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ON THE FRACTIONAL COVERING NUMBER OF HYPERGRAPHS*

F. R. K. CHUNGf, Z. FOREDI:I:, M. R. GAREY, AND R. L. GRAHAM

Abstract. The fractional covering number r* of a hypergraph H (V, E) is defined to be the minimum
possible value of ,, v t(x) where ranges over all functions t: V which satisfy ,xe t(x) >= for all edges
e e E. In the case of ordinary graphs G, it is known that 2r*(G) is always an integer. By contrast, it is shown
(among other things) that for any rational p/q >= 1, there is a 3-uniform hypergraph H with -*(H) p/q.
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1. Notation. A hypergraph is a pair (V(3Ct), E(Ct)) where V(Ct) is a finite set

(called vertices) and E() is a family of subsets of V(Cg) (called edges). The rank of
is the maximum size of an edge, r(gg) := max {IE[: E e E()}. If every edge has r

elements then is called an r-uniform hypergraph, or r-graph for short. The 2-uniform
hypergraphs are called (simple) graphs. The matching number v() of is the maximum
number of pairwise disjoint edges in E(/), i.e.,

v(gCg) max {w: there exists El, ,EwE(),EifqEj for i4:j}.

The covering number r(’/g) of is the minimum cardinality of a cover T, where T c
V(Jct) is a cover if T f) E 4: for all E e E(). If e E(jcF) then - m. The

great importance ofthese notions is supported by the fact that virtually all combinatorial
problems can be reformulated as the determination ofthe coveting or matching number
of an appropriate hypergraph. The calculation of r and for an arbitrary hypergraph is

an NP-hard problem. Thus, any result that gives estimates, at least for a certain class of
hypergraphs, is especially valuable. One of the simplest estimates can be obtained from
the linear programming bound, in other words, from the real relaxations of r and . A
fractional matching ofo is a function w: E(oYg) -- (i.e., a vector in le(ae)l) satisfying

w(E) >= 0 for every edge E e E(o) and

{w(E):xEeE(o)} < for every xe V(g).

The value ofthe fractional matching w is defined to be lwl ; {w(E): E e E(o)}. The
maximum of lw] when w ranges over all fractional matchings is called the fractional
matching number and is denoted by

*(g) max {I wl: w is a fractional matching of Jog}.

Similarly, the fractional covering number is the minimum value of fractional covers of
g4, i.e.,

r*(o)=min{ t(x): t: V(o)--- , t(x) >= O, and t(x) >= for all EE(og) }.
x V :I/g x E

The determination of the fractional matching and coveting number is a linear program-
ming problem. This is a dual pair, so by the Duality Principle of linear programming we
have r*(o) u*(o) for every hypergraph o’g. In general for every o and for every
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fractional cover and matching w we have

Iwlltl,

so that if we have Iwl tl then both are optimal.
A subhypergraph Jcf’ is formed by a subset of edges of J/f, i.e., E(gf’) c E(J/f),

U {E e E(jCf’)} V(f’) c V(jcf).

2. Fractional matchings in graphs. Edmonds [E] pointed out that an old theorem
ofTutte [T] implies that 2r*(() is always an integer for a graph (. Balinski [B], Balinski
and Spielberg [BS], and Nemhauser and L. Trotter [NT] proved that even much more
is true. To state their results, define the fractional matching polytope of the hypergraph, denoted by FMP (), as the set of all fractional matching vectors in IE(J)I, i.e.,

FMP(f) {w le(ar)l: w(E)}e () is a fractional matching of }.
Analogously, the fractional coveting polytope (FCP) of 2e is

FCP(f) {t lv(av)l: {t(x)}x var) is a fractional cover of ocf}.
These are obviously polyhedra. Ifwe can effectively describe all their vertices and facets,
then in a certain sense we can solve any optimization problem concerning fractional
matchings and covers. This description was given in [B], [BS], and in [NT] (a discussion
of this and more graph theoretical background can be found in Lovsz [L79]). Their
results imply:

all the vertices of the polytopes FMP (f) and
(2.1)

FCP (f) have coordinate values which are 0, 1/2, or 1.

