far as 
possible and deleting all but one copy of the appearing multiple edges. The obtained 
(smaller) family J f  is called the (t, s)-kernel o f ~ .  (Of course, this ~ is not necessarily 
unique). The following reformulation is obvious: 

n(r, t, s) = max {1U )if l: o,u is (t, s) - critical of rank at most r}. (4.4) 

For t > 3 only a few (r, s)-critical hypergraphs are known, and most of them have 
less than r 2 vertices. The following Example shows that there are exponentially 
large (t, s)-critical hypergraphs. 

Example 4.4 (Alon, Fiiredi [13]). Define l = [(r - s)/3(t - 1)] and suppose that 
1 > 1. We are going to construct a (t, s)-critical hypergraph ~ of rank s + 3(t - 1)1 
on 3' + 3lt + s - 1 vertices and with (3t) t edges. Let the vertex-set consist of all 
the 3' sequences a = (al . . . .  ,at), ai ~ {0, 1,2} together with an (s - 1)-element set S 
and the disjoint union of I 3t-sets C 1 . . . . .  C l, where C i {x~, i = X 1 , . . . , X 3 t _ l ) .  For 
each sequence j = (j~ . . . . .  Jr) with 0 _ j~ < 3t we define an edge E(j) of g by setting 
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= s u (  ,,,, <,u 

where r = ( r , ,  ,r,)is defined by r, --- l, (moO 3) Then ~ is a (t,s)-critical family 

Theerem 4.5 ([13]). Let 2/t ° be a (t, s)-critical family of  sets having size at most r. Then 

1 
Proof. Let x be a vertex of o~. Then :¢g - {x} is not t-wise s-intersecting, so there 
exist H1, . . . ,  H t e  oeg, such that x s N Hi, [N Hil = s, (1 < i _< t). Hence there exists 

a j (1  _ j  < t)such that (") H i -  N H i  -< [(r - s)/(t - 1)]. Define 

,4(~) =: H,, 

B(x)  = N (Hi: i e j, 1 _< i <_ t - 1} - (x} .  

Define a sequence x 1 . . . . .  Xm. Choose xl arbitrarily from U ~ ,  and if xl  . . . .  , xi_ 1 are 
chosen then let xi ~ (U 2/#) - (U {H(xj): j < i}). Stop if U {H(xj): j _< i} = U ~¥g. 
Then we can use (the sharpened version)of Theorem 2.5 with A i = A(xi), Bi = B(xi), 
a = r , b = s - l + [ ( r - s ) / ( t - 1 ) ] , c = s - l .  Wehave  

IU ~1 = n(x~ <_ In(x~)l _< r 
• a - - c  

implying Theorem 4.5. []  

To obtain a simpler form of Theorem 4.5 we can use the following well-known 
inequality. For every a, b _> 1 we have 

(a  + b)  < (a + - aab b X/ ~na~)'/a + b (4.5) 

Theorem 4.5 and Example 4.4 imply 

(31/3) ('-')/(t-') < n(r,t,s) < r \ ( t _  < r(et)(r-s)/(t-l) (4.6) 

In many extremal problems using the kernel of an intersecting family is very fruitful, 
so it would be interesting to narrow the gap between the lower and upper bounds 
of n(r, t, s). The most important case is when s = 1. 

Conjecture 4.6 [13]. If t is fixed then lim' ~ exists. 
r-.-~CO 

By (4.6) the value of this limit is between 3 u3tt-1) and ( t i t -  1)-t ~/tt-~), 
l i m ' v ~ , 2 ,  1) = 4. 

v-critical hypergraphs. A hypergraph ~ is v-critical if it has no multiple edges 
and contracting any of its edges increases v. We can obtain a v-critical hypergraph 
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from any family of sets by contracting its members and deleting all but one copies 
of the appearing multiple edges as far as v does not increase. 

Examples 4.7. The following ones are v-critical hypergraphs. 
(i) The complete r-graph on vr + r - 1 vertices. 
(ii) (r = 2) a circuit C2v+l- 
(iii) a projective plane of order r - 1 (with v = 1) 

( (2r  -- 4"]'] (Example 4"2)" (iv) Tuza's example o~ with v = 1, [U o~f[ = 2r - 4 + 2 \ r - 2 ,]] 

( (v) Erd6s and Lov/tsz's example ~ with v = 1, II,_) ~'i = 2r - 2 + ~ \  r - 1 JJ 
(Example 1.2(iv)). 

(vi) (Lov~isz [177]). Let X be partitioned into disjoint sets X1 . . . .  , X, where 
IX~l = v + i - 1, 1 _< i _< r. The edges of ~- are all the r-element sets E con- 
taining j elements from Xj (for some 1 < j < r) and one element from each 
X k (j < k < r). Here v(o~) = v, and 

[~ [  = Y~ (v  + i ) . . . ( v  + r - 1) = [ r ! ( e  - 1)]. 
1_  _<7< r / r 

rv + r t Theorem 4.8 ([240]). I f  o~ is a v-critical hypergraph of rank r then [U o~[ < 
l" 

This theorem was proved by Lov~isz [177] in a slightly weaker form ( I U  < 
\ 

2( rv  + r - 1 ) )  using the permutati°n meth°d (see the pr°°f  °f  The°rein r 1.5). 

In the next section, in the proof of Theorem 4.14(i) we will give Tuza's proof. 

( Theorem 4.8 implies a weaker upper bound in Theorem 4.1 i.e., n(r) < 

For r = 2 Gallai [141] proved that 

every v-critical connected graph has exactly 2v + 1 vertices. (4.7) 

Conjecture 4.9 (Lovfisz [177]). There exists a c(r), depending only on r such that 
every v-critical hypergraph of rank r can have at most c(r)v vertices. According to 
(4.7) c(2) = 3. 

Intersecting set-pair systems. Investigating critical hypergraphs Tuza [240] intro- 
duced the following function 

nx(a,b) = max(I [_) A,[: Ia,[ < a, lB~l < b, aeClBi = ~,ZifqBj ~ ;g for i ~ j} .  

Such a system {Ai, Bi} (1 < i _< m) we will call (a, b)-system. It is easy to prove that 

Proposition 4.10 ([240]). nt(a,O ) = a, nl(a , 1) = [(a + 2)2/4] for a >_ 1. 

Examples 4.11 ([240]). The followings are (a, b)-systems with a large number of 
vertices. 

( b + u ]  Let {B1 .... ,B,~} = (i) Suppose 0 < u < a and consider a (b + @set Y, m = \ / b  " 
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b) and let be the union of Y and elements. Then Ai Bi (a u) new 

I U a , I  = b + u + (a - u u 

(ii) Suppose0 < v < b and consider a(a + v -  1)-element set Y,m = (b + 1 - v) x 

/ , ( a + v -  1) Eve ry (a -1 ) - e l emen t  set of Y will be completed to a-element sets in 
a - 1  " \ / 

(b - v + 1) different ways such that all the m points (A,\Y) are distinct. Then let 
B i = (Y  - Ai)U {Aj - Y: AjN Y = Ailq Y}. Then 

,(a + v l) 
IUA,I = a  + v -  1 +(b  + 1 - v 

a - 1  

The above constructions imply the lower bound in the following theorem. 

Theorem 4.12 (Tuza [240].) For all a >_ 1, b > 0 (o+b+l) 
- b + 1 < nl(a,b) < b + 1 " 

Proof of  the upper bound. Clearly. nl(0, b) = 0 < , so using induction on a + 
the following lemma implies the desired upper bound. 

a + b )  
Lemma 4.13. nt(a,b ) < b + nl(a - 1, b). 

Proof. Let {A,, Bi} (i ~ l-I) be an (a, b)-system with I U A,I = nl(a, b). We can choose 
an ri  o c ri  such that U {Ai: i ~ n}  = iJ {A,: i t  no},  but the same does not hold 
for l I ;  ~ rio. This implies that there exists an xi ~ As for all i e 110 such that x~ ¢ Aj 
for i 4: j s rio. We have 

IrIol_<lrll_ b 

by Corollary 1.5. Consider the sets A'~ = A ~ -  {x~} (i e Ho) and delete all but 
one copy of the appearing multiple edges. We obtain a 1I 1 c II o. If xi ~ B~ 
(for i e j, i, j e 1-I1)then choose an element xZ e A ' i -  A~. Finally, set B~ = B j -  
{xi: xi e Ai, i ~ 1I1} U {x/: xi e AiO Bj, i s II1}. Then {A~,B~} (i e H1)isan(a  - 1,b)- 
system and U { A i : i e I I }  = {x,:ienoIO(U{A;:isnl}). [] 

We can apply Theorem 4.12 in several cases 

Theorem 4.14 ([240]). 
(i) I f  ~ is a v-critical hypergraph of rank r than I Q) ~1 <- nl (rv, r - 1). 
(ii) For the maximal number of vertices v(r, z) of a z-critical hypergraph of rank r 
we have v(r, z) <_ nl(r, z - I)(c.f. Theorem 2.19, Example 2.20, Conjecture 2.21). 
(iii) For the s-muhitransversal of a k-wise intersecting z-critical hypergraph, ink(s, z) 
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we have 

~ n l ( s , z - 1 )  <_ mk(s,r) < n l ( s , z -  1). 

(Especially, nl (s, z - 1) = m(s, ,). Cf. Theorem 2.22). 

Proof We give only the proof of (i). The other proofs are similar. Let 3f' consist 
of the sets that can be obtained as the union of v pairwise disjoint members of ~ ,  
e.g., if v = 1 then ~ = ~-. If there is an H ~ o~ which is contained in the union 
of the other members of J r ,  delete it. Repeat this step with the new family until 
it is possible. Finally we obtain a subfamily o~ o = {H 1 . . . .  , Hm} c ~¢f with the 
following properties. U Jg0 = U J f  = U ~ and there exists an xi ~ Hi for each i 
such that x i ¢ Hj holds for allj  # i, 1 _<j < m. The v-critical property of~-  implies 
that there exists an F i s ~ -  such that Hif lF  i = {xi}. Then {Hi, F i - {xi}} is an 
(rv, r - 1)-system. [] 

Problems about intersecting set-pair systems. Tuza [240] also introduced the following 
related function 

n(a, b) = max {I U (Ai i3/3/)1: {A,, B i} an (a, b)-system}. 

Clearly nl(a,b) <_ n(a,b). It is easy to see that n(a,O)= nl(a,O)(= a + 1), n(a, 1)= 
n~(a, 1) = [(a + 2)2/4], n1(2, 3) = 9, n(2, 3) _> 10, so in general nl is smaller than n. 
But the upper bound for n~ given in Theorem 4.12 holds for n(a, b). 

Theorem 4.15 (Tuza [240]). I f  a > b, a > 1 then 

~ ( a + b + l )  2b-2( i ) , + b - ~ ( ; )  ( a + b + l )  
b +  l <n(a,b)<_ 2 + • < i=1 [i/2J i=2b-1 b + 1 " 

Conjecture 4.16 ([240]). (i)n(a, b) = nl(a , b)iff a > b, 
(ii) if a _> b + 2 then 

Ial n,(a,b)= ~ + b + 

Tuza also proved that for b > 4a + 3 we have n(a,b) > nl(a,b). Moreover the 
somewhat surprising fact that. 

Theorem 4.17 ([240]). nl(a,b ) = nl(b + 1,a - 1). 

t-Expansive 9raphs and hyperoraphs. For a hypergraph ~ let us denote the minimum 
number t for which 

[I,.) x~'l _< IX"l + t (4.8) 

holds for all ~ '  c ~ by t(o~¢'). If t(gf') = t, then we call .Jet' t-expansive. If o~ is 
a graph then its expansion number t(o~) equals to the matching number v(Yt~). 
Denote by o~ - x the set-system {H e o'er: x ¢H}. We call 9f' t-stable (or critically 
t-expansive) if 
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t(3f ~ - -  x ) =  t(3f ~) 

holds for all x ~ ~ W. Similarly the graph ~, (or hypergraph 3¢ ~) is v-stable if 
v(~ - x) = v(~) holds for every point x. The v-stability and t-stability coincide for 
graphs. The notion of v-stability was introduced by Lov~tsz [177], who proved that 
the upper bounds given in Theorem 4.8 and 4.140) hold for v-stable hypergraphs 
as well. Every v-critical hypergraph is v-stable, and from any v-stable family one 
can obtain a v-critical one on the same vertex set contracting its edges. Gallai's 
theorem mentioned above as (4.7) is more precisely the following: 

Theorem 4.18 (Gallai [141]). I f  a graph f~ is v-stable and connected then it is 
factor-critical, i.e., G - x has a one-factor for all x ~ ~ (~. 

Hence I U f~l <- 3v holds for all (not necessarily connected) v-stable graphs. Here 
equality holds only in the case if N is disjoint union of v triangles. This result plays 
an important role in the Edmonds-Gallai structure theorem (see, e.g., Edmonds 
[88], Gallai [141], ([186], Problems 7.26-32, or [188]). The following theorem 
generalizes Gallai's result for t-stable hypergraphs. This theorem shows that one 
of the natural extensions of the matching number of graphs to hypergraphs is the 
expansion number, and not only the usual matching number. 

Theorem 4.19 [133]. Let 2/d be a family of finite sets having at least two-element 
members. Suppose that ~ is t-stable, i.e., t(oeg) = t = t(;,~ - x) holds for all vertices 
x. I f  2,~ is connected then 1~ ~ l  <- 2t + 1. 

Before the proof some remarks. Equality holds iff the graph N = {E: E c H 
~ ,  [El = 2} is a factor-critical graph on 2t + 1 vertices. In the case I U ~f~[ = 2t + 1. 
o~ is not necessarily 2-uniform. E.g., ~ = { { 1, 2}, {2, 3}, {3, 4}, {4, 5}, { 1, 3, 5} } is 
2-stable. 

Corollary 4.20. Suppose J-f is a t-stable hypergraph with edges having at least 2 
elements. Then ]U ~ 1  <- 3t. Here equality holds iff 9f ~ is the disjoint union of v 
triangles. [] 

The crucial part of Gallai's proof is the following statement: If the graph f¢ is 
v-stable then v(f# - x - y) < v(~), v(f¢ - y - z) < v(f#) imply v(f~ - x - z) < v(f~). 
This means that the relation x ~ y: v(f# - x - y) < v(f#)is an equivalence relation 
on U f#" A similar statement for hypergraphs does not hold. E.g., the hypergraph Jeg 
given on the pointset { 1, 2, 3, 4, 5, 6, 7, 8}, ~ = { {4, 6, 8}, {3, 5, 7}, {2, 6, 7}, { 1, 5, 8}, 
{2, 3, 8}, {1, 4, 7} {2, 4, 5}, {1, 3, 6}} is critically 4-expansive and t(Jeg - {1, 3}) < 4, 
t(og¢' - {3,2}) < 4 but t(3/g - {1,2}) = 4. (See Fig. 4.1). 

We have to mention that the concept of t-expansion is not unknown in hyper- 
graph theory. E.g., Brace and Daykin [57] proved that t(Jcg) = t, I U Jcg[ = n implies 
IJg[ < (n - t + 1)Z, where equality holds iff U Jef = X = A U B, [AI = n - t, IB] = t 
and ~ = { H e  X: IH f3 AI <_ 1}. Daykin [77] proved for m >_ 2t, Bang, Sharp 
and Winkler [21] proved for m > 1.3t and Daykin and Frankl [78] proved for 
m >_ t + 25 that if Jet ° is a t-expansive hypergraph on the m-element set X then 
minx~xdegg(x)  < 2', where degg(x) = I{H ~ ~ :  x e H}] is the degree of x in the 
hypergraph o~f. It is conjectured that this holds for m _> t + 3. 
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1 2 3 4 5 6 7 8  

Fig. 4.1 

The proof of Theorem 4.19. Let ~ be a t-stable hypergraph with at least 2-element 
edges. I f H  e Yg and A c H, IAI > 2 then the hypergraph ~ U  {A} is also t-stable 
on the same underlying set. Hence we can suppose that ~ is almost a downset, 
i.e., iflAI > 2, A c H e ~ then A ~ ~ .  Let us define f~ = {A e 3¢f: IAI = 2}. ~ is 
connected, so f9 is a connected graph as well. As usual, F(x) denotes the neighbor- 
hood of the point x in the graph f#, i.e., F(x) = {y: {x, y} e f¢}. 

A subsystem A ~ ~ is called maximal if I U ~11 = I~¢1 + t, the members of ~¢ 
are pairwise disjoint and I ~  ~¢1 is maximal with respect to these constraints. Let 
us choose a maximal subsystem and denote it by 9~. Let ~ ~ --- X. 

Lemma 4.21. For each x ~ X there exists a t-expansive set-system ~x such that ~ ~ 
covers X - {x}, x q~ U cg~ and it consists of pairwise disjoint edges of ~'. 

Proof. ~ is a stable t-expansive hypergraph, hence there exists a set-system 
cg = {C1,..., Cl} c 9f ° -- x, such that [[.] cg I = l + t. Let C~ = C i - [J {Cj: j < i}. 
The existence of the system {C~: IC~[ _> 2} shows that the following family of 
subsystems is non-empty: 

C x = {~, N cog ' ,  N contains disjoint members, N is t-expansive and x ~ U N}" 

Let ~x denote a subsystem belonging to C~ for which 1~ 13 (gx[ (i.e., the number of the 
common members) is maximal. We are going to show that X - {x} c U cg x. Suppose 
for contradiction that y e X - {x} but y ~ ~ cg~. Let B e 9~ the edge for which y ~ B. 
We distinguish two cases. If x e B then {x, y} e ore ° and the subsystem cg~ U {x, y} 
would be (t + 1)-expansive. If x ~ B then let {C1 . . . .  , Cz} = {C s cgx: C N B ¢ N}. 
The set-system cg x - {Ci, . . .  , Ct} U {Ci - B: IC~ - BI > 1} U {B} belongs to C~, too, 
and has more common members with 9~ then cg x. This contradiction proves, that 
such a y does not exists, i.e., ( ~  ~x)f] X = X - {x}. [] 

Proposition 4.22. ]U ~1 : [xl ~ 2t. Here equality holds if ~ c f~. 

Proof. ~ consists of at least two-element disjoint sets, hence we get 219~[ < IU ~1 = 
I~1 + t, i.e., I~¢1 < t, hence IQ)~[ -< 2t. [] 

Proposition 4.23. The sets U C~x (x ~ X) and the set U ~ cover ~ ~ .  

Proof. Suppose for contradiction that y ~ U 9¢f - ~ {U c~x: x e X} - U ~" Then 
there exists a 2-element subset {x,y} e 9f ~. Joining the set {x,y} to c~ x we get a 
(t + 1)-expansive subsystem, which is a contradiction. [] 
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Returning to the proof of Theorem 4.19 we distinguish two cases. 
1) If each (U cgx)c x then Proposition 4.23 yields that IU ~1  = lUll. Now 

I U ~ffl < 2t, by Proposition 4.22, and we are ready. 
2) From now on we can suppose that there exists a Cgx such that (U ~x) - x ¢ N. 

Then r U Cgxl > IXl. But ~ is maximal, hence I U cgxl = ISl and I(U cg~ _ x t  = 1. 
Let U Cgx - x = {z}. Obviously, F(z) c X (y e F(z) - X implies that NU {z,y} 
is (t + 1)-expansive, which is a contradiction). 

Proposition 4.24. Let u ~ F(Z ). Then cg u is maximal t-expansive and (U c~,) c ( x  u {z}). 
(¢g, is defined by Lemma 4.21). 

Proof. By definition (more exactly by Lemma 4.21)(U cg,) N x = x - {u}. Ifz ~ U cg, 
then the system cg, U {z, u} is (t + 1)-expansive, which is a contradiction. Hence 
we get U ~, = (x  - {u} u {z}). This yields that [U c~l > Ix[, i.e. c~, is maximal, as 
well. So we have U cg, = x - {u} u {z}. [] 

Change the role of ~ and z with rg and u. We get F(u) c X U (z}. This yields 
that F(F(z)) c X U {z}. Continuing procedure we get that the component of 
which contains z is contained in XU {z}. Hence U ~ff = U ~ c x u  (z}. Finally, 
[XU (z}l < 2t + 1, by Proposition 4.22. 

The case of equality is clear. [] 

v-stable hypergraphs. A hypergraph ~ is l-wise v-stable if v(~q ~ - L) = v (~ )  for 
every/-element set L, i.e. for every 1-element set L one can find El, . . . ,  E~ E 
such that L, E1 . . . .  , E~ are pairwise disjoint. 

Theorem 4.25 (Lov~sz [1773). I f  ~ is l-wise v-stable of rank r then 

IU~, < (rv + r ) r  (4.9) 

[~t~[ _< (rv)' (4.10) 

Proof. (4.9) follows from Theorem 4.8. To prove (4.9) consider the same hypergraph 
as in the proof of Theorem 4.14 (i) and apply Theorem 3.23. [] 

If for a hypergraph ~ of rank r the equation ~ = rv holds then it is (r - 1)- 
wise v-stable, hence 

Corollary 4.26 ([1771). I f  )ff is hyperoraph of rank r and z = rv holds then (4.9) and 
(4.10) hold. 

Problem 4.27 (Lovhsz). Give a better upper bound for [ ~ l  and IU ~ffl for the 
hypergraphs with property r = rv. Give better upper bounds for the size of the/-wise 
v-stable hypergraphs. 

Conjecture 4.28 (Lovasz). If ~ is (r - 1)-wise v-stable of rank r then it could not 
be r-partitie. 

Conjecture 4.28 is a stronger version of the following. 
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Conjecture 4.29 (Lov~sz, Ryser). If 3/f is r-partite then z < (r - 1)v. 
The case r = 2 is the famous K6nig theorem (see [188]). Another special cases 

were proved by Tuza [237, 238] (whenever r = 3 and v < 4, r = 4 and v < 2, r = 5 
and v = 1). Tuza and Szemerrdi [232] have a tricky proof for tripartite hypergraphs 
z < ~v ,  which was recently improved to z < 8v by Tuza [273]. 

Conjecture 4.30 (Tuza [270, 272]). Let (¢ be a simple graph (there are no multiple 
edges). Define a 3-uniform hypergraph ~ = guy(if) over the edge-set of (¢~gf =: 
{ {E1,E2,E 3 } c (~: El, E 2 and E 3 form a triangle}. Then ~(~)  < 2v(~rf). If it is true 
there are many extremal cases, namely the (disjoint) union of iK~ and ½(v - i)K 5. 

Conjecture 4.31 (Erd6s and Ffiredi [133]). Let ff be a graph and ~- be the hypergraph 
consisting of the vertices of the triangles of (q. If ~ is v-stable then I U ~ l  < 5v, 
and here equality holds if ff consists of v disjoint K~. 

If these conjectures are true there are several further generalizations. 

5. The Linear Programming Bound for z and v 

The calculation of the covering and matching number of an arbitrary hypergraph 
is an NP-complete problem [260], hence every result which gives estimates is 
especially valuable. One of the simplest and good estimate can be obtained from 
the linear programming bound, in other words from the real relaxation of z and v. 

Let H be a hypergraph. A real function w over E(H) is called a fractional 
matching of H if 

w(E) >_ 0 for all E e E(H), and 

w(E) < 1 for all p ~ V(H). 
p~E 

(Note that {w(E)} is a vector in the ]E(H)l-dimensional Euclidean space, ~lEtml). 
The value of the fractional matching w is 

iwl = Z w(E). 
E 

The maximum of IwJ when w ranges over all fractional matchings is called the 
fractional matching number and is denoted by 

v*(H) = max{fwJ: w is a fr. matching of H}. 

Similarly, a fractional cover of H is a real function over V(H) satisfying 

t(p) >_ 0 for all p ~ V(H), an 

E t(p)>l  for a l l E g E ( H ) ,  
peE 

and min Itl = T*(H)is called the fractional covering number ofH. I f ~  ~ E(H), then 
let v = v* = ~* = z = oo. For every H we have 

v _ v*, ~* -< ~ (5.1) 
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because a matching J / / =  E(H) defines a fractional matching w with w(E) = 0 or 
1 according to E ~ ~ /  or E e J / .  Similarly the characteristic vector of a cover 
T (i.e., t(p) = 1 if p e T, otherwise 0) is a fractional cover, too. Moreover, for every 
w and t we have 

Iwl-< Itl: (5.2) 

The proof is only one line: 

Iwl = ~  w(E)< ~w(E, (  L t ( p ) ) =  ~ t(p,(,~ e w(E,)< ~,, t(p)= ltl. (5.3, 

(5.1) and (5.2)implies that 

V ~__ V* ___ "¢* m_ ~', 

and if we find a w and a t with Iwl = Itl, then v* = z* = Iwl = Itl, i.e., both are 
optimal. (Later, we will see that v* = r* holds for every H). 

Examples 5.0. (i) For every bipartite graph G we have v = z  = v*(G), by K6nig's 
theorem. 
(ii) If C2k+ 1 is an odd cycle then w(E)= ½, (and t(p) = ½)is a fractional matching 
(cover) so we have v = k, v* = z* = k + ½, z = k + 1. 

21) (iii) ~:*(K~)=u/r, because w(E) =_ 1 isafractionalmatching, andt(p)--- 1/r 

is a fractional cover, 
(iv) z*(PG(2,q)) = q + 1/(q + 1), and in more general if H is a symmetric (r,2)- 
design with I V(H)I = IE(H)I = ( r  2 - r  -t- ,'],)/2 then z*(H) = (r - 1)/2 + 1/r. (See the 
beginning of Section 3). i 

We can generalize the above examples in the following way. Denote by D(H) 
the maximum degree of the hypergraph H, i.e., D ( H ) =  maxl{E: x e E e E(H)}I. 

If all the vertices have degree D then we call 
w(E) =- 1/D (E ~ E(H)) isa  fractional matching, so 

X 

H D-regular. The function 

[E(H)I v*. (5.4) 
D(H) -< 

If re(H) denotes the cardinality the smallest edge of H, then t (p)  l /re(H)is a 
fractional cover, hence 

+ I v ( n )  l 
'r* _< m(H----')" (5.5) 

The above two trivial inequalities imply 

Proposition 5.1. If H is a D-regular r-graph then 

v ,  = = i v ( n ) l  = I E ( n ) l .  
r D 

The next proposition is easy, too (see e.g., LovAsz [177]). 

[] 
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Proposition 5.2. I f  the automorphism-group of H, Auf(H), is transitive over the 
vertices then 

**(i-i) _ t v ( H ) t .  
m--W3' 

/f Aut(H) is transitive over the edges then 

~*(I~) = IE(H)I 
D(I-I) " [] 

Example 5.3. (i) (Truncated (r,2) - design). Let H be an r-graph obtained from a 
symmetric (r, 2)-design deleting a point p and all the r edges through this point. 
Then I V(H)I = (r ~ - r)/,k H is (r - ),)-regular, T*(H)= (r -- 1)/X. 
(ii) (Edmonds). Let M be a matroid with vertex-set V, and denote by 9~ the family 
of bases. Then 

z*(N)=min{lAI/minlBNAI},andA~_V 

v(~) = L-r*(.~)J. 
A brief survey of linear programming. The basic problem of linear programming 
is the following: Find min e rx  where e e R n (a column vector) and x satisfies the 
constraints 

Ax>_b 
(5.6) 

x > 0  

where A is an m x n matrix, b ~ R m. A point x satisfying (5.6) is called a feasible 
solution. The set of feasible solutions forms a convex set in R n bounded by hyper- 
planes, i.e., a polyhedron. If a polyhedron is not infinite we all it a polytope. 
A hyperplane H is a supporting hyperplane of the (closed) polyhedron P c R" if 
P fq H ~ ~ but all the points of P are lying in the same halfspace bounded by H. 
In this case P f3 H is a face. If P fq H is a single point we call it a vertex of P. 
If a face is maximal then it is called a facet (or proper face). 

The dual of the problem (5.6) is the following m-dimensional linear program- 
ming problem: 

yrA < e 
(5.7) 

y > O  
max bry  = ? 

Theorem 5.4 (Duality Theorem of Linear Programming). There are 3 possibilities. 
(i) The constraints of  (5.6) lead to contradiction, no feasible solution exists. Then in 
the problem (5.7) max b ry  = + o~. 
(ii) The problem (5.6) has a solution and a finite optimum M. Then max bry  exists 
and its value is M, too. 
(iii) In the problem (5.6) min e rx  = - ~ .  Then the dual problem does not have any 
feasible solution. 
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Define the incidence-matrix A(H)of  a hypergraph H by A = (aE,p)where 
E ~ E(H), p ~ V(H) and 

{~ i f p e E  
a~,p = otherwise. 

Let h ~ B tr(ml, c ~ R Iv(ml have all components equal to 1. Then the inequalities 
(5.6) define a non-empty polyhedron, the fractional covering polyhedron of H 
(briefly FCP(H)) and the inequalities (5.7)define a non-empty bounded polytope 
the fractional matching polytope, FMP(H). (We supposed that ~ ¢ E(H)). More- 
over the optimum of the problems (5.6)and (5.7) give z*(H) and v*(H), resp. So 
the Duality Theorem implies 

Theorem 5.5. For every hypergraph v* = z* holds. [] 

z*-critical hypergraphs. A partial hypergraph H' is formed by a subset of E(H), 
i.e., E (H ' ) c  E(H)and U {E: E e E(H')} c V(H')~ V(H). A subhypergraph H o is 
a partial hypergraph of the induced subhypergraph HI V o where Vo --- V(Ho) c V(H) 
and E(HI Vo) = {EN Vo: E e E(H)}. 

A family H is called z*-critical if z*(H') < z*(H) holds for every partial hyper- 
graph H' ¢ H. 

Lemma 5.6 (Fiiredi [130]). I f  H is z*-critical then IE(H)[ < [[_){E: E e E(H)}[ 
(< I V(H)]). 

To prove Lemma 5.6 we need a simple Lemma from linear programming. First we 
recall Helly's theorem. 

Theorem 5.7 (Helly, see in [76]). Let C1 . . . .  , C~ be convex sets in Nd, m > d. Suppose 

that every d + 1 of  them has a non-empty intersection. Then ~ C~ ~ ~ .  [] 
i=1  

Denote by M({a~, b~}, e, I} the minimum of the following linear program 

airx > bi for i~ I ,  x ~ R" 

x >_ 0 (5.8) 

rain crx = ? 

Lemma 5.8. I f  a linear program (5.8) with n variables has a finite optimum (and 
II1 is finite), then there exists a J c I such that [J[ < n and M({a~,bi},c,I ) = 
M({a,,b,},e,J). 

In other words this lemma states that the number of constraints can be reduced 
to n without changing the optimum value. 

Proof of Lemma 5.8. Dropping some of the inequalities of (5.8) the minimum value 
of the program can only decrease. Hence we have to prove that there is a J c I, 
I J[ = n such that M({a,, b~}, c, J) > M =: M({ai, b~}, e, I). Suppose on the contrary, 
that for every J c I, IJ[ -- n, we have M({a~,b~},c,J) < M. This means that any n 
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of the halfspaces {y: airy > b~} have a common point with the convex polyhedron 
{x e ~n: eTx < M,x  > 0}. The system (5.8) has a feasible solution, hence any n + 1 
of the halfspaces {y: ayy > b,} have a point in common. Now, Helly's theorem 
(Theorem 5.7)implies that the intersection of all the III + 1 convex sets {y: a/y _> b~} 
and {x: cTx < M, x > 0} is non-empty, i.e., it contains a point x o. This x o is a 
feasible solution of (5.8)and CTXo < M = M({a,, b, }, e, I). This contradiction proves 
the existence of an appropriate J. []  

Proof of Lemma 5.6. To determine z*(H) one has to solve a linear program of 
dimension IUE(H)I,  with the index set I, where I I I=  IE(H)I. o f  course, this 
program always has a finite optimum. So by Lemma 5.8 we obtain a partial 
hypergraph H1, E(H1) c E(H)satisfying IE(H1)I < ]U E(n)l, and z*(H1) = z*(H). 
As H is z*-critical we have H = H~. []  

Lemma 5.9 (I-70-1). If  H is z*-critical then IE(H)I < r(H)z*(H). 

Proof. There exists an optimal fractional matching Wo which is a vertex of the 
fractional matching polytope FMP(H). Then the vector {wo(E)}E~ ~¢,} is contained 
in at least tE(H)I facets of FMP(H).  The equation of a facet of FMP(H) is either 
y~ = 0 or ~ YE = 1 for some p e V(H). Denote by Vo and 8o the set of facets 

psE 
through Wo, 

w(E) = 0 if E e ~o c E(H), and 

w(E) = 1 if p z Vo c V(H), 
psE 

where IVol + I~ol - IE(H)I. We have 

,Vol= Z (~w(E)~-- Z w(E)[EA Vol___ (2 w(E))r = rz*. (5.9) 
PZVo \ p ~ E  // E z  E(H) 

H e n c e  IE( ) - -< Let  E ( H ' )  = E ( H )  - T h e n  

v*(H') > Iwol = v*(H), 

since Wo is a fractional matching of H'  as well. However, v*(H') < v*(H), so 
v*(H') = v*(H). H is v*-critical, so we have H = H', IE(n)l < rz*. []  

In the same way as we did in 5.9 one can prove that. 

Proposition 5.10. Every vertex v ~ ~lEtml of FMP(H) has at most rz* non-zero 
components (for every hypergraph H). 

For a hypergraph H call the set S c V(H) a supporting set (or support) if S is 
a support of some optimal fractional cover t, i.e., S = {x e V(H): t(x) > 0}. 

Proposition 5.11. (i) The family of supporting sets is closed under union, 
(ii) If S is a supporting set and w an optimal fractional matching then every point 

x e S is saturated by w (i.e., xEE~ w(E) = I') 

(iii) The union of all supporting sets is not larger than E w(E) lEI <_ ~*r. 
E 
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Proof. (i) If t I and t2: V(H) ~ ~ are optimal fractional covers with support S 1 and 
$2, then $1 U $2 is the support of(t1 + t2)/2. 
(ii) This statement is a special case of the so-called "complementary slackness 
condition" in linear programming. We have as in (5.3) 

Thus equalities are forced, so 

E w(E)= 1 
p e E  

holds for every p ~ S. 
(iii) By (ii) we have 

Isl = E = E E w(E)_< E w(E)jEI. [] 
p e S  p e S  pEE 

k-covers and k-matchings. A collection {E1,. . . ,Es} with Ei ~ E(H)(and Ei = Ej is 
possible) is called a k-matching of H if every p e V(H) is contained in at most k of Ei. 
The maximum cardinality of a k-matching is the k-matching number of H and is 
denoted by Vk(H). Clearly, 

Vk V:g 
v ___ 

Similarly, the function t: V(H)~  {0,1 . . . .  ,k} is a k-cover if ~ t(p) > k holds for 
p e E  g 

The k-coverin 9 number is Zk(H ) = min ~ ~ t(p):t is a k-cover every E E(H). E 
L pe V(H) 

of H t .  Then z = zl and 
) 

~k z*_<}- < ~. 