3. 3-graphs with arbitrary denominator. It is obvious that for arbitrary hypergraphs,
a statement similar to (2.1) is not true. For every rational number r p/q (>_-1), there
exists a hypergraph 3f with z*(Jcf) p/q (e.g., the complete q-graph on p elements).
Lovsz [L75] proved that for every choice of integers _-< v _-< z and rational number
r > satisfying v -< r =< - there exists a hypergraph 3 with v(JcF) v, -*(3f) r, and
(34) -. (If v z then necessarily - 1.) However, his hypergraphs have large
ranks. In this section we prove that a similar statement holds even for hypergraphs of
rank 3. For a real number x, denote by {x} its fractional part, i.e., {x} x

THEOREM 3.1. Let 0 <= r < be a rational number. Then there exists a hypergraph
ofrank 3 with {-*(2f)} r.
For the proof we are going to use the following constructions.
Example 3.2. (A hypergraph of rank 3 with 4k + 2 edges, and with {-*}

2k/(2k/ 1).) We define 0"42(k) as follows.

V(olgZ(k)) {x,,x2, ,x} U {a,,a2, ,a} U {el,e2}.
Let Azi-1 {x3i- 2, ai }, Azi {x3i-1, ai }, Bzi-1 {x3i- 2, x3i -1, x3i } for =< _-< k,
and Bzi {x3i, x3i +1 for _-< -< k 1, and Bo {xl, x3k, e, }, Eo {x3k, eo}, El
{ eo, el } (see Fig. 1).

To find -*(2(k)) consider the following fractional matching X: E(llfZ(k)) [

and cover t.
Denote 2 + by N. Let

k(A2i- I) X(B2i- I) 2- i/N for -_< i_-< k,

k(A2i) (N- 2k-i)/N for =< i-< k,

X(B2i) (N- 2k- i)/N for 0 =< =< k- 1,

X(EI) 2gIN and X(E0) (2k- 1)/N.
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FIG.

Eo

Then I)1 2k + 2/N.
Define

t(ai) (N- 2i- )/N for -< i-< k,

l(X3i- 2) t(x3i- 1) 2 i- /N for -< =< k,

t(x3i (N- 2 i)/N for =< =< k,

t(e) (2k- 1)/N, t(eo) 2k/N.
Then is a fractional cover with tl 2k + 2/N.

Example 3.3. (A hypergraph of rank 3 with 2k-1 edges and with {-*}
(odd integer)/2- ). Define 3(k) as follows. V(o’ct3(k))= {x, ..., x, y, ..., y},

E(o3(k)) { {Xk, Yk),Ai,Bi(1 < <= k- 1)}
where Ai xi, Yi, xi + 1}, Bi {xi, Yi, Yi + 1}. Then

2k 2 (-1)k-
(3.1) r*(Cg3(k)) -+ + 9.2------z-F_

To prove (3.1) consider the following (optimal) fractional matching w and cover t:

(--1)i-1

w(Ai)=w(Bi)=+ 3.2-------7- (1 <=i<=k 1)

2 (-1)-w {x, y } - + 3.2k-z-i-,

and

(--1)c-i
t(Xi) t(Yi) - + 3" 2 + i"

Proof of Theorem 3.1. For nonnegative integers n,..., ns and hypergraphs
#g, o’gs, we denote the disjoint union of ni copies of o by Z nii. Let 0 -<
r < be rational, r p/q, (p, q) 1. Let q 2ab where b is odd. Choose nonnegative
integers A and B such that

If a is even, define

H := 9AH 3(a + 1) + 2B((2(b) 1)/b)H 2(b(b) 1)
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where denotes the Euler 4-function (i.e., (m) is the number of integers t, =< < m,
which are relatively prime to m).

If a is odd, define

H := 18AH 3(a + 2) + 2B((2’’) 1)/b)H z(ck(b) ).