Proposition 5.12. 
(i) Vk-t- h < Vk+ ' 
(ii) ~k+l ~- Zk "Ji- T, l 

(iii) lira Zk/k = z* = lim Vk/k 
k ~  k~co 

(iv) there exists an integer K = K(H)such that 

z*(H) = zK(H)/K = vK(H)/K. 
IE(H')I I TI 

(v) v <  max D(H') <-z*<<- min < z  
E(H')=E(H) T isacove, min IT@El 

E e E(H) 

Proof. (i) and (ii) are trivial. They imply that the limits in (iii) exist. (iv)implies that 
the common value of these limits is z*. (iv) is implied by the fact that z* is a rational 
number because it is an optimum of a linear program with integer coefficients. 
(v) is trivial. []  

Proposition 5.11 (ii) implies the following observation of Berge. 
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Proposition 5.13. / f  for the hypergraph H we have Zk(H) = z(H)k then zp = zp holds 
for all 1 < p < k. [] 

A simple algorithm to find a k-matching. The following process was defined by 
Lovfisz [177]. Let H be a hypergraph. Define the sequence of edges El,  E 2 ,  . . .  

(repetitions are allowed) in the following way. Choose E 1 arbitrarily. If El, . . . ,  E i 
are chosen determine to every vertex of H its frequency, and order the vertices such 
that these numbers are decreasing. Then let Ei+ I that edge which starts with the 
highest index. This method gives the following theorem 

Theorem 5.14 ([177, 180]). For every hypergraph H of rank r we have 

rVk > kz + ( k -  1 ) ( r -  1). [] 

Corollary 5.15. I f  H is a t-wise intersecting hypergraph of rank r then 

r - 1  
z _ < - - +  1. []  

t - - 1  

Using 5.11 (iii) we have 

Corollary 5.16. rz* >_ z + r - 1. 

A direct proof for Corollary 5.16. Let t: V(H) ~ R be an optimal fractional cover, 
t(Xl) >_ t(X2) _> "'" ~> t(Xs) > 0and  t(x) = 0for  x ¢ {xl , . . . ,x ,} .  Define [ as follows: 

E E t(x,_,). 
O<i<E O<i_<f+l 

Then {xl , . . . ,  x~-¢-1 } is a cover, and s - E - 1 < rz* - r + 1. []  

Fractional matchings in graphs. Edmonds pointed out, that an old theorem of Tutte 
[2363 implies that 2z*((¢) is always an integer for a graph ft. 

Theorem 5.17 (Edmonds [89]). For a graph fg we have v2(f¢ ) = 2~*((¢) = z2(f¢ ). 

Balinski [ 19], Balinski and Spielberg [20] and Nemhauser and L. Trotter [205] 
proved that even much more is true. To state their results define the fractional point 
packing polytope of the hypergraph H, as the set of all vectors v in R IV(H}l, such that 
v is a fractional point-packing, i.e., 

FPP(H) = I r e  RIv(rl'l: v _> 0 and for all E e E(H)we have ~ v(x)_< 1~. 
l xc~ E ) 

If we can effectively describe all the vertices and facets of a polytope then in a certain 
sense we can solve any optimization problem on it. This description was given in 
[193, [20-1 and [2053. (A discussion of this and more graphtheoretical background 
can be found in Lov/tsz [184]). 

Theorem 5.18 ([19], [203). Let C1 . . . .  , C v be vertex-disjoint odd circuits and ~[ c 
E((~) be a matching independent from these circuits. (i.e., V(Ci) f~ V(~') = ~ for all 
l < i < p). Let 
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1/2 if E • U E(C,) 

w ( e ) - -  1 

0 otherwise. 

Then w is a vertex of FMP(g), and all vertices of this polytope have the above form. 

Theorem 5.19 (I-205]). Let g be a graph, {A, B, C} a partition of v(g) in such a way 
that 
(i) A is an independent set, 
(ii) B contains all neighbors of A, 
(iii) there is no bipartite component in the induced subgraph on C. 
Then define 

v(x) = if x B, 

1/2 i f x • C .  

Then v is a vertex of FPP(g) and all vertices of FPP(g) can be obtained in the 
above way. 

R. Aharoni [8] has a generalization for infinite graphs. 

Corollary 5.20. All coordinates of vertices of the polytopes FMP(g), FPP(g), and 
FcP(g) equal to O, ½ or 1. [] 

Of course, it is much more important to investigate the matching and covering 
polytopes instead of their real relaxations. Define the matching polytope of H as 
follows 

MP(H) = cony ~w • ~IEtH)I: w(E)= 0 or 1 and ~ w(E) < 1 for all p • V(H)t.  
( p~E J 

I.e., MP(H)  is the convex hull of the characteristic vectors of the matchings in H. 
For graphs, this polytope was described by Edmonds [89] (see also Edmonds and 
Pulleyblank [91]). 

The following inequality is due to Lov~tsz [178]. 

Theorem 5.21 ([178]). Let g be a graph. Then ~* <_ ½(r + v). 

Proof. We have to define a fractional cover t: v ( g ) ~  R such that [tl < (~ + v)/2. 
Let T c V(fg) be a minimal cover, IT] = z. Put i/2 weight into each vertex x e Z 
The graph go = {E • E(g): [EN TJ < 1} is bipartite. Let To be a (minimum) cover 
of go and put another 1/2 weight into each vertex x • To. Then we obtain a 
fractional 
cover t of g with weight 

It[ = ½[ TI + ½l Tol = ½~ + ½~(go). 

By the K6nig-Hall theorem we have z(go) = v(go) < v(g). [] 

3-Graphs with arbitrary denominators. It is obvious, that for arbitrary hypergraphs 
a statement similar to Corollary 5.20 is not true. For every rational number p/q 
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(>  1) there exists a hypergraph H with z*(H)= p/q. (E.g., the complete q-graph 
over p elements). Even more is true: 

Proposition 5.22 (Lov~sz 1-177]). Let a, b, c, d > 1 be integers, a < b/c < d, b/c > 1. 
Then there exists a hypergraph H with 

v ( H ) = a ,  z * ( H ) = b / c  and z ( H ) = d .  

Proof. Let B and D be two disjoint sets with Inl = bd, ID[ = d. Let ~ = 

{ } F U {p}: F ~ cd ' p ~ D . Then z(o ~ )  = d, z*(o~) = b/c. Ifv(o~) > a then consider 

two disjoint members of ~ ,  F, F' e ~ and a new element x~ outside U o~. Let 
~1 = ~- - {F, F'} U {F U {xl }, F' U {x~ } }. Continue this process until we get an o~,~ 
with V(~"m) = a. []  

It is easy to see that for the case b/c = 1 Proposition 5.22 does not hold, because 
z*(H) = 1 implies z ( H ) =  1 (see (5.1)). The hypergraphs used in the above proof 
have large ranks. A similar statement is true for hypergraphs of rank 3. For  a real 
number x denote by {x}* its fractional part, i.e., {x}* = x - I-x]. 

Theorem 5.23 (Chung, Ftiredi, Garey and Graham 1-70]). Let 0 < r < 1 be a rational 
number. Then there exists a hypergraph H of rank 3 with {'c*(H)}* = r. 

Proof. It follows immediately from the following two constructions: 

Example 5.24. (A hypergraph H of rank 3 with 4k + 2 edges, and with {z*}* = 
2k/(2 k + l -  1)). Let V ( H ) =  {xl . . . .  ,Xak}U{al , . . . ,ak}U{l l ,12},  and A2i-1 = 
{x3i-2, ai}, A2i = {x3i-1, ai}, B2,-1 = {Xa~-2,x3,-~,x3i} for 1 _< i < k, and B2i = 
{xai, x3i+~ } for 1 < i < k -  1, and B o = {xl,xak, ll}, E o = {X3k, lo}, E 1 = {lo, ll}. 
(See Fig. 5.1). 

A 3 ~A 4 B 4 ~ E  ° 

Fig. 5.1 

To find z*(H) consider the following fractional matching 2: 

2(A2,-1) = 2(B2i-1) = 2k-i/N for 1 < i <  k, 

2(A2i) = 2(B2i) = (N - 2k-')/N for 1 < i < k - 1, 

2(BAo) = 2(Eo) = (2 k - 1)/N, 2(A2k ) = (N -- 1)/N and 

 (E1) = 2*/N, 
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where N stands for 2 k+l - 1. Then I~,1 = 2k + 2kiN. Define t(a,) = (N - 2'-1)/N, 
t(xai-2) = t(x3,-1) = 2'- l /N,  and t(x3,) = (N - 2i)/N for 1 < i < k, and t(ll) = 
(2 k - 1)IN, t(lo) = 2k/N. Then t is fractional cover with It[ = 2k + 2k/N. So we have 
z* = 2k + 2k/N. [] 

Example 5.25. (A hypergraph H of rank 3 with 2k - 1 edges and with {z*(H)}* = 
(odd integer)/2k-1). Let V(H)= {xl . . . . .  Xk, Yl . . . . .  Yk}, E ( H ) =  { {Xk, Yk}, A,, Bi for 
1 < i < k - 1} where A, = {x,,y,,xi+l}, B i  = {x,, y,, y,+l }. Then 

2k 2 (-1) 
z*(H) =-~- + ~ + 9"2 k-1 " 

An upper bound on the denominator. Let Nr = {z*(H): H has rank at most r}. 
Then by Theorem 5.17 we have N2 = {1, 3~, 2, ~,5 3 . . . .  } and U N~ consists of all 

r > 2  

rational numbers not smaller than 1. 

Theorem 5.26 (Chung, Ftiredi, Garey and Graham [70]). I f  u e Nr, (u, v) = 1, then 
U 
- _> 2 log v/r log r, Hence the set N r is a discrete sequence. 
I) 

For example (see in [70]) the initial segment of N 3 is the following: N 3 = 
{ I _ 4 ! _ 5  2 _ 9  '~ 

~'~ 3, 2, 3~4~ 5~ '~ "  • " } "  

Proof of  Theorem 5.26. Let H be a hypergraph of rank r with z* = u/v. We can 
suppose that H is z*-critical, hence IE(H)I _< ru/v by Lemma 5.9. So the value of 
v*(H) can be obtained (by Cramer's rule) as a ratio of two 0 - 1 determinants of 
size at most ru/v. Every row contains at most r entries equal to 1 so by Hadamard's 
upper bound on the determinant we have 

v = Idenominatorl = Idet(0 - 1 matrix)l < x/~ "/~. [] 

,<') This is a discrete sequence, but Let Nr = {t~ '), t~ r) . . . . .  tl r) . . . .  } with tl r) < ~+1. 
Theorem 5.23 implies that for r > 3 

lim -i+1 '(') - tl r~ = 0. 
b-*eO 

Define d, (n)=max{denominator  of r*(H):H is an r-graph with E(H) S n } .  
Examples 5.25 and 5.26 imply 

½nlog2 + 0(1) _ logds(n) _< ½nlog 3. (5.9) 

Problem 5.27. It seems to be very likely that lim log d3(n)/n exists (and it is ½log 2). 
Give bounds for log dr(n). " ~  

Normal hyperoraphs and 9eneralizations. A hypergraph H is normal if for every 
partial hypergraph H' we have v(H') = z(H'). This notion has an important role 
in the proof of the Weak Perfect Graph Conjecture (see Lov/tsz [174]). A structure 
theorem for normal hypergraphs is due to Berge [25] and Berge and LasVergnas 
[30]. (This says that H is normal iff every odd cycle has an edge containing at least 
3 vertices of the cycle.) (See in [26]). It is easy to prove the following propositions: 

Proposition 5.28. A hypergraph is normal iff it has no v-stable partial hypergraph. 
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Proposition 5.29. A hyperoraph is normal iff each of its z-critical partial hypergraph 
consists of disjoint edoes. 

Theorem 5.30 (Lovfisz [175]). A hypergraph H is normal iff for every partial 
hyperoraph H' z*(H') is an inteoer. 

Berge proved the following sharpening of Theorem 5.30. 

Theorem 5.31 ([27]). I f  z2(H' ) = 2z(H')holds for each hyperoraph H' obtained from 
H by removing edges, then it is normal. 

Lovfisz proved the following generalizations of 5.30 for k = 2 ([178]) and k = 3 
([1821). 

Theorem 5.32. Let k be oiven, k = 2 or 3. I f  kz*(H') is an inteoer for each partial 
hypergraph H' of H then vk(H ) = zk(H ). 

Proof of the case k = 3 (sketch). We use induction on I E(H)I to prove that v3 = 3v*. 
Let w: E(H) ~ R an optimal fractional matching with maximum number of edges 

1 2  with w(E) • {0, 7, 7, 1 }. If there exists an edge E with w(E) = 0 or 1 then we can use 
the inductional hypothesis. Then follows that ½ < w(E) < 2 holds for all edge E. 
Consider ~,'¢g- = {E: ½ < w(E) < 1/2}, ~ +  = {E: 1/2 < w(E) < 2/3}. Suppose I~¢g+ I _ 
I~e-I. Then we can increase Iwl by adding • to the edges of ~ +  and decreasing 
w(E) by • for E • ace-. So we can suppose that for all E we have w(E) • {1/3, 
i/2,2/3}. []  

The following statements are weaker than Theorem 5.32. 

If kz*(H')is an integer for each partial hypergraph H' of H then vk(H ) = kz*(H). 
(5.10) 

If kz*(H')is an integer for each partial hypergraph tt '  of H then zk(H) = kz*(H). 
(5.11) 

But the following example of Seymour ([224]) shows that Theorem 5.32 and (5.10) 
do not hold for k = 60 and (5.11) for k = 20. 

Example 5.33.(For all partial hypergraph Z6o(H') = 60z*(H') but Z6o(H) ~ V6o(H).) 
Let X = {1,2,3,4,5,6,7,8,9} and g = {E1,E2 . . . . .  E7} where E1 = X - {1,3,5}, 
E 2 = X -  {1,4,6}, E 3 = X - -  {2,3,6), E 4 = X - -  {2,4,5}, E 5 = X -  {7}, E 6 = 
X - {8}, E 7 = X -- {9}. (See Fig. 5.2). 

1 2  3 4 5 6 7 8 9  

• • • • • • 

• • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

Fig. 5.2 
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Multiplication of vertices. Let H = (X, ~) be a hypergraph. We recall that multiplying 
a point x by k > 0 (an integer) means that we replace x by k new points xl . . . .  , Xk, 
and at the same time replace each edge E containing x by the new edges (E - {x}) U 
{xl } . . . . .  (E - {x})U {Xk }-SO multiplying x by 0 coincides with removing x. Lovfisz 
proved the following. 

Theorem 5.34. [ 179]. I f  v2 (H') = 2v(H') holds for each hypergraph H' obtained from 
H by multiplication of points, then z(H) = v(H)(i.e., H is normal). 

He conjectured and Schrijver [224] proved the following generalizations: 

Theorem 5.35 ([224]). I f  kv*(H') is an integer for each hypergraph H' arising from 
H by multiplication of points, then zk(H) = kz*(H)(= Vk(H).) 

Theorem 5.36 ([224]). I f  v2k(H' ) = 2Vk(H' ) for each hypergraph H' arising from H 
by multiplication of points, then Tk(H ) = kT*(H)(= Vk(H). ) 

The main tool of the proof of Theorems 5.35 and 5.36 is the following important 
lemma which was proved (in different forms) by Gomory [143], Chv~ital [71], 
Hoffman [158], Fulkerson [ 127], Edmonds and Giles [90], Lov~sz [182], Schrijver 
and Seymour [224]. 

Lemma 5.37. Let P be a convex polyhedron in R n. I f  for each vector w ~ Z ~ the number 
min{wx: x ~ P} is an integer, or + ~ ,  then each vertex of P has integer coordinates. 

Proof of 5.37. Let Xo be a vertex of P, and consider its ith coordinate. There exists 
an integer vector w ~ Z n such that both min{wx: x ~ P} and min{w'x: x e P} are 
attained at Xo, where w' arises from w by adding 1 to the ith coordinate of w and 
leaving the remaining coordinates unchanged. So WXo and W'Xo are integers, hence 
also W'Xo - WXo, the ith coordinate of Xo. [] 

Proof of 5.35 (hint). Consider the fractional covering polytope FCP(H). Then 
kFCP(H) has integer vertices. [] 

Product of hypergraphs. The direct product of two hypergraphs H 1 and H 2 is 
defined by 

V(H~ × n ~ ) =  V(H1) × V(H~), 

E(H, x H2)=  {E 1 x Ez: E x ~ E(H,),E 2 6 E(H2) }. 

It is easy to prove the following properties 

z*(G × H ) =  T*(G) × T*(H) (5.12) 

v(G)v(H) < v(G x H) < v(G)z*(H) (5.13) 

r(G)T*(H) < r(G × H) < ~(G)~(H) (5.14) 

E.g., to prove the first inequality in (5.14) observe that if S is a cover of G x H 
then S fq (V(G) x H)has at least z(G)elements for every H ~ E(H). Hence t(y):= 
# {x: (x, y) ~ S} is a z(G) cover of H. 
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One cannot improve (5.13) and (5.14)in general as it is shown by the next two 
theorems. The first one is attributed to Berge and Simonovits [31] by Lovfisz [177]. 

Theorem 5.38 ([177]). Let H be a hypergraph, then 

z*(H) = min T(G x H) 

where G runs over all hypergraphs. 

Proof. Let k be an integer v > Zk(H ). If G = K~_k+ 1, the complete hypergraph over 
v elements then z(G x H) = Zk(H ). Now we can use Proposition 5.12 (iv). [] 

The next theorem first appeared in [218] in an implicit form. 

Theorem 5.39 (Rosenfeld [218]). Let H be a hypergraph, then 

v(G x H) 
z*(H) = max 

G v(G)  ' 

where G runs over all hypergraphs. 

Proof. If G = Kkl (i.e., k 1-element edges) then v(G x H) = Vk(H ). [] 

The following results have an information-theoretical background (see [187] 
about Shannon-capacity). Use the brief notation H i =  H x H "  (:= H × 
H x . . .  xH).  

Theorem 5.40 (McEliece and Posner [191]). 

lim ~ = z*(H). 

Proof. Using (5.12) we have 

= * * ( W )  (5.15) 
To prove an upper bound we are going to use Theorem 6.29 from the next chapter. 
Denote the maximum degree of a hypergraph G by D(G). Clearly, 

D(rr)  = (D(n))'. 

Hen/ce by Corollary 6.29 we have 

z(H') < (1 + logD(Ht))z*(H ') 

= (1 + t log D(H))T(H)' 

Then by (5.15) we have for all t > 1 

z*(H) < ~ / / ~ )  < ~/1 ÷ t log D(H)T*(H). [] 

This short proof is due to Lovfisz [176]. Surprisingly, the corresponding state- 
ment about v(H')is not true. Using (5.13)it is easy to see that 
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Q(H) = lim 
t--~O0 

there exists. This number is called the Shannon capacity of H. The conjecture Q(H) = 
z*(H) is not true. E.g.,Q(Cs)= 1 < z*(C3) = 3/2, andQ(Cs)= v/5 < z*(Cs) = 5/2, 
(see in [187]). 

Problem 5.41. Give bounds for the Shannon capacity of a hypergraph. An excellent 
survey about the Shannon capacity of graphs is 1-149]. 

z- and v-critical hypergraphs. Now we sharpen Propositions 5.28 and 5.29. 

Proposition 5.42 ([1753). I f  a hypergraph H is v-critical, then either H consists of  
disjoint edges, or 

> z*(H). 

Proof. Let C(E) be a cover of H -  {E} with cardinality z -  1 for all E ~ E(H). 
Then t(x) =: I{C: x s C(E),E ~ E(H)} ] is an IE(H)I - 1 cover of H, so 

T* < (z - 1)IE(H)I/(IE(H)I- 1). [] 

Note that essentially the same proof gives 

D - 1  
Z * _ ~ T  

D 

Proposition 5.43 ([175]). I f  a hypergraph H is t-wise v-stable then 

v*(I-I) _> v(rI) + t /  min IEI. 
/ E E E(H) 

Proof We define a fractional matching w: E(H) ~ ~ with value I wl = v + t/minlEI. 
/ r  N 

Let E o ~ E ( H ) b e  an edge of minimum cardinality. If S ~ ( ~  ° )  then we have 
\ ~ /  

a matching E~, E 2 . . . . .  E~ with E ~ ( 3 S - - ~ .  Let w(Eo)= t/IEol and for E # 

[] 

Regularisable hypergraphs. A hypergraph H is said to be reoularisable if by replacing 
each edge E by an appropriate non-empty set of edges equal to E, we get a new 
hypergraph with all vertices having the same degree. 

For a graph G, the weight t(x):= 1/2 on each vertex x ~ V(G)is always a 
fractional cover. It is optimal one if and only if V(G) can be covered by disjoint 
edges and odd cycles. 

Theorem 5.44 (Berge 1,-283). The fractional cover t(x) = 1/2 is the unique optimal 
if and only if  G is regularisable and has no bipartite component. 

Proof Easily follows from Corollary 5.20, and 5.1. [] 
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J. Csima [75] found a characterization of regularisable hypergraphs. His result 
was used by Berge [28] to investigate quasi-regularisable hypergraphs. 

Problem 5.45. Find further properties of the regularisable r-graphs. 

6. Further Bounds on z and 3" 

r-Graphs with maximal z*. Several examples (e.g., Example 4.0) show that the trivial 
inequality z _< rv cannot be improved in general. Nevertheless, as Lovfisz [177] 
observed the inequality z* < rv is not sharp. He showed that z* < rv holds for any 
hypergraph, furthermore 

z*(r, v) = sup{z*(H): r(H) _< r, v(H) < v} < rv. 

Indeed, either z(H) < rv - 1 or z ( H ) =  rv. In the second case there exist only 
finitely many H for every fixed r and v by Corollary 4.26. For this case we can make 
a proof similar to Proposition 5.42. For v = 1 he proved z*(r, 1) < r - 1 + 2/(r + 1) 
and conjectured z*(r, 1) _< r - 1 + 1/r. This conjecture was proved in the following 
stronger form: 

Theorem 6.1 ([130]). Let H be a hypergraph of rank r, r > 3, v(H) = v. Suppose that 
H does not contain as a partial hypergraph (p + 1) vertex disjoint copies of finite 
projective planes of order r - 1. Then 

z*(H) < (r - 1)v + p/r. (6.1) 

If such a finite plane exists then Theorem 6.1 is sharp, consider p copies of 
a finite projective plane and (v - p) copies of the truncated plane (see Example 5.3). 
Then for the obtained hypergraph equality holds in (6.1). Another extremal family 
can be obtained from the tuisted projective planes. See [266] and [135]. 

Corollary 6.2. I f  a P G ( 2 , r - 1 )  exists then z * ( r , v ) = ( r -  1 + 1/r)v. Otherwise 
z*(r, v) _< (r -- 1)v. 

Moreover in the first case the only optimal hypergraph is the union of v 
PG(2, r - 1). For every other hypergraph H we have 

z*(H)< r - l +  v . (6.2) 
r 

Proof of 6.1. It is sufficient to give a suitable fractional cover t of H. We shall 
give it by induction on v, while r is fixed. The proof of the case v = 1 is similar 
to the case v > 1 so we do not separate it. For E(H) = ~ we put z*(H)= 0. We 
can also suppose that H is a z*-critical hypergraph without isolated vertices. 
Hence ]E(H)] < ] V(H)I by Lemma 5.6. Consequently, for the minimum degree d(xo) 
we have 

1 tIE(H)[ (6.3) 0 <  min d ( x ) < - -  E d ( x ) < - - < r .  
x ,V(H)  - -  ) V ( H )  I - I V ( H )  I - 
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Case 1. There exists a point x o ~ V(H) with 0 < dH(Xo)= k < r. Put ~o  = 
{ E e E ( H ) : x o e E } = { E 1 , E 2  . . . . .  Ek}, and Y t ~ = { E e E ( H ) : E f q E i = ~ }  for 
1 < i _< k. For the hypergraph ~ the induction hypothesis can be applied, so there 
exists a fractional cover ti: V(H)--+ fi~ of ~ such that [ti[ <_ (r - 1)(v - 1) + p/r. 
(If here Y~i = ~ then ti - 0). Let 

t ( x )  = k 
do(x) + ~, t,(x)) if x 4= x0, 

i = 1  

where do(x) is the degree of x in the hypergraph ~o. It is easy to check that t is 
1 

a fractional cover of H with Itl = (r - 1) + ~ It, I -< (r - 1)v + p/r. 

Case 2 (sketch). min d(x) > r. Then by (6.3) H is r-regular, r-uniform, so I V(H)I = 
x e V ( H )  

Ig(H)l and r*(H) = ~IE(H)t by Proposition 5.1. We have to show that IE(n)l _< 

(r 2 - r)v + p. Let E1 be an arbitrary edge of H, and put Jtt~ t = {E ~ E(H): E fq Ei = 
O}. Applying the inductional hypothesis to ~1 and using (5.3) we have 

Ig(H)[ = I{E: ENEI # Z~}I + I~xl < 1 + r(r - 1) + z*(9~'l)D(9~x) 

<_ (r 2 - r)v  + p + 1. 

Here the right-hand side is at most (r 2 -  r)v + p if there is an edge E with 
IE1 fqEI > 2, or if there are only p -  1 disjoint P G ( 2 , r -  1) in ~¢fl. So we can 
suppose that ~ contains p copies of PG(2, r - 1). These edges in PG(2,r - 1) are 
disjoint from the rest, because ~ is r-regular, i.e., ~ is not connected if p > 1. 
So we can suppose that p = 0, and 

IENE~I = 0 o r  1 for all distinct edges E, E l e E ( H ) , a n d  (6.4) 

[E(H)[ = IV(H)[ = (r 2 - r)v + 1. (6.5) 

To finish the proof we need the following. 

Proposition 6.3. Suppose K is an r-regular r-graph, r >_ 3, satisfying (6.4), (6.5) and 
v(K) = v. Then a finite projective plane of order r - 1 is a partial hypergraph of K. 

For the proof of Proposition 6.3 we refer to [130]. []  

Corollary 6.4 (Gyfirffis [147]). I f  H is r-partite then T*(H) _< (r - 1)v. 

Proof. It follows from Theorem 6.1 because PG(2, r - 1) is not r-partite. [] 

This result gives (a slight)support to Conjecture 4.29. It is sharp, ifPG(2, r - 1) 
exists, as it is shown by the example of v copies of the truncated projective plane 
(see Example 5.3). Using his result (v*(r, 1) < r  - 1 + 2/(r + 1)) mentioned above, 
Lov/tsz [177] proved the following conjecture of Bollobfis [49] and Erd6s [96]: 

If H is an intersecting, regular r-graph, then I V ( H ) I  < r 2 - r + 1. (6.6) 

Theorem 6.1 and Proposition 5.1 imply 
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Corollary 6.5. l f  H is regular r-graph then [ V(H)] < v(r 2 - r + 1). Moreover equality 
holds if  and only if H is the disjoint union of  v PG(2, r - 1). Furthermore, i f  such 
a plane does not exists then IV(H)] _< v(r 2 - r). [] 

The r = 2 case was proved by Bollob~s and Eldridge [54]. 

Proposition 6.6. z*(r + 1, 1) > z*(r, 1). 

Proof. Suppose H is an intersecting r-graph with z*(H) = z*(r, 1). (Such an r-graph 
exists, in view of Proposit ion 6.8 below). Let IF[ = r + 1, F tq V(H) = Z~ and define 
H '+1 as follows: 

V(H "+1) = V(H)U F, E(H '+1) = {F} U {E U {x}: E ~ E(H), x ~ F}. 

r 
Then v*(n r+l) = 1 + z*(H) > z*(H) + 1/r. [] 

r + l  

Conjecture 6.7. 
(i) z*(r, v) = w*(r, 1). 
(ii) z*(r + l , 1 ) - z * ( r ,  1 ) - - 1 - o ( 1 )  
(iii) v*(r + 1, v) > z*(r, v) 
(iv) It would be interesting to determine z*(r, 1) for the values when no projective 

plane of order r - 1 exists. 
For example z*(7, 1) = ?. 

Intersecting r-graphs with maximal z*. Let r _> t, s positive integers, t _> 2 and define 

z*(r,t,s) = sup{z*(H): H is t-wise s-intersecting of rank r}. 

So with this notation z*(r, 2, 1) = z*(r, I) investigated in the previous section. To 
determine z*(r, t, s) it is enough to consider z*-critical hypergraphs H. Then by 
Lemma 5.9 I E(H)I _< t, s)_< r 2, hence we have finitely many possibilities for 
every fixed r. So we have 

Proposition 6.8. There exists a t-wise s-intersecting H of  rank r with z*(H) = z*(r, t, s). 
[] 

(Of course, the same holds for z*(r, v) considered in the previous section, as well). 

Theorem 6.9 (Frankl and Fiiredi [121]). Let H be a (2-wise) s-intersecting family 
of rank r. Then either 
(i) z*(H) = (r - 1)Is + (l/r) and then H is a symmetric (r,s)-design, or 
(ii) z*(H) <_ (r - 1)/s + (l/r) - ( r  - s)/r(r - 1)s. 

Proof. We can suppose that ~ c E(H) is z*-critical, and z * ( ~ ) =  z*(H). Then, 
similarly as we have done in (6.3), we obtain 

1 
[V(~)[ ~, deg~(p) < ['~[ (6.7) p~V(~) - r~v-V~[ <- r. 

Hence mindeg~(p)= d < r. Let v be a vertex with min imum degree d ( >  1)and 
F1 . . . . .  Fd be the edges of ~- through v. Let w: ~ ~ R be a fractional matching 
and let q =: ~ w(Fi), q < 1. Then for every fixed i, 1 < i < d we have 

l < i < d  
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>_ s ~ w(F) + ( r -  s)w(Fi). (6.8) 
F e,~ r 

Summing up (6.8) for all i we get 

dq + d(r - 1) > sdlwl  + (r - s)q, 

which yields 

r - 1  d - r + s  
t q > ]wl. (6.9) 

s sd 

The second term of the left hand side is at most ( l / r ) - ( r  - s ) /r (r-  1)s if d < r, 
verifying the case (ii). 

Ifd = r, then (6.7) implies that ~ is an r-regular r-graph. Then by Proposition 5.1 
we have 

~, (~)  = I ~ 1 _  I v(~)i  (6.10) 
r r 

Consider an arbitrary edge F ~ ~-o. Then 

r2 = E deg~(p)  = E IFNFol >_ r -  s + s l~ l ,  (6,11) 
P~Fo F E ~  

i.e., I~ l  <- (r 2 - r  + s)/s. If I~l  -< (r 2 - r  + s  - 1)/s, then (ii) holds again by (6.10). 
If I~ l  = (r 2 - r + s)/s then (6.11)implies that IFnFol  = s holds for every two F, 
Fo ~ ~-, i.e., ~ is an (r, s)-design. Finally, by Corollary 3.5, we have that ~ = E(H). 

[] 

Theorem 6.9 has the following Corollary, analogous to Corollary 6.5. 

Corollary 6.10. I f  H is a regular, s-intersecting hypergraph of rank r then I V(H)l _< 
(r 2 -- r + s)/s. Here equality holds if and only if H is a symmetric (r,s)-design. 

The case s = 1 was conjectured by Bollobfis [49] and Erd6s [-96]. In the case 
s = 1 the first part of Corollary 6.10 was proved by Lovfisz [177] using his above 
mentioned upper bound on z*(r, 1) ( < r -  1 + 2/(r + 1)). Recently, Calderbank 
[68] found a new short proof using associations schemes. 

Conjecture 6.11. If H is an s-intersecting r-graph, and H is not a symmetric (r, s)- 
design, then z*(H) <_ (r - 1)Is. 

Denote by q(0 the sum q~ + q~-~ + "" + q + 1, so q¢O) = 1. A consequence of 
Theorem 6.9 is the following. 

Corollary 6.12. Suppose H is a t-wise q~)-intersecting family of rank qtt+t-l). Then 
either 
(a) H is isomorphic to PG(t + l,q)and then z*(H)= q~t+Z)/q(t+l-1), or 
(b) z*(H) < qtt+O/qtt+,-1)_ 1/q2t+21. 

Conjecture 6.13. Suppose H is a t-wise intersecting family of rank q~t-1), and 
H ~ PG(t,q). Then z*(H) _< q. 
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Proof of  6.12. We are going to use Theorem 6.9. If H is q<t+~-2)-intersecting then 
we are done. Suppose that there exist Ex, E2 e E(H) with tE 1 N E2I < q{t+~-2~. Let 
a be the maximal integer such that one can find H1, //2, . . . ,  H. e E(H) with 
IHx N...  n n,I  < qt,+z-.). We have 2 < a < t as H is t-wise q<Z)-intersecting. Hence 
every H ~ E(H) intersects Y =: H 1 N... n H. in at least q<t+;-,-1) elements. Thus 
the function t: Y ~ R, t(y) = 1/q ct÷~-"-~> is a fractional cover of H. This means 

z*(H) < ] Yl/q<'+t-a-l) < (qt+l-a + . . .  + q2 + q)/(q<,+t-,-1 + . . . +  1) 

= q < q(t+t)/qtt+t-l) __ 1/q2t+2t. [] 

Proposition 6.14. (i) Suppose 2 < t <_ r <_ 3t/2 -- 1. Then 

z*(r,t, 1)= 1 + 2 / ( 3 t - r ) .  

(ii) Suppose r = ( 3 t -  1)/2. Then z*(r,t, 1)= 1 + 2/r. 

One of the extremal hypergraph in 6.14(ii)is the complement of(t + 1)/2 disjoint 
union of K2 a. For the proof we efer to [133], it is based on Theorem 4.20. Using 
the following proposition we can determine z*(r, t, s) whenever s > r  - x / ~ -  1). 

Proposition 6.15. Suppose H is a t-wise s-intersecting family of  rank It + s - I where 
t >_ 2, 1 >_ 1. Suppose s > (t - 1)l(l - 1), then either 
(a) H is (lt + s  - 21)-intersecting (e.g., H = tclt+~ ~lt+s-lJ~ or  

(b) z*(H) <_ (s + l - 1)Is (< (It + s)/(lt + s - l)). 

Proof. (The case t = 2 was proved in [114], in general see in [121]). We proceed 
as in the proof of Corollary 6.12. Suppose on the contrary that there exist H1, 
H 2 E E(H), IH1NH21 < It + s - 21. Let k be the maximal such that there exist 
H 1 . . . . .  H k ~ E(H) with IH1 n . . .  N Hkl < It + s - kl, we have 2 < k < I. Then for 
each H ~ E(H) we have IHN(H 1 n ..-NHk) [ > It + s  - (k  + 1)l, yielding z*(n) < 
(It + s - kl - 1)/(lt + s - kl - k) < (s + l -  1)Is. [] 

The ratio of the matching polytope and the fractional matching polytope. Fiiredi, 
Kahn and Seymour [137] found the following sharpening of results Theorems 6.1 
and 6.2. 

Theorem 6.16 ([1373). Let  H be an r-graph. Blow up the matching polytope of H from 
the origin with ratio (r - 1 + l/r). Then we have 

F M P ( H ) _  r -  1 + MP(H). 