Then an easy calculation shows that {z*(cg)} r, as required.

4. An upper bound on the denominator. Let Nr {’*(o’t): has rank at most r}.
Then N2 { 1, , 2, , 3, } and [’-Jr_2 Nr consists of all rationals not smaller than 1.

THEOREM 4.1. Ifu/v Nr, (u, V) 1, then u/v >= (2 log v)/(r log r). In particular,
the set Nr is a discrete sequence.

The proof of this result is based on the following ideas. A hypergraph o’g is called
r*-critical if z*(cf’) < z*(o’cg) holds for each subhypergraph g’ of g, i.e., we cannot
delete an edge without changing (decreasing) the value of z*.

LEMMA 4.2 (Ffiredi [Fii81]). IfoVg is -*-critical, then IE(a)l _-< IrA {E 6 E(cF)}I,
i.e., f has no more edges than nonisolated vertices.

Other (more general) versions of this lemma are well known in the theory of linear
programming. This lemmajust means that the number ofconstraints ofa linear program
can be reduced to the number of variables without changing the optimal value.

LEMMA 4.3. If is r*-critical ofrank r then IE(a)l _-< rr*.
Proofof4.3. There exists an optimal fractional matching w0 (i.e., Iw01 *) which

is a vertex ofthe fractional matching polytope FMP (g). Thus, the vector { wo(E)}Ee<)
is contained in at least IE()] facets ofFMP (g), say

w(E) 0 ifE., w(E)= ifx Voc V(o,),
xrE

where IVo[ + I0l IE()I. We have

Wol Z o ( Z, w(E) ) Z,
x x E E E(,/g)

w (E)I E V01 -<- w (E)r r*r.

Hence IE(a) 01 --< rr*. Let E(cF’) E() oo. Then r*(’) >= Iw01, since w0
is a fractional matching of g’. However, r*(o’Cg’) =< r*(), i.e., r*(gg’) r*(o’/g). is
r*-critical, so we have g’, IE(a)l --< r-*.

Applications of these lemmas can be found in [Fii86], [FF]. We now move to the
proof of Theorem 4.1.

ProofofTheorem 4.1. Let be a hypergraph of rank r with z*(Cg) u/v. We can
assume that acg is z*-critical. Hence, IE(a)l --< (ru)/v by Lemma 4.3. The value of
can then be obtained (by Cramer’s rule) as a ratio oftwo 0-1 determinants of size at most
(ru)/v. Every row contains at most r l’s by Hadamard’s upper bound,

v [denominatorl Idet (0-1 matrix)l =< r(l/2)ru/v.

PROI’OSITION 4.4. The smallest seven elements ofN3 are 1, , , , , , 2.
Proof Figure 2 shows the incidence matrices of seven hypergraphs of rank 3 with

these fractional matching numbers (optimal fractional matchings and coverings are also
indicated). (By Lemmas 4.2 and 4.3, it is sufficient to consider hypergraphs having at
most five edges and vertices.) A short case-by-case study shows that these are all values
of N3 which are not larger than 2.
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5. Remarks.
Remark 5.1. One can prove in a way similar to that used for Lemma 4.3 that every

vertex c e le(a’)l of FMP (Yg) has at most r-* nonzero coordinates. This implies that
there exists an integer M M(c) =< r(/2)r’* such that Me is an integer point.

Remark 5.2. Let Nr { t(;), t), .(r) _(r) .(r)
<. i+ 1. Although this is a discrete

sequence, Theorem 3.1 implies that for r >= 3,

lim

(since r*(Jcf’) + z*(#f) if #f’ is formed from by adding a single disjoint edge).
Remark 5.3. Define dr(n) max {denominator of r*(#t): #g is an r-graph with

IE(aCr)l _-< n}. The examples in 3 and Theorem 4.1 imply that

n log f+ O(1)

_
log d3(n) =< n log V.

It seems likely that lim, / log d3(n)/n exists. If so, is it equal to 1/2 log 2?
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