Conjecture 6.17. Applying the following linear operation for MP(H). For 

,} let L ( x ) =  IEI- 1 +  x ( E ) : E e E ( H  , and L ( M P ( H ) ) =  

{L(x): x ~ MP(H)}. Then 

F M P ( H )  ~_ L(MP(H)) .  

Another generalization of Theorem 6.2 is the following 
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Theorem 6.18 ([137]). Let H be an arbitrary hypergraph. Then there exists a 
matching 
Jr' c E(H) with 

1 
z*(H) < E I E I -  1 + 

E~/ /  ~-E-~" 

Proof. We will use induction on IE(H)I. We can suppose that H is z*-critical, i.e., 

IE(n)L _< IU (E: E E(rI)}l. 

by Lemma 5.6. Let w: E(H) -~ R be an optimal fractional matching. Then 5.1 l(iii) 
implies the following sharper version of Proposition 5.6 

IE(H)I < ~, w(E)IEI. (6.12) 
E 

This implies that 

Ew(e) le l  > 1, 
le(rI) l - 

so there exists an E o e E(H) with w(Eo)lgol ~ 1. Let Ho be the hypergraph con- 
sisting of the edges of H disjoint to Eo. Then, by induction, there exists an ~'o 
matching with 

1 
z*(Ho)< E J E l - l + - - .  

~ o  IEI 
Moreover 

z*(H) - z*(no) < tnEo,oE w(E) <_ l E o [ -  ( I E o l -  1)w(Eo) < IEol - 1 + lEo---- P 

so J/ '  = ~ 'o U {Eo} satisfies Theorem 6.18. [] 

r-Partite hypergraphs. Conjecture 4.29 would imply r _ (r - 1)3'. Much more 
is true. 

Theorem 6.19 (Lovhsz 1-1753). I f  H is an r-partite hypergraph, then 

For the proof we need the following slightly stronger statement: 

Theorem 6.20 ([ 175]). I f  H is an r-partite hypergraph then every k-cover decomposable 
into 1"2(k - 1)/r] + 1 covers. 

Proof of Theorem 6.20. Let t(x): V(H) - ,  {0,1, 2 . . . . .  k} be a k-cover V(H)--- 
V 1 U " .  U V, is the r-partition. It is easy to see that for every r _> 2, m >_ 0 there exists 
an r x (m + 1) matrix ((aij))such that 
(a) every row is a permutation of {0, 1,2,... ,m}, 
(b) the sum of every column is at most [rm/2]. 
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Let m = [2(k - 1)/r] and define Tj as follows (1 _< j _< m + 1): 

Tj = {x ~ V(H): t(x) > aij, x ~ V/(t _< i < r)}. 

Then every Tj is a cover. Indeed, suppose on the contrary that E o -- {el, . . . ,  e,} ~ E(H) 
with ei ~ V~ and t(ei) <_ aij. Then 

t ( x ) < - ~ a i j < - U 2 ] = I r [ 2 ( k ; 1 ) / r ] ] < k - l '  
X 0 

a contradiction. []  

Proof of Theorem 6.19. By Proposition 5.12 (iv) there exists infinitely many k with 
Zk = kz*. Using Theorem 6.20 we have 

( [ _ 2 ( k - l ! J )  2 k - 1  k'c*=Zk> 1 +  z > - - z .  
r r 

If k ~ oo we obtain Theorem 6.19. []  

Of course, the case r = 2 in Theorem 6.18 follows from the K6nig theorem as well. 

Problem 6.21. Can we improve on Theorem 6.19? 

The speed of convergence of the sequence Zk/k. For every hypergraph H the sequence 
{'Ck/k'C*}k=l,2... tends to 1 and infinitely many times equals to 1 (by Proposition 5.12). 
For r = 2 (i.e., in the case of graphs) it reaches the value 1 already for k = 2 
(and for every even k), by Theorem 5.17. Theorem 5.23 shows that there is no upper 
bound on k for 3-graphs for the smallest value where Zk = kz*. 

Proposition 6.22 (Lov~tsz [177]). Let H be a hypergraph of rank r, then 
(a) z2/Ez* < r/2, 
(b) z,/rz* < 2 -  ( 1 / ( r -  1)), 
(c) Zk/kZ* <_ 1 + ( r -  1)/k. 

Proof. (a) is  an easy consequence of 5.11 (iii). Let t: V ( H ) ~  R be an optimal 
fractional cover and let V o = {x: 0 < t(x)}, 1"1 = {x: t(x) -- 1}. Then 

t2(x) = for x ~ Vo - V1 

otherwise 

'is a 2-cover with value at most rz*. 
(b) is a special case of (c). 
For the proof of (c) define tk(x)as follows 

tk(x) = [kt(x)] 

Clearly, tk is a k-cover, and 

Z tk(x) = kz* + Z {kt(x)}* (6.13) 
x x ~  0 

Let Ho be the partial subhypergraph of H whose edges has value exactly 1, i.e., 
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E(Ho) = {E ~ E(H): x~.2 t(x)= 1}. Then z*(Ho)= z*(H). Moreover 

y" {kt(x)}* _< r -  1 (6.14) 
x ~ E  o 

holds for all Eo ~ E(Ho). Let w be an optimal fractional cover of Ho then (6.14) 
implies that 

~, {kt(x)}*w(Eo) <__ (r -- 1)w(Eo) , 
x E E  o 

hence 

{ r -  1}z*(Ho}_> E Y', {kt(x}}*w{Eo)>- E{kt(x)} *. 
Eo ~ E(H) x ~ E o 

This and (6.13)imply (c). [] 

Problem 6.23. Improve on Proposition 6.22. What can we say about r-partite 
r-graphs? 

R. Aharoni [252] proved further relations between v and z for r-partite hyper- 
graphs. A lower bound for the matching number. (Aharoni, Erd6s and Linial [9]). Let 
H be a hypergraph, denote I V(H)I and ]E(H)[ by Vand e, m := min{[E[: E ~ E(H)}. 

Theorem 6.24 ([AhErLi]). With the above notations 

m - 1  - V 
v 

e 

The case of v -- 1, i.e., the inequality 

~ e  Ve z* > 

- m + l  - 

for intersecting hypergraphs was proved by Pach and Sudmyi [207]. For the proof 
of 6.24 we need the following result of Motzkin and Straus who using that idea 
gave a new proof for Turin theorem. Let G = (V, E) be a graph IV I = n, define the 
polynomial 

g(x, ..... x . ) = y  
{'.j}~E 

We are looking for the maximum of g where all xi >_ 0 and ~ x~ = 1. Denote by 
o)(G) the largest clique in G, i.e., the largest complete subgraph. Setting 1/a~ weights 

to the vertices of a largest clique and 0 elsewhere we get max g > ~(1 - 1 ) .  

Theorem 6.25([201]). For every graph G, if x~ >_ O, then 

g(xl . . . . .  x~)<~(1  ~(--~))(~x,) 2. [] 
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Proof of  6.24. Let w: E(H) ~ R be an optimal fractional matching. Consider the V 
by e 0-1 matrix A where A o = 1 iffi e E i (i.e., the incidency matrix of H). Then 

w TA TAw = (Aw)r(Aw) < 1~ rlv = V (6.15) 

The matrix ArA  is an e x e matrix indexed the edges Ei (1 < i < e) with the (i,j) 
entry being IEi fq Ejl. To make a lower bound we can estimate it as follows: 

ATA >_ diag(lEi[ - 1) + J - B 

where J is the e x e matrix with all entries equal one, and B is a 0-1 matrix 
having 1 at (i,j)iff E, and Ej are disjoint. So (6.15)implies 

V >_ wTA rAw  > W r diao( lEi l -  1)w + w r j w -  wrBw. (6.16) 

We give a separate lower bound for each of the three terms. 

w rdiao(lE,I - 1)w = ~ (IE, j -  1)(w(E,)) 2 > (m - 1) E w(E) 2 
i= 1 E E E(H) 

> ( m -  1) (~w(E))2 = m -  1 (z,)2. (6.17) 
e e 

w rJw = (~ w(E)) 2 = (z,)z. (6.18) 

The matrix B can be considered as an adjacency matrix of a graph G whose largest 
clique has v vertices, so Theorem 6.25 yields 

- w r B w > _  - ( 1 -  !)(Zw(E)) 2 (6.19) 

Summing up (6.17)-(6.19) we conclude Theorem 6.24. [] 

Our next aim is to find the hypergraphs H for which equality holds in (the first 
inequality of) Theorem 6.24. All w(E) (E ~ E(H)) must equal by (6.16), so their 
common value is lID (where D denotes the maximum degree of H). Again (6.16) 
implies that H is an m-graph. Then (6.15) implies that every point is saturated by 
w, so H is D-regular. We get 

me e 
V =  - i f ,  ~* = -- D" 

Substituting these values to Theorem 6.24 we get 

e 

V - m D  - m + 1 (6.20) 

Consider the lineoraph L(H)of H, i.e., V(L(H)) = E(H)and two vertices of L(H)are 
connected if the corresponding edges in E(H) are intersecting. D(L(H)) < m(D - 1) 
and L(H) does not contain v + 1 independent vertices. These two properties (and 
the Tur~in-theorem) imply that L(H) is the union of v complete graphs K2 ~+mw-1). 
So H can be decomposed into v disjoint D-regular, intersecting m-graphs. Moreover 
every edge intersects exactly m(O - 1) others, so IE tq E'I _< 1 for all E, E ' e  E(H). 
Then easily follows that D < m and 
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Proposition 6.26. Equality holds in Theorem 6.24/f and only if H is the disjoint 
union of hypergraphs H1, ...,  H v where each Hi is the dual of a S(Dm - m + 1, D, 2) 
Steiner system. 

E.g., H = v disjoint m-sets or, H = v copies of PG(2, m - 1) or the truncated 
projective planes of order m - 1, etc. 

Proposition 6.27 ([9]). Let H be a hyperffraph on V vertices with b edges. Then 

m 1,1, - -  if b > ex/~V, 
3_< 

if b _< ex//vV, 

where e = 2.71828... as usual. 

The hounds in Proposition 6.27 are rather tight as they showed by random 
constructions. Moreover they gave simple algorithms to find as large matching or 
cover as it was given in Theorem 6.25 and Proposition 6.27, which algorithm have 
polynomial running time. Their algorithm simply a greedy one, what we deal with 
in the next section. 

Covering by greedy algorithm. One of the most natural methods to produce a small 
cover of a given hypergraph H is the so-called "Greedy Algorithm". We proceed 
as follows: Let xl be a point of maximum degree. Suppose that xl . . . . .  x~ are already 
selected and they still do not cover all edges, then let xi+l be a point which covers 
as many as possible from the uncovered edges. The process stops when all edges 
are covered. 

Generally, the Greedy Algorithm is not the best, but we can hope that it gives 
a rather good estimate. The following theorem was proved by LovSsz [176]. A 
slightly different result was given by Stein [229]. 

Theorem 6.28 ([176, 180]). Let H be a hypergraph and denote its maximum degree 
by D. Let {x 1, x2 . . . . .  Xr} be a cover obtained by the greedy covering algorithm. Then 

T_< 1 + ~ + ~ + ' "  + ~emax~EIn~D(~)" 

Corollary 6.29. z_< 1 + ~ + . . . + ~  z <( l+ logD)z* .  

Using the same method Stein proved 

z < } E ( ~ ) ] +  + + . " +  (6.21) 
- D minlEl \2  3 

Proof of Theorem 6.28. Let M = max E(H')/D(H'), where H' is an arbitrary partial 
hypergraph of H. Let t~ denote the number of steps in the greedy algorithm in which 
the chosen point covers i new edges. After to + to-x + "'" + ts+x steps the hyper- 
graph Hs formed by the uncovered edges has maximum degree < s and cardinality 
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rE(n~)l = E , ~  it,. Hence we have for ali l < s < D 

iti < Ms. (6.22) 
i=1 

Multiply these inequalities by 1/s(s - l) for 2 _< s < D and by 1/D for s = 1 we get 

D D 

T =  E t i<-M E 1/i. [] 
i = l  i = l  

Proof of Corollary 6.29. Clearly z < T and IE(H')I/D(H') < z*(H') by (5.4). The 
obvious inequality z*(H') < r*(H) completes the proof. []  

Remark 6.30. Let H i the hypergraph consisting of the uncovered edges after i steps. 
Then 

Hence 

IE(HtM~°'D~)I < 1 - - -  IE(~)I < D - 

so in this way we again obtain that 

T < l-z* log D] + [T*]. (6.23) 

Another proof can be obtained for (6.23) by probabilistic method. Let t(x): 
V(H) --. ~ be an optimal fractional cover, and in the i-th round of our process 
choose the point x e V(H)into  our cover T with probability t(x). Then after r 
rounds for all E e E(H) we have 

e rob(e  is not covered by T) = (1 - t(x < - -  
e s '  

and the expected value of I r l  is E(T) = sz*. So there exists a cover T' of size at 
most sz* + IE(H)te -~. 

Actually, Lovgsz [176] proved a slightly more, namely that for any cover 
obtained by the greedy algorithm the following holds: 

v--1- 2 + V i  + "  + ( D -  + o '  
/ 

where vi = max{IJt'[: J / c  E(H),deg~(x) <_ i for all x}, the maximum size of a 
simple/-matching in H. 

Problem 6.31. Is it true that one can improve Corollary 6.29 by a constant factor? 
What about if we restrict our attention to a smaller class of hypergraphs? (E.g., 
r-graphs, or ~* is bounded). 

For the complete r-graph K 2" we have ~ /r* = (r + l )/2 and log D = log ( 2 ; 5 1 )  ~ 

rlog4. (See [262-1). 
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Minimal complementing subsets in a finite group. The following theorem is a slight 
generalization of a theorem of Lorentz [173]. This version (in almost this form) is 
due to Halberstam and Roth ([153], pp. 14-16). 

C o r o l l a r y  6.32. Let G be a finite group and A c G be a subset of G. Then there exists 
a set B c G such that AB = G and 

,161 
IBI < (1 + loglA )tA-/" 

Proof(Lov~sz [176], Stein [229]). Construct a hypergraph H as follows, V(H) = G, 
E(H) := {A-lg: g E G}. Let B be a cover of H, then AB = G. Moreover H is 
IAl-regular so by Proposition 5.1 (or 5.2) we have z* = IGI/IAI, and D(H)= Ihl. 
Then Corollary 6.29 completes the proof. [] 

If there are more choices, then one can prove more: 

Theorem 6.33 (Finkelstein, Kleitman, Leighton [259]). For any finite group G and 
integer a, 1 < a < I G I, one can find sets A c G, B c G such that AB = G and ] A t = a, 

Inl < 2161 - ~ - .  

Chromatic number of graphs. If ~(G) denotes the maximum number of independent 
points in the graph G, and z(G) is its chromatic number, then clearly z(G)> 
I V(G)I/~(G). Even more 

I V(H) I (6.24) 
z(G) > maxI.i ~(H-~' 

where H ranges over all induced subgraphs of G. The following theorem shows that 
(6.24) is not so far from the true order of magnitude of z(G). 

Corollary 6.34 (Lovfisz [176]). For any graph G 

z(G) < (1 + log~(G)) max IV(H)I 
- . 

An example of Erd6s and Hajnal [103] (the shift graph) shows that the inequality 
in Corollary 6.34 is sharp (appart from a constant factor). 

Proof of  6.34 (sketch). Apply Corollary 6.29 to the following hypergraph H: V(H) 
is the/family of independent sets in G, E(H) has V(G) members { E / p  e V(G)} 
defined by Ep = {I ~ V(H): p e I}. [] 

3-Chromatic hypergraphs. A hypergraph is said to be 2-chromatic if its vertices can 
be 2-colored in such a way that no edge is monochromatic. Let m(r) denote the 
minimum cardinality of a non-2-chromatic r-graph. Erd6s and Hajnal [102] proved 
that m(r) > 2 '-1 and more than 20 years later Beck [24] proved m(r) >_ r~1/3~-~2" 
(for a short account of this, see [227]). On the other hand using probabilistic method 
Erd6s proved 

Theorem 6.35 ([93]). There is a non-2-chromatic r-graph with not more than 
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(e17____22 + o(1))r22 r edges. 

Proof (sketch). (Lovhsz [176]). Given a set X of 2N points (where N = [r2/4] will 
be the best choice). Form a hypergraph H as follows. Let V(H) consists of all r-tuples 
of X. For every partition P = {P~, P2 } of X we form an edge of H consisting of 
all r-subsets of X which entirely belong to P~ or P2- Now, if T is a cover of H then 
the r-tuples of X corresponding to elements of T form a non-2-chromatic r-graph, 

so m(r)<_z(H). It is easy to see that z*(H)=(2N~/2(N~ and 
I ~ 1 1 \  

D(H) = 22N-, . 
\ / t /  \ / / r  r 

Now applying 6.29 to H we obtain 

z(H) < (1 + (2N - r)log2 = + o(1 r22 ". [] 

7. Some Applications of Linear Programming for Extremal Problems 

The following useful lemma is a generalization of (5.4). 

Lemma 7.1. Let a: E(H) --. ~+ be a real-valued, non-negative function on the edge-set 
of the hypergraph H. Then we have 

1 p rnvaX,(p~na(H))>--~(tle~e(H,a(H) )" 
Proof. Let M = max w v(H){~, a(H): p ~ H ~ E(H)}. Then the function a/M: E(H) 
~+ is a fractional matching of H. Hence (~  a(H))/M < v*(H). [] 

The largest (r, v, D) multihypergraph. Abbott, Hanson, Katchalski and Liu in- 
vestigated the following problem in a series of papers [1,2,4,5]. Let r, v, D be 
positive integers and denote N = N(r, v, D) the largest integer for which there exists 
an r-uniform hypergraph with N (not necessarily distinct) edges and having no 
independent set of edges of size greater than v (i.e., the matching number is at 
most v) and no vertex of degree exceeding D. Such a hypergraph will be called an 
(r, v, D)-hypergraph. 

The problem of evaluating N(r, v, D) for all values of the parameters seems to 
be very difficult. Nevertheless, they established a couple of upper and lower bounds 
and obtained exact values of N(r, v, D) for various infinite classes of values of r, v 
and D. They proved 

Theorem 7.1([1]). N(2, v,D) = v ~  D]. 

Theorem 7.2 ([1]). N(r, v, D) <_ v(r(D - 1) + 1), and here equality holds if and only if 
there exists an S(v, D, 2) Steiner-system over v = r(D - 1) + 1 vertices. 
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Theorem 7.3. 
( i ) ( [1] ) .N(r , v ,2 )=(r  + 1)v 
(ii) ([2]). 

N(r,v, 3 )=  ~'(2r + 1)v ifr  - 0 ,  1(rood3) 
(2rv if r - 2 (rood 3). 

Although the proof of Theorem 7.2 is easy, it gives the exact values for N(r, v, D) 
/ 

for several large classes of parameters. ( I t  is well-known, that if S(v, D, 2) exists then 

0/(°) (v - 1)/(D - 1) and 2 2 are integers, and these two constraints are sufficient 

for v > vo(D ). See Wilson [245].) All in these cases r > D. Here w e  concentrate to 
/ 

the case when D is large. 

Example 7.4. Suppose that there exists a projective plane of order r - 1, PG(2, r - 1). 
Let Lo be a line and A o c L o a set of D - riD/r] elements. Let H be the multi- 
hypergraph obtained from PG(2, r - 1) such that the multiplicity of a line L is 

[D/r] if L f'l Ao = 

rD/rq if L f) A o # N, L # L o 

D - ( r - 1 ) [ D / r ]  i f L = L o .  

Then H is intersecting of rank r, maximum degree D and E(H) = rD - (r - 1) [D/r]. 

The above example is due to Bermond, Bond and Sacl6 [361. If we take v disjoint 
copies of H then we get 

v(rD - (r - 1)[D/r]) <_ N(r, v,O), (7.1) 

whenever a PG(2,r - 1)exists. Recall the definition of z*(r, v) = max{z*(G): r(G) _< r, 
v(G) _< v}, see Theorem 6.1. Here we will prove (see [1341). 

Theorem 7.5. For any r, v and D we have 

z*(r,v)O - rz*(r,v) < N(r,v,D) < z*(r,v)O. 

Theorem 7.6. I f  D >_ ( r - 1 ) 2 v  and a P G ( 2 , r - 1 ) e x i s t s  then N ( r , v , D ) =  
v ( r D  - (r - 1 ) [ D / r ] ) h o l d s .  

Theorem 7.5 and 6.1 imply that 

lira N(r, v,D)/D = z*(r, v) < v(r - 1 + (l/r)). (7.2) 
D--'c~ 

In [2] it was proved that 

lim N(r, 1,D)/D < r - 1 + max n(r2 - r) - r 4 + 4r 3 - 6r 2 + 4r (7.3) 
o-.~ - n~L--n~r + i ) - ] 2 7  - 2 - - ~ +  3r '  

where the maximum is taken over all n > r 2 - r + 1. The right-hand-side of (7.3) 
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is (r - 1) + 0.25 + 0(l/r) always larger than the bound in (7.2). In the case v = 1 
Theorem 7.6 was conjectured by Bermond, Bond and Sacl6 [36] and in a slightly 
weaker form in [35]. In the case v = 1 they proved that equality holds in (7.1) for 
r < 4 (for all D). Moreover they determined also N(r, 1,3)(see Theorem 7.3) and 
N(r, 1, 4)for r ~ 3 (mod4). This case was completed by Bermond and Bond [33]: 

{ ! r + l  i fr=Oorl(mod4),  

N(r, 1, 4) = r if r - 2 or 3 (nod 4) but r ~ 3, 

i fr  = 3. 

Proof of Theorem 7.5. The upper bound is a trivial consequence of (5.4). To prove 
the lower bound consider a hypergraph H of rank at most r and matching number 
v such that z*(H) = z*(r, v). (Such a hypergraph exists by Lemma 5.9.) We may 
suppose that it is z*-critical, so IE(H)I < rz*(H) by Lemma 5.9. Let w: E ( H ) ~  R + 
be an optimal fractional matching. Then multiplying every edge E of H [w(E)D] 
times we obtain a multihypergraph giving the lower bound. []  

Note that we obtained (considering a rational w) that equality holds in Theorem 
7.5 for infinitely many values of D for any given r and v. 

Proof of Theorem 7.6. The lower bound for N(r, v, D) is given by Example 7.4. 
To prove the upper bound consider a multihypergraph H with rank r, v(H) < v, 
D ( ~ )  < D. The case r = 2 is covered by Theorem 7.1 so we may suppose that r > 3. 
Then Theorem 6.1 implies that either T*(H) < v(r - 1 + I/r) - 1/r or H is.obtained 
from v disjoint copies of PG(2, r - 1) by multiplication of the lines. In the first case 
H has at most (z*(r, v ) -  1/r)D edges (by (5.4)), which is less than N(r, v,D) for 
D > v(r - 1) 2. In the latter case, if a line L in a component of H has multiplicity 
at least [D/r], then that component consists of at most 

ro/rl + E (degn(x)- [O/rl) 
x e L  

edges. Otherwise, if each line has multiplicity at most [D/r], clearly each component 
of H has only [ D / r ]  (r 2 - -  r 4- 1) edges. []  

Problem. Abbott, Hanson, Katchalski and Liu also investigated N(r, v,D, s)= 
max {IE(H)I: H is a multihypergraph of rank r, with matching number v, maximum 
degree D, and for all E 1 . . . . .  Ev+ 1 ~ E(H) one has 1 < i x < ... < i s < v + 1 such 
that N Ei~ ~ Z~}. Of course, N(r, v, D) = N(r, v, D, 2). There are only a few results on 
this function. 

The largest (r, v, D) hypergraph (without multiple edges). Denote by f(r, v, D) 
the maximum number of r-tuples contained in an r-graph F with v(F) _< v and 
D(F) < D. Now multiple edges are not allowed. The function f(2, v, D) was in- 
vestigated by several authors [3, 109, 222]. 

The determination of f(2, v, D) was completed by Chvfital and Hanson [72]. 
In particular they proved that if D > 2v, then f(2, v, D ) =  yD. Bollob~is [48] 
conjectured that this result has the following extension: 

Suppose r is such that there is a finite projective plane of order r - 2, or r = 2, 3. 
If D is sufficiently large and divisible by r - 1, then 
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r 2 - -  3r + 3 
f (r ,v ,D) = yD. (7.4) 

r - - 1  

Furthermore, the extremal r-graphs can be obtained as follows. Take v pair- 
wise disjoint projective planes (or triangles, or points if r = 3 or 2) each with 
(r - 2) 2 + (r - 2) + 1 = r 2 - 3r + 3 points and with r -  1 points on each line. 
For each line of each plane take D/(r - 1) r-tuples in such a way that each of these 
r-tuples intersects these projective planes exactly in this line. 

Bollobfis [49] proved his conjecture for r = 3 whenever D > 72v 3. In general 
(7.4) was proved in [120]. Here we give a more exact version. 

Theorem 7.7 ([134]). For any given r and v there exists a function c(r, v)such that 

Iz*(r - 1, v)D - f(r, v,D)l < c(r, v) (7.5) 

holds. Moreover if D is sufficiently large compared t o t  and v (D > c(r, v)), and there 
exists a finte projective plane PG(2,r - 2) (or r = 2, 3), then 

f(r, v,D) = N(r - 1, v,D). (7.6) 

Here N(r - 1, v,D)is defined above, and by Theorem 7.6 it is v((r - 1)D - (r - 2)- 
[D/(r - 1)])in the case of (7.6). 

Proof (sketch). The lower bounds follow from the trivial inequality f(r,  v,D) > 
N(r - 1, v,D). To prove the upper bounds consider an r-graph F with D(F) < D, 
v(F) _< v. Consider its v-critical nucleus (see Examples 4.7, Theorem 4.8 and 
Conjecture 4.9) S, and apply Theorems 6.1, 7.5 and 7.6 to the multihypergraph 
(v l s )  - V. [ ]  

Large hypergraphs with given degree and diameter. A path in a hypergraph H 
connecting x, y z V(H) is a sequence x = x l ,  El ,  x2, Ez . . . . .  Xp, Ep, xp+l = y 
with {xl, x;+l } c Ei e E(H) for 1 < i < p. Its length is p, the number of its edges. 
The distance between x and y is the length of a shortest path between them. The 
diameter of H is the maximum of the distances over all pair of vertices. Therefore, 
a hypergraph is of diameter 1 if any pair of vertices belongs to at least one edge. 
Call a hypergraph of maximum degree at most D, diameter at most d and rank at 
most r, a {D, d, r}-hypergraph. Let n(D, d, r) denote the maximum number of vertices 
ofa  {D, d, r}-hypergraph. Here we are going to determine n(D, d, r), at least in some 
very special cases. 

The case of graphs (r = 2) is a very old problem, an extensive literature can be 
found in the survey papers [32, 35] or see Bollobfis' book [50]. If we restrict our 
attention to the case diam = 1, then considering the dual hypergraph (i.e., the role 
of vertices and edges is interchanged but the incidences are saved) we get 

n(D, 1, r) is the maximum number of edges of an intersecting hypergraph 
(7.7) 

of rank at most D and with maximum degree at most r. 

So we have 
n(D, l,r) = N(r,I ,D).  
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Note that without the restriction on the size of edges, but with a fixed number of 
vertices, this problem has been extensively studied. (See later our next section, 
Theorems 7.8 and 7.9). 

Bermond, Delorme and Fahri have a couple of lower and upper bounds in the 
case of graphs (r = 2), and see 1-34] for the case D = 2. The following exact result 
is due to Kleitman et al. 1-167]: 

n(2, 2, r) = ¼r 2, if r is even. 

A nice generalization of this can be found in [255]. Although the investigation of 
n(D, d, r) leads to interesting combinatorial structures, and this topic is very impor- 
tant in modelling interconnection networks (also see [69]) we hardly need linear 
programming, and fractional matchings. However, if we are looking for the smallest 
{D, d, r}-hypergraph over n vertices, then we have to use the machinery explained 
in the previous chapters. We will return these questions (see Theorem 7.19). 

Covering of pairs by a small number of subsets. C(n, k, 2) is used to denote the minimal 
number of k-sets required to cover all pairs from an n-set. For fixed k, and n ~ 
Erd6s and Hanani [105] proved that 

,78, 2 2 - < C(n,k,2)= (1 + o(1)) 2 2 

This limit theorem obviously follows from the existence theorem of S(n, k, 2) Steiner- 

( n ) / ( k ) a n d ( n - 1 ) / ( k - l ) a r e i n t e g e r s ,  dueto R. systems for all n > no(k) if 2 2 

Wilson [245]. But the lower bound is very poor ifn is not much bigger than k. Mills 
[197] determined the solution of C(n, k, 2) = t for all t up to and including 12. For 
t =  13 he [1983 and Todorov 1-235] determine all (n,k)pairs with C(2,k,n)= 13 
except the pairs (28,9)and (41, 13)are undecided. 

Suppose t is given and let n(k, t) = max (n: C(n, k, 2) < t}, i.e., n(k, t)is the largest 
cardinality of a set whose pairs can be covered by t k-sets. To state our theorem 
define 

T*(t) = max{z*(H): H is intersecting, I V(H)I _< t}. 

Theorem 7.8 ([135]). For all t and k we have 

¢ ( t ) k  - t < n(k,t) <_ ¢ ( t ) k  

For any given t equality holds for infinitely many k. Mills [197] also proved that 
limk_. ~ n(k, t)/k exists and equals to its maximum. He has determined this limit for 
t < 13. With our notations his result is the following: 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 

**(t) 1 1 3/2 5/3 9/5 2 7/3 12/5 5/2 8/3 14/5 3 13/4 

Some of his result (t < 6) was rediscovered in 1-225]. Using fractional matchings 
we can determine n(k, t) if k is large (compared to t) in the case t = q2 + q + 1 
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whenever a PG(2, q) exists. First a definition. Let 0 < b < q + 1 be an integer and 
P a PG(2,q). The pair of (multi-)hypergraphs (H,L) over V(P) is a generalized 
b-cover of P if the following hold 
(i) L is a subset of lines of P (with multiplicities) 
(ii) P U H is intersecting. 
(iii) degn(x) < degL(X) + b for all x ~ V(P), 
(iv) IE(H)I _> IE(L)[, 
(v) E(H)NE(L)= ~. 
The value of the b-cover is vb(e , L) = [E(H)] - ]E(L)I. 

Finally vb(P)= max vb(H, L), vb(q)=max{vb(P):P is a PG(2,q)}. Note that 
E(H)NE(P) = O is not forbidden. So we can always have the following lower 
bound for vb(q)(if b > 1). 

vb(q) > bq - q + b. (7.9) 

The construction giving the lower bound in (7.9) is analogous to Example 7.4. Let 
L o be a line of P, A o c Lo, IAol-- b and then E(H)=: {Le E(H), L N A o  v~ 0,  
L ~ Lo}, and L consists ofq - b copies of Lo. It is easy to see that Vo(q) = O. 

Theorem 7.9 ([135]). Suppose that a PG(2,q) exists and t =  q2+ q + 1. Let 
k = (q + 1)a + b where 0 < b < q. Then for a > q2 + q we have 

n(k,t) = (q2 + q + 1)a + vb(q). 

This is an improvement (for large k) on a result of Todorov [234]. 

Proof of Theorem 7.8. First consider the dual  of the problem, then the proof is 
analogous to the proof of Theorem 7.5. [] 

Proof of Theorem 7.9. The main tool of our proof is the following 

Lemma 7.10. Let H be an intersecting hypergraphover q2 q_ q + 1 elements. I f  H 
does not contain a PG(2, q) as a partial hypergraph then z*(n) < q + 1/(q + 2). 

Proof. We may assume that every edge in H has at least q + 1 elements. Let H q+l 
consist of the (q + 1)-element edges of H. Then z*(H q+l) _< q bY Theorem 6.1. 
Put a weight 1/(q + 2) into every point of H :So  we have covered all the large 
(= at least (q + 2)-element) edges, and (q + 1)/(q + 2) part of the edges of n q+l. 
Hence we have 

1 ," +1" < (q + 1) 2 [ ]  
z * ( H ) < ( q 2 + q +  1 ) / (q+2)+q- - -~z  (H q / -  q + 2  " 

Returning to the proof of Theorem 7.9 we can proceed as in the proof of 
Theorem 7.6 replacing Theorem 6.1 by the above Lemma 7.10. We omit the details. 

[] 

Theorem 7.11. I fb  >_ x/q, then vb(q) = bq - q + b. 

Proof. Let (H, L) be a b-cover ofP. IfH contains a line, Lo, of P then by (iii) we have 
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vda, L ) = IE(U)l- !E(L)I 

< 1 + E max{O, deon(x ) -  1--deOL(X)} 
x c L  0 

_< 1 + ( b -  1)(q+ 1). 
If H does not contain any line then IH] > q + x/q + 1 holds for all H ~ E(H) by 
Theorem 3.1. Hence we have 

(q + x//q + 1)vb(H,L ) _< (q + 1)(IE(H)I- IE(L)I) + v/qlE(H)l 
_< Y~ IH[ -  Y, Inl 

H ~ E(H) H ~ E(L) 

= E deon(x ) -  degL(x) <_ b(q 2 + q + 1). 

This yields 

vb(H,L) <_ bq + b - bw/~. (7.10) 

The right-hand-side of(7.10) is less than bq + b - q for b > x/q" [] 

The determination of v~(q) for all b seems to be very difficult. The following 
example shows that vb(q) can be much larger than the lower bound in (7.9). 

Example 7.12 [135]. Let P be a Desarguesian projective plane of order q, where x/q  
is an integer. Let B1, B2 . . . .  , Bq-,,/~+l be a decomposition of V(P) into Baer 
subplanes, Lo a line. Let d = {A1, A z . . . . .  Aq-,j~+l } be an intersecting family on 

Lo such that D(~') = (1 + o(1))x/~, Define 

E(H) = {AiUB,: 1 <_ i <_ q -  x /q  + 1) 

E(L) = D ( d ) -  1 copies of L0. 

Then (H, L) is a generalized 1-cover of P yielding 

v,(q) >_ q -  2x//q + o(v/q). 

Problem 7.13. For n > k _> t > 1, we let C(n, k, t) denote the smallest integer m such 
that there exist m k-tuples of an n-set S with the property that every t-tuple of S is 
contained in at least one of them. 

We will return to the determination of C(n, k, t) in the next chapter. Here we 
would like to mention only that if t is fixed and k tends to infinity, then we can 
apply the fractional matching technique as we used it above to obtain asymptotic 
(and a couple of exact) results. See [135] (and the case k < (3t + 1)/2 see [197] and 
Theorems 4.20, 6.14 above). 

(D, c)-colorings of complete graphs. An (D, @coloring of a complete graph K means 
a coloring of the edges with c colors so that all monochromatic connected subgraphs 
have at most D vertices. A (D, @coloring can be viewed as c partitions of a ground 
set into sets of cardinality at most D such that all pairs of elements appear 
together in some of the sets. Resolvable block designs with c parallel classes and 
with blocks of size D are natural examples of (D,c)-colorings. However, (D,c)- 
colorings are more relaxed structures since the blocks may have any sizes up to D, 
and the pairs of the ground set may appear together in many blocks. 
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Let f(D, c) denote the largest integer m such that K m has a (D, c) coloring. 
Obviously, 

f (D ,c )  < 1 + c(D - 1). (7.11) 
The function f(D,c) was introduced by Gerencs~r and Gy~irf~is [142] in 1967. 
f(D,2) = D and f(D,3) was determined in [17] and [142]. In [147] there are 
further results on f(D, c). The problem of determining f(D, c) was rediscovered by 
Bierbrauer and Brandis [41]. In [42] the value off(D, c) is given for all c < 5 or 
D < 3, see Theorem 7.15. 

For a (D, c)-coloring of K" we can associate a hypergraph H with V(H) = V(K n) 
and the edges of H are the vertex sets of the connected monochromatic components 
of K n. The dual hypergraph H* of H is a c-partite intersecting hypergraph (where 
multiple edges are allowed). So we have 

Proposition 7.14. f(O,c)= max{IE(G)l: G is a c-partite multihypergraph with 
D(C,) <_ D}. 

There is another interpretation of f(D, c) from the point of view of Ramsey 
theory as well (see, e.g., Erd6s and Graham [101]). 

Theorem 7.15 ([42]). 

{4p 
f(D, 3)= 4 p + l  

f I(D,4) = 9 p + l  
9 p + 4  

S(D,5) = 

S(2,<) = 

if D = 2p 
if D = 2p + 1 

if D = 3p 
if D = 3p + 1 

if D = 3p + 2 

"16p if D = 4p 
1 6 p + l  i f D = 4 p + l  

16p+6  ifD = 4 p +  2 
16p+9  ifD = 4 p +  3 

" c + l  i f c i sodd  
c if c is even 

5 ifc = 3 
2c i f c -0 (m od3) ,  c > 6 ,  

f (3 ,c)=  2 c + 1  i f c - l ( m o d 3 ) ,  

2 c - 1  i f c -2 (mod3) .  

In [40] and [41] there are further results in the case D < c. Then they use strong 
results from the theory of resolvable designs. Here we give a theorem which 
asymptotically determines f(D, c) whenever D is large, c is fixed and c - 1 = q is 
a primepower. 

We recall the definition of i-cover of a hypergraph H, (see Proposition 5.12). 
We have 
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f 
such that 

~, t(x) > / h o l d s  for all E e E(H)~. 
x ~ E  ) 

For an integer q, when a finite projective plane exists, define zi(q) = min{zi(A): A 
is an affine plane of order q}. By definition z0(q) = 0. We need one more definition 

z* = max {z*(H): H is c-partite and intersecting). 

Theorem 7.16 ([136]). 

Dz* - cz* < f(D, c) <_ Dz*, 

and for any f ixed c there are infinitely many D for which equality holds. 

The proof is analogous to Theorem 7.5. Then Corollary 6.4 implies that (see 
[147]) 

f(D,c) < D(c - 1). (7.12) 

Theorem 7.17 ([136]). Suppose that there exists an affine plane of order q, and 
D = q[D/q] - i where 0 < i <_ q. Then for D > q2 _ q we have 

f(D,q + 1)=  [D/q]q 2 -zi(q) ,  

and the only optimal multihypergraph is obtained from a truncated projective plane 
(see Example 5.3) by multiplying its lines. 

The case D =- 0 (mod q) was' proved in [42]. Their lower bound for f(D, q + 1) 
for general i is a slightly smaller than the one given in Theorem 7.17. For the proof 
of Theorem 7.17 the following lemma was used: 

Lemma 7.18 ([136]). Suppose that H is an r-partite intersecting hypergraph (without 
multiple edges). Then either 
(i) H is a truncated projective plane, and then T*(H) = r - 1, or 
(ii) T*(H) < r  -- 1 - - ( r  -- 1) -1. 

Minimum number of edges of a graph of diameter 2. Suppose that G is a (simple) 
graph of diameter 2 (i.e., every two vertices connected by an edge or a path of 
length 2), over n vertices. Then G has at least n - 1 edges, and the only extremal 
graph is the star. The star has a vertex of degree n - 1. It is natural to ask that at 
least how many edges must a graph on n vertices have, if its diameter is 2 and its 
maximum degree is at most D. Let us denote this minimum number by e2(n, D). 

This question was posed by ErdSs and R6nyi [110] in 1962, and later ErdSs, 
R6nyi and T. S6s [111] determined the exact value of e2(n , D) for D > n/2. (Some 
of their statements, especially those without proofs, were recently corrected by Vrto 
and Zn~im [242].) They proved, e.g., that for 2n < D < n - 5 one has 

e2(n, D) = 2n - 4, 

significantly larger than n - 1! The extremal graph is shown in Fig. 7.1. 
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x 1 xn  

X4 pX n 

X 2 ' x  1 

x2 3 Xn )~5 

2 

X4 x2j 

G 3 

Fig. 7.1. (Redrawn from Page 174 [501) 

Bollob~is [47] proved the following lower bound for D < n/2. Let 0 < c < 1/2, 

= = - v , then define 

g ( c )  = ~ v + c u  + cv + (1 - vc  ~) - c 2 
v - - 1  " 

Then we have 

e2(n, cn ) >_ g(c)n + o(n). 

This complicated lower bound and an example obtained from finite projective 
planes imply [47] that 

1 
- n  < e2(n, cn) < + n (7.13) 
C 

that is nc -1 is in fact the correct order of magnitude of e2(n, cn). 

Theorem 7.19 ([2063). Suppose that q + 1 1 + q + 1 < c < -q and there exists a f inite q2 

projective plane of  order q. Then for n > no(C ) we have 

e2(n, cn ) = (q + 1)n + 0(1). 
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Example 7.20. The construction giving (q + 1)n + 0(1) edges is the following. 
The vertex-set of V(G) is the disjoint union of Vo, 171 . . . . .  Vq2+q+l, I Vol = q2 + q + 1, 
IVy[ ~ (n/q 2 + q + 1) - 1. Consider a PG(2, q) on the point set V o with lines L 1 . . . . .  
Lq2+q+l. Then connect each vertex of L i to each vertex of V~ (1 < i < q2 + q + 1), 
and add all the edges in V o. 

They also proved in [207] that 

e(c) = lira ez(n, cn)/n (7.14) 
n--*oo 

exists for every 0 < c < 1, except for c = c~, c2, ... where {Ck} is a sequence tending 
to 0. To obtain e(c) they developed the following method. For any hypergraph H 
and positive real x define 

A(H,x) := min I ~ w(E)IE[: wis a fractional matching of H with ]w[ = x~. 
[.E ~ E(H) ) 

(If v*(H) < x then A(H,x) = + ~ . )  Further, let 

A(x) := inf{A(a,x): a is intersecting}. (7.15) 

Theorem 7.21 ([207]). e(c) = cA(1/c). 

To calculate A(x) is a finite process for all given x, because they proved that 

A(x) = x 2 -~- O ( x l ' 6 ) ,  

and instead of (7.15) the following holds 

a(x) =: min {A(H, x): H is intersecting, I V(H)[ < x 2 + O(x 1"6)}. 

An intersecting hypergraph with A(x) = A(H, x) is called x-extremal hypergraph. 
So the determination of e2(n, D) is more or less equivalent to the following 

Problem 7.22. Describe the x-extremal hypergraphs. 

There are plenty more of the open problems here, e.g., in [55] Bondy and Murty 
investigated graphs of diameter 2 with lower and upper bounds on their degrees. 
One can find more about this in Bollobfis book [50]. 

The largest intersecting r-graph on n vertices. One of the best-known results in 
extremal set theory is the theorem of Erd6s-Ko-Rado. 

/ 

Theorem 7.23 ([107]). Suppose n > 2r, and let H be an intersecting r-graph. Then 

This bound can be attained, and the extremal families are precisely the families 

What if we do not allow the members of E(tt) to have an overall non-trivial 
intersection? How large [E(H)I can be? The answer to this question has been given 
by Hilton and Milner [156]. A short proof can be found in [122]. 
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Theorem 7.24 ([156]). Suppose n >_ 2r, and let H be an intersecting r-graph with 
z(n)  > 2. Then 

(:i) IE(H)I < - + 1. 
- r - 1  

Let g(n, r, z) denote the largest size of an intersecting r-graph H with I V(H)I = n, 
3. 

Theorem 7.25 ([115]). There exists a positive integer constant c(r, z), depending only 
r and z, such that 

g(n,r, v) = (c(r,z) + o(1)) r - z  

holds whenever n tends to infinity. 

Here the value of c(r, z) is determined by Conjecture 3.25. By Theorem 7.23 and 
7.24 we have c(r, 1)-- 1, c(r, 2) = r  and the only one more known value is c(r, 3 ) =  
r 2 - -  r I 1 1 5 ] .  A weaker result was rediscovered in [71. 

Proof. To give a lower bound 

max[E(H)[ > ( r ( r -  1 ) ' . . ( r - z  + 2 ) +  o(1))( n 
\ r - - T  / 

one can use Example 3.24. To prove the upper bound (and that the limit exists) 
consider an optimal H and let B its v-critical nucleus (or in other words, its 
(2, 1)-critical kernel, see Chapter 4 between (4.3) and (4.4)). We have ]E(B)[ is 
bounded (see 4.5) and it does not contain a member with less than z elements. Hence 

le(H)l_ IBI / -  
B ~ E(B) 

Finally, it is trivial that from the finitely many possible B there exists a best one 
(which contains the most z-sets). []  

There are a lot of beautiful results and problems about different generalizations 
of the Erd6s-Ko-Rado theorem. E.g., one can ask what is the largest size of an 
r-graph H over n elements with given v(H). (This was solved for n > no(r, v) by 
E ~ 6 s  [94].) A recent survey is [118]. In the next section we will discuss only one 
of  these questions, when a degree constrain is given. 

The largest intersecting r-graph with a linear condition on the maximum degree. 
Let c be a real number, 0 < c < 1. Erd6s, Rothschild and Szemer6di [256] raised 
the following question: How large can an intersecting r-uniform hypergraph H can 
be if each vertex has degree at most c[E(H)I. The class of these systems over n 
elements is denoted by ~(n, k, c), f(n, k, c) is the maximum size of such a family. 

Erd6s, Rothschild and Szemer6di [256] solved the case c = 2/3, by proving 

(n - 3~ for n > n o ( r  ) . (7.17) f(n, r, 2/3) = 3 r - 2 \ / 
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Forafami ,y  de0ne., , : t ore exists an 

Similarly O vious,y 

~ o ( ~ )  _c ~ ( ~ f )  and ~(o~),  ~ o ( ~ )  are intersecting families whenever ~ is inter- 
secting. 

In (7.17)the only extremal family is o~o(K~). This result was extended by 
Frankl [114] 

f(n,r,c) = 3 + if ~ < c < 1, n > no(r,c ). (7.18) 

In [114] and [131] f(n,r,c)is determined for all c > 3/7 (for n > no(r,c)). In the 
case 53- < c < 2, there are 6 non-isomorphic extremal families. 

Developing the method of [114] in [129] the following general theorem is 
proved. First some definitions. Let ~ be a family of rank k, 0 < c < 1, ~k := 
{B ~ ~ ,  IBI = k} # ~.  The optimum value of the following linear programming 
problem (7.19) is called the capacity of ~ belonging to c. 

w: .~ --* •+, 

w(B) < 1 for all B ~ N' k, (7.19) 

~ w(B) < c(~ w(B)) for all x ~ V(~). 

Then Caps(c):= max{Iwl: w satisfies (7.19)}. It may occur that Caps(c ) = 0 or oe. 

Theorem 7.26. Suppose 0 < c < 1 is given. Define k as 1/z*(k, 1) < c < 1/z*(k - 1, 1). 
Define f(c)= max {Caps(c): ~ has rank k, intersecting}. Then 

f(n,r,c) = S(e)" r -  k + O(nr-k-') 

holds, whenever r, c are fixed and n tends to infinity. 

Theorem 7.26 implies, in particular, that for any given c the problem of Erd6s, 
Rothschild and Szemer6di is a finite one, i.e., it can be solved--in theory- -by  
investigating a finite number of cases. (We can suppose that ~ is v-critical.) In [121] 
the method was further developed and applied to t-wise s-intersecting families. We 
mention here only 2 corollaries. 

Corollary 7.27. Let ~ c ([7]) be a t-wise intersecting family such that D(~) < 

qt__ 1 
q,-1 __ 1 I~1. Then for n > no(k) we have I J [  -< I~o(PG(t,q))l. The extremal family 

is unique. 

This theorem was conjectured by Erd6s [95] and proved for t = 2, r g 3 by 
Frank1 [114], the case t = 2 by Ffiredi [129] and in general in [121]. Another exact 
result. 
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Corollary 7.28. Let t<k<_(3/2)t-1, and 1 - 2 / ( 3 t - k + 2 ) _ < c <  1 - 2 /  
(3t - k + 3). Then for n > no(r,c) we have 

f'(n,r,c)= [ 1 1)J 
~ - c  r - k  " 

(Hereft(n,r,c)=max{l~l:o~c([~]),t-wiseintersecting, andD(~)<cl~[}.) 

The proof of 7.28 based on the generalized version of 7.26 and 6.14. A similar 
problem was solved by Frankl in [119]. He determined d(n, r, D) exactly for all 

n - 3 I n ]  n >- 2r and 2(r _ 2) <- D, where d(n,r,D) := max {l~l: ~ C ( r ), intersecting, 

<_ D~. D(~) 

8. Asymptotically Good Coverings and Decompositions 

(n,k,t) Coverings and packings. Let n >_ k > t >_ 1 be integers and set [n ] - -  
{ 1, 2, . . . ,  n}, a generic n-set. Recall the definitions of (n, k, t) packings and coverings. 

AfamilyNc([~])isan(n,k,t)packingiflPNP'l < t holds for every two distinct 

members of N. The packing function P(n, k, t) is defined as the maximum car- 

dinalityofapacking. Afamily~c([~])isan(n,k,t)coveringifeveryt-set 
of In] is contained in some member C e (g. The covering function C(n, k, t) is the 
minimum cardinality of an (n, k, t) covering. Elementary counting argument 
implies 

P(n,k,t) <_ _< C(n,k,t). (8.1) 
t t 

This was improved by SchSnheim [223]: 

I"_l"-'l ] 
P(n,k,t) <_ L~Lk - 1L t + i ' 

cor,,-,r. ] C(n, k, 0 -> l ~ / k - 2 5 /  t + "'" ' 

Equality holds if and only if there exists an (n, k, t) Steiner system. The existence 
of Steiner systems (and other tactical configurations) is a central question of 
Combinatorial Analysis, which seems to be infinitely difficult. Here we will deal 
with only asymptotic results, where k and t are fixed and n is large. Obviously 

P(n, k, l) = In~k] and C(n, k, 1) = In~k] (8.2) 

.hold. The first nontrivial case was proved by Fort and Hedlund [113], C(n, 3, 2) = 
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[nFn 177 ~ . A recent short expository paper of the determination of C(n, 3, 2) 

and P(n,3,2)is  [268]. Mills [195], [196] determined C(n,4,2)for all n. The case 
C(n, 5,2) is still not complete (see [198] where he proved C(16,5 ,2)= 15, so 
C(n, 5,2) 
is known for all n < 23, and for the case n - 3 (rood 4) see [199]). Much less is known 
about  the cases t _> 3, or k > 5. (On C(n, 4, 3) see, e.g., [154], on C(n, 5, 2) see [265].) 

As it is known (Wilson [245]), that for all k if ~-2-- i- and 2 2 are integers 

and n > no(k) then there exists an (n, k, 2)Steiner system, so we have 

lim ,(n,k,2)(k)/(n) = lim C(n,k,2)(k)/(n) 
,-.~ 2 2 , -~ 2 2 = 1. (8.3) 

These equations were proved first by Erd6s and Hanani [105] in 1963. They 
conjectured that the analogous of(8.3) is true for all t, i.e., for all k > t _> 1 

p(k,t) = lim,_~. P(n,k,t)(k)/(n) = t (8.4) 

c(k,t) = lim C(n, , ) t t 
n .-* oo  

These equalities became known as the Erd6s-Hanani Conjecture. They proved (8.4) 
and (8.5) for t = 3, k = p or p + 1 where p is a prime power. They also showed that 
either of the equalities (8.4) and (8.5) imply the other. It is easy to prove the case 
t = k - 1 .  

Thoo,oo.,,,nkk 1, n k+'( n )/( k ) 
- n k - 1  k - 1  " 

Pr°°f'Wegiveac°nstructi°n" LetC~={C~([~]):~c=a(m°dn)}  
0 < a < n. Then each of the (g~ is an (n, k, k - 1) packing, hence 

P(n,k,k - 1) > max I~1 --- k " []  

The case t = k - 2 was proved by Bassalygo and Zinov6v [22]. Kusjurin [168] 
proved that for any fixed t one has limk-.~ c(k,t)= 1. Finally R6dl [217] found 
an ingenious technique which succeeded in proving the Erd6s-Hanani conjecture. 

Theorem 8.2 ([217]). For all fixed k and t we have 

lira P(n, k t) (k) / (n) = lim C(n, k, t )(~)/(:)  = 1. 
n - * ~  ' t t n-*~o 

R6dl used probabilistic method. In [228] Spencer rephrased his argument. We 
postpone the proof of Theorem 8.2. First we will discuss more general results, and 
further consequences of the R6dl method. 
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Near perfect matchings in near regular hypergraphs. The next breakthrough in this 
field was the Frankl, R6dl 1-125] theorem where they generalized R6dl's method 
in a hypergraph setting. Define the point covering of H as a subset of edges whose 
union is V(H). The point covering number, coy(H), is the minimum number t so that 
there exist t edges of H whose union is the whole V(H). For a r-graph H we have 

v(H) <_ I V(H)I/r <_ coy(H). (8.6) 

An r-graph H has a perfect matching if v(H)= I V(a)l/r. It has a near perfect 
matching if v(H)is "close" to I V(H)l/r. (This was not a perfect definition.) 

Now let H be a D-regular r-graph. Considering its dual, Corollary 6.29 implies 

coy(H) < !V(I-I)l (1 + logD). (8.7) 
r 

One cannot say much more in general as it is shown by the following example of 
Frankl (unpublished). 

Example 8.3. Define the following 6k-regular 3-graph G, over 9k vertices. V(G) = 
V1UV2U...UV2kUVo where IV0l=3k, IV~l=3 for l < i < 2 k .  E ( G ) =  o') } 

E e : IE N Vol = 1 and there exists an i with I Vi N El = 2 . Then 

v(G) = 2k < IV(G)I _ _ _  3k < coy(G) = 4k. 
3 

I fH is a random D-regular r-graph, then [258] (for D ~ ~ )  it almost surely contains 
a near perfect matching. In other words, almost every D-regular r-graph has a near 
perfect matching. Frankl and R6dl showed, that the randomness in this statement 
can be replaced by some seemingly very weak conditions. The next version (which 
is even simpler and more powerful) is due to Pippenger (private communication, 
see in [212]). Recall that degn(x, y) means I{E ~ E(H): {x, y} ~ E} I. 

Theorem 8.4. Let H be an r-graph on n vertices, K > 0 a fixed real number. I f  for 
some d we have 
(i) degH(x) < Kd for all x ~ V(H), 
(ii) degrl(X) = d(1 + o(1))for almost all x, and 
(iii) degrl(X, y) = o(d) for all distinct x and y, 
then coy(H) = (n/r)(1 + o(1)) holds. 

Note that coy(H) < (n/r)(1 + e)implies v(H) > (n/r)(1 - rs). To avoid ambiguities 
in o - O notation we restate Theorem 8.4 with epsilons and deltas. 

Theorem 8.4. For all integer r >_ 2, reals K > 1, ~ > 0 there exists a 7 > 0 so that: 
I f  the r-graph H on n vertices has the following properties 
(i) degn(x) < Kd for all x, 
(ii) (1 - 7)d < degn(x) < (1 + ~)d holds for all but at most ~n vertices, 
(iii) degn(x, y) < 7d for all distinct x and y, 
then coy(H) < (n/r)(1 + ~) holds. 

Corollaries of the Frankl-R6dl theorem. First we show that how easily Theorems 8.4 
implies 8.2. 
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,,o, ne a . wit  vortox set 

Edges of H are formed by copies of Kk, i.e., an (kt)-tuple of edges of K7 forms an 

edge of H if it is the edge-set of some complete graph Kk. The rank of H is (kt), 

degH(x) = for all vertex of H, and we have 

( ~ - t -  11) deg.(x, y) _< 
- - t  

for all two distinct vertices of H (i.e., for all two distinct t sets of [hi). We can apply 
Theorem 8.4 obtaining that 

when n ~ oo for k and t are fixed. A point cover of H corresponds to an (n, k, t) 
covering, so (8.8)implies (8.5). 

For two given t-graphs G and A let us denote the packing number of G with 
respect to A by n(G, A). That is the maximum number of pairwise edge disjoint 
copies of A in G. The above proof of Theorem 8.2 yields 

Corollary 8.5 ([125]). Suppose A is a given t-graph and n tends to infinity. Then 

n(K~',A) = ( 1 -  o(1)) (:)/IE(A)I 

holds. 

In the case t = 2 Wilson [2463 proved more, he showed that ~(K~,A)= 
/ X I  / \ 1  

(~)/IE(A)] provided n > no(A), (~)/IE(A)I and ( n -1 ) / d  are integers where d is 
\ / /  \ / I  

the greatest common divisor of the degrees of A. In the hypergraph case, the 
decomposition of K~ into delta systems was investigated in [269, 202, 203"]. Let 
fg(n,p) denote the random graph with edge probability p, that is, each edge is 
present in f¢(n, p) with independent probability p. 

Corollary 8.6 (Ajtai, Koml6s, R6dl and Szemer6di [10]). Suppose that A is a fixed 
graph, 0 < p < 1 is given. I f  n tends to infinity we have 

~(ff(n, p), A) = (1-o(1))(2)P/,E(A)l. 

In other words, almost all graph almost decomposable into disjoint copies of A. In 
[123] the following sharpening of Corollary 8.5 is proved. 

Corollary 8.7 ([123]). Let the t-graph A be given with E(A) = {A1 ..... An}. Suppose 
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(nkl 
n - ) ,  oo .  . . . .  

\ - - / #  

the followin# properties 
(i) I V(A') fl V(AJ)I <_ t for all i ~ j, 
(ii) /f B = V(Ai) tq V(A0, IBt = t then B ~ E(A~)and B ~ E(AJ). 

In other words, for any given A there exists a hypergraph H over n vertices with 

(1-o(1)) (~) edges such that it can be decomposed into edge disjoint induced 

copies of A. (Moreover these copies of A cannot have more then t common points.) 
For example, if A is a fourcycle, C4, and n is even then such a graph and a 
decomposition are: H = K] - U where U is a perfect matching, and then {M U M': 
M,M'~ U} gives the desired decomposition. As in [123] the earlier version of 
Theorem 8.4 was used, the proof was somewhat technical. Here we outline a less 
complicated proof. 

Proof of Corollary 8.7. Let ~ be an almost optimal (n, k, t + 1) packing, i.e., 

( , ) / (  ) ol suy   oo=a=a.,positive  I~1 > - ( 1  - o(1)) t + 1 t + 1 

(e.g., e = 1/4 ~ where v --- I V(A)I) and let G~'(1 - p) be a random t-graph on n vertices 
such that 

Prob(T~ E(GT(1 - p)))= 1 - p. 

Define the random subhypergraph ~"  as follows 

P e E ( ~  g) if P ~  and G ~ ' ( 1 - p ) [ P ~ A .  

Then one can apply Theorem 8.4 to ~". [] 

Corollary 8.7 was used to give an asymptotic solution to the following problem. 
What is the maximum size of a k-graph H over n vertices if no edge is covered 
by the union of r others (r > 2). Denote this maximum by M(n,k,r). Clearly 
M(n,2, r) = n - 1 for all r _> 2, and in general M(n,k,r) = n - ( r  - 1) f o r t  >_ k. 
In [98, 99] it was proved that for fixed k and r, t = [k/r] one has 

%.  = ,im..® M(n,k,r)/(:) 

exists and positive. In [123] it was proved that i fk  = r(t - l) + l + 1,0 < l <_ r then 

- . :  1,). 
= , v(Y) < l , the same function we men- 

tioned above after the proof of Theorem 7.25. 

TheJohnsonoraphJ(n,k) isdefinedover([~]),suchthatvl, v2e([~])are 

adjacent if Iv1 N v21 = k - 1. A sparse matching M c. E(G) of a simple graph G is 
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a collection of edges of G such that E(G)I((,.) M) = M, i.e., the distance between 
any two edges of M in G is at least 2. Let M(n, k) be the maximum number of edges 
that a sparse matching in J(n, k) can have. It is easy to see that 

[( n j . (8.9) 

and Hemmeter and Hong [155] proved that in (8.9) equality holds for k = 2 and 
for k = 3 whenever k = 1 (rood 5). Here we have 

Corollary 8.8. For a given k when n tends to infinity one has M(n ,k )=  

Proof. Let C he the union of two KL1 on k + 1 vertices. (I.e., [V(G)I = k + 1, 
IE(G)I = 2k - 1.) The determination of M(n, k) is equivalent to the question of 
n(K~,-1, G). Then 8.5 can be applied. [] 

Corollary 8.9 (Brouwer [583 for k = 3, 4 and [1253 for all k). Let S be an (n, k, 2) 
Steiner family. Then 

v(S) _> (1 - o(1))n/k 

whenever k is f ixed and n --* oo. [] 

Brouwer proved that v(6e(n, 3,2))> n - 3 "  2n2/3 which is much better than 

n O(n2/3), Corollary 8.9. He announced that his proof also gives v(6e(n, 4 ,2))_ ~ -  

as well. 

n - 4  
Conjecture 8.10 (Brouwer [58]). v(6e(n, 3, 2)) > ~ for all n and for all Steiner 

system 6e(n, 3, 2). 
This conjecture is proved up to n _< 19 (Lo Faro [112]). 

Edgecoloring of  near regular hypergraphs. It was conjectured, that if H is a "near 
regular" r-graph then not only v(H) > (1 - o(1))n/r but its chromatic index is about 
D(H). We recall that the chromatic index of H, q(H) is the smallest integer q that 
one can decompose E(H)into  q matchings. Obviously, q(H)_> D(H), and the 
famous Vizing theorem says (see, e.g., in [50])that for a (simple) graph G one has 

D(G) < q(G) < D(G) + 1. (8.10) 

As Example 8.3 shows (8.10) is not true in general. Spencer proved the hypergraph 
version of (8.10). Here we give a simpler, a more complete version of his result due 
to Spencer and Pippenger. 

Theorem 8.1i ([212]). Let H be an r-graph on n vertices such that 
(i) degn(x) = (1 + o(1))d, for all x 
(ii) degn(x,y ) = o(d), for all pair x, y, (r is fixed, d = d(n) ~ oo). Then 
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[A] There is a partition of E(H) into d(1 + o(1))matchings(i.e.,q(H)= d(1 + o(1))) 
[B] There is a partition of E(H) into d(1 + o(1)) point coverings. 

A straightforward application of 8.11 is the following sharpening of Corollary 8.9. 

Corollary 8.12 ([212]). Fix k and let n ~ ~ .  I f  S is an (n, k, 2) Steiner family, then 

n 
q(S) = k + o(n). [ ]  

Earlier only very weak results were about  q(re(n,k,2)). (To find more about  this 
see, e.g., [73].) 

Let Din ) denote the maximum number of edge disjoint Steiner triple systems 
on [n]. It is easy to check that Din ) < n - 2, and it is conjectured that here equality 
holds (for all n = 0 or 1 (mod6)). This conjecture was proved for infinitely many 
values ofn by J.X. Lu [189]. Theorem 8.4 and 8.11 are not applicable to this problem 
because they cannot handle exact ( n, 3, 2) packings. However one can prove using 
Theorem 8.11 the following 

Corollary 8.13. K~ can be decomposed into n + o(n) (n, 3, 2) packings. [] 

Proof of the Frankl-Rrdl theorem. The proof of Theorem 8.4 is a victory of the 
nonconstructive method. The key idea of the proof (as in the proof of Theorem 8.2) 
is to randomly select en/r edges of H, e small. These edges will overlap but basically 
the overlap will be of order ~2 (i.e., ~ 2 n ) .  Thus these edges are appropriately 
efficient in covering vertices. Now delete all the vertices so covered and iterate. 
The problem is that the remaining r-graph H' is no longer so regular as H was. 
So our probabilistic space is changed in every step, we have to overcome a lot of 
technical problem. To do this we will introduce a variable 6 which we think of as 
tolerance and think of a graph being regular within tolerance 1 _ 3. The main step 
is to show that if we want H' to be regular within tolerance 1 _ 6' it is suffices if H 
is regular within tolerance 1 ___ 6 for appropriately small 6. This is sufficient since 
we will iterate only a finite number of times (dependent on e only) as once there 
are few vertices left one can cover them one by one. We are going to prove the 
second version of Theorem 8.4. We are going to use the following notation: 1 + 6 
means some number between 1 - 6 and 1 + 6. 

Lemma 8.14. Fix r, ~ > 0 and K. Then for all 6' > 0 there exists an ~ > 0 so that 
the following holds. Suppose that n and D are sufficiently large (n > no(r, ~', e, K), 
D > Do(r, ~', e, K)). Let H be an r-graph with [ V(H)] = n > n o vertices, and let D > D o. 
Suppose that 
(i) degH(x) < KD for all x, 
(ii) degn(x) = (1 +_ 6)D for all but at most 6n vertices x, 
(iii) degn(x, y) < 6D for all x, y. 
Then there exists fg c E(H) so that setting S = V(H) - U c~, and H* = H - {U ~} 
(i.e., V(H*)= S, E ( H * ) =  {E ~ E(H): E c S}) 
(iv) IC~l = (en/r)(1 +_ 6'), 
(v) [SI = ne-'(1 + 6'), 
(vi) degn.(x) = De-~r-l~(1 + 6') for all but at most 6' [SI vertices of H*. 



Matchings and Covers in Hypergraphs 195 

Proo f  o f  Lemma 8.14. We will choose cg randomly. We will follow the argument in 
[212], which does not even use the Chernoffinequality. In the proof our main tool 
is the Chebishev's Inequality which says that for a random variable ~ with mean 
value E(~) and variance D2(~) one has 

1 
Prob(l~ - E(~)[ > 2D(~)) < ~-~ (8.11) 

for all 2 > 0. The variables 6~, (~2 . . . .  of the following proof are all explicitly 
computable functions of 6 which can be made arbitrarily small by making 6 
appropriately small. 

Define a random family rg by 

Prob(C e cg) = p = ~/D for all C ~ E(H). 

These events mutually independent. As E ( H ) - - ~  degH(x))/r, we have, that for 
some 6 a (al < (1 + K)6)  

I I E ( r I ) l  - nD/rl < 6~,,D 

holds. The expected value of [r£] is [g(H)lp = en/r + 616n, and the variance of J~g] 
is IE(H)] p(1 - p) < 2ne/r. Then (8.11)implies 

Prob0Cgl--(en/r)(1 +_ 62))--+ 1 

for some 62, whenever n -* ~ .  So we have proved that (iv) holds almost surely. 
Now we prove that (v) holds almost surely (or at least with probability greater 

than 0.99). For each x ~ V(H)let the random variable ~ = 1 ifx ¢ ~ cd, 0 otherwise. 
Set ~ = ~,~x, so ~ = IS[. If for a vertex x we have deo(x) = D(1 + 6)then 

e ( ~ )  = (1 - p),e,(~, = e-~ + a~. 

For other x, 0 < E({,,) < 1 so 

E({) - - (e  -e ___ a4)n. 

We are going to give an upper bound on the variance 

o~(~) = E o % )  + E E cov(~,~). 
x~y  

Then, 

And, 

E D~(¢~) _< E E(~,)= E(~)= o(E(¢)~). (8.12) 

= (1 - p)~eg(~)+deg(,,-aeg(~,,)_ (1 -- p)aeg(x)+a~g(y) (8.13) 

< (1 -- p)-deg(~.y) _ 1 < e ~ -- 1 < 65. 

Then (8.12) and (8.13)imply that D2(~) < 66E(~) 2, and again by the Chebishev's 
inequality we have 

Prob(~ = ne-~(1 + 67)) > 0.99 

giving (v). 
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The first step of the proof  of (vi) is to observe that  for almost all vertices x 
(i.e., all but < 58n) have the following properties 
(a) degn(x)= (1 _+ 5)D 
(b) For  all but 59D edges E ~ E(H), x ~ E one has that  the number of 

edges {F ~ E(H): x ~ F, E N F  # ~} is(1 + 61o)(r - 1)D. 

(Here we used the fact that  d(x,y)< 5D.) Call an edge defined by (b) "good". 
We examine the distribution of degn.(X) conditioning on the event x ~ (.Jcg. (b) 
implies that  any good edge survives with probabili ty e -~(r-1) __+ 511, hence 

E(degn,(x)) = D(e - ' - 1 )  +_ 5112 ). 

Using again the Chebishev inequality (after obtaining an upper bound on the 
variance) we get 

Prob(degn,(X) = e-e(r-1)D(1 _ 513)) > 1 - 513. 

Hence the expected number  of x e S with degn.(x) :~ e-~('-l)D(1 _ 513 ) is at most  
514n. So with probabili ty at least 0.99 one has degri,(x) = e-e('-l)D(1 _+ 514) for all 
but at most  515n vertices of x e S, giving (vi). 

Proof of Theorem 8.4from Lemma 8.14. Fix e > 0 such that e/(1 - e -e) + re < 1 + a. 

Fix t integral such that  (1 - e) t < e, and fix ~ > 0 with (1 + 5 1 - - e  -e + re < 

1 + a. We are going to use Lemma 8.14 t times. Define by reverse induction 
5 = St, ~t-1 . . . . .  ~1, 50 so that  6~ < 5i+le -" '-1) and for n > mi, D > D~ one can use 
Lemma 8.14 with parameters 

r = r, e = 5, K = Ke ""+1)(~-1), 6' = 51+1, 6 = 6i. 

Then Theorem 8.4 holds for ? = 6 o, with n o = max n~, D o = max D v Indeed, let H 
satisfy the conditions of 8.4. Apply 8.14 t times, we find V o = V(H) ~ V 1 ~ - "  ~ Vt 
with IVy[ = ne-a(1 +_ 5,) and (d~ with V~+I = V~ - ~ (d~, ]~[ = (ene-a/r)(1 +_ 5,). For  
each x e Vt let C~ be an arbitrarily chosen edge containing x and let ~ denote 
the set of such edges. Then 

~e=%u...u% 

and led} < n(1 + 6) E ee-a + ne(1 + ?) < (n/r)(1 + a). [] V(H) covers 
i=O 
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