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ON THE FRACTIONAL COVERING NUMBER OF HYPERGRAPHS*

F. R. K. CHUNGt, Z. FUREDIf, M. R. GAREY§, AND R. L. GRAHAMS

Abstract. The fractional covering number t* of a hypergraph H = (V, E) is defined to be the minimum
possible value of 2.y #(x) where f ranges over all functions . ¥~ R which satisfy >, #(x) = 1 for all edges
e € E. In the case of ordinary graphs G, it is known that 27%(G) is always an integer. By contrast, it is shown
(among other things) that for any rational p/q = 1, there is a 3-uniform hypergraph H with +*(H) = p/q.
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1. Notation. A hypergraph H# is a pair (V(H#), E()) where V(H) is a finite set
(called vertices) and E(H) is a family of subsets of V() (called edges). The rank of H#
is the maximum size of an edge, r(#) := max {|E|: E € E(H)}. If every edge has r
elements then # is called an r-uniform hypergraph, or r-graph for short. The 2-uniform
hypergraphs are called (simple) graphs. The matching number v(H') of A is the maximum
number of pairwise disjoint edges in E(J), i.e.,

v(HA) = max {w: there exists E;, - -+ ,E,€E(H),ENE;= Dlori#j}.

The covering number () of A is the minimum cardinality of a cover T, where T' <
V(#)is acoverif TNE # & forall E € E(#). If J € E(#) then v = 7 = co. The
great importance of these notions is supported by the fact that virtually all combinatorial
problems can be reformulated as the determination of the covering or matching number
of an appropriate hypergraph. The calculation of 7 and » for an arbitrary hypergraph is
an NP-hard problem. Thus, any result that gives estimates, at least for a certain class of
hypergraphs, is especially valuable. One of the simplest estimates can be obtained from
the linear programming bound, in other words, from the real relaxations of 7 and ». A
fractional matching of # is a function w: E(¥#) — R (i.e., a vector in RIF®* )y satisfying
w(E) 2 0 for every edge E € E(A) and

SAW(E):.x€E€E(#)} =1 forevery xe V().

The value of the fractional matching w is defined to be [w| = 2 {W(E): E € E(#)}. The
maximum of |w| when w ranges over all fractional matchings is called the fractional
matching number and is denoted by

v*(A)=max {|w|: wis a fractional matching of 5 }.

Similarly, the fractional covering number is the minimum value of fractional covers of
H, ie.,

7%(H) = min { >t V()R t(x)20,and > t(x)2 1 for all EeE(%)}.
xe V() x€E

The determination of the fractional matching and covering number is a linear program-

ming problem. This is a dual pair, so by the Duality Principle of linear programming we

have 7#(#) = v*(H) for every hypergraph #. In general for every A and for every
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fractional cover ¢t and matching w we have
[w| =1,

so that if we have |w| = |¢| then both are optimal.
A subhypergraph #” is formed by a subset of edges of #, i.e., E(H") < E(),
U {E € E(#))} < V(H#") < V(H).

2. Fractional matchings in graphs. Edmonds [E] pointed out that an old theorem
of Tutte [ T] implies that 27*(%) is always an integer for a graph %. Balinski [B], Balinski
and Spielberg [BS], and Nemhauser and L. Trotter [NT] proved that even much more
is true. To state their results, define the fractional matching polytope of the hypergraph
%, denoted by FMP (), as the set of all fractional matching vectors in RIFC je.

FMP (#) = {weREN: {w(E)} pc g is a fractional matching of #}.
Analogously, the fractional covering polytope (FCP) of # is
FCP(#) = {teR"“): {1(xX)} e yor) is a fractional cover of #}.

These are obviously polyhedra. If we can effectively describe all their vertices and facets,
then in a certain sense we can solve any optimization problem concerning fractional
matchings and covers. This description was given in [B], [BS], and in [NT] (a discussion
of this and more graph theoretical background can be found in Lovasz [L79]). Their
results imply:

all the vertices of the polytopes FMP (%) and

2.1
2.1) FCP (%) have coordinate values which are 0, 1, or 1.

3. 3-graphs with arbitrary denominator. It is obvious that for arbitrary hypergraphs,
a statement similar to (2.1) is not true. For every rational number » = p/q (1), there
exists a hypergraph 3 with 7%(#) = p/q (e.g., the complete g-graph on p elements).
Lovasz [L75] proved that for every choice of integers 1 = » = 7 and rational number
r > 1 satisfying » = r = 7 there exists a hypergraph 3# with »(#) = v, 7%(H#) = r, and
7(#) = 1. (If v = 7 = | then necessarily + = 1.) However, his hypergraphs have large
ranks. In this section we prove that a similar statement holds even for hypergraphs of
rank 3. For a real number x, denote by {x} its fractional part, i.e., {x} = x — | x].

THEOREM 3.1. Let 0 = r < 1 be a rational number. Then there exists a hypergraph
H of rank 3 with {t*(H)} = r.

For the proof we are going to use the following constructions.

Example 3.2. (A hypergraph of rank 3 with 4k + 2 edges, and with {7%} =
2k/(2¥*1 — 1).) We define A#*(k) as follows.

V(‘#Z(k)): {xl>x2’ e ,X}k} U {alaa29 Tt ,ak} U {el’eZ}-

Let Ay = {X3i-2, @i}, Api = {X3i -1, @i}, Baicy ={X3i_2, X3i—, xy} for 1 £ i =k,
and By; = {X3;, x3;+1} for 1 £ i<k — 1,and By = {X1, X3, 1}, Eo = {x3, €}, E; =
{eo, e} (see Fig. 1).

To find 7*(#*(k)) consider the following fractional matching \: E(#*(k)) - R
and cover ¢.

Denote 2¥*! — 1 by N. Let

MAai_ 1) =NBy_)=2F"YN for1=i=k,
MAy)=(N—=2F"1)N for1<i=k,
MBy)=(N-2k"1yN for0=i<k-—1,
ME)=2¥N and \Ep)=(2*—1)/N.
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FiG. 1

Then |\| = 2k + 2%/N.
Define

Ha)=(N=2"YN for1=<i=k,
[(X3_2) = tx3- 1) =27 YN for 1 S i<k,
t)=(N—2")N forlSisk,
He)=Q2*—1)/N,  Heo)=2"/N.

Then ¢ is a fractional cover with [¢]| = 2k + 2¥/N.
Example 3.3. (A hypergraph of rank 3 with 2k — 1 edges and with {7*} =
(odd integer)/2%~'). Define #3(k) as follows. V(H#>(k) = {x1, - , Xi» V1> " 5 Vi}»

E(%B(k)): {{xkayk}aAlyBl(l élék— 1)}
where 4; = {x;, yi, X+ 1}, Bi = {Xi, ¥i, i+ 1}- Then

2k 2 (—1F!
3.1 ANk +-=+ .
3. (H00) =5 +5+ 5 5=
To prove (3.1) consider the following (optimal) fractional matching w and cover ¢:
1 (1! .
A; B)=- - I=isk—1
WA)=wB) =3+, (1SiSk=1)
3 2 (_ l)k— 1
W({xk,yk})—3 3T
and
(=1
t(x,)*t(yz)—3 3 kT
Proof of Theorem 3.1. For nonnegative integers n,, ---, n, and hypergraphs
Ay, -, A, we denote the disjoint union of #; copies of #; by > n; ;. Let 0 =

r < 1 be rational, r = p/q, (p, q) = 1. Let g = 2%b where b is odd. Choose nonnegative
integers 4 and B such that
y A B
p/qg= 2a b .
If a 1s even, define

H:=94H*a+ 1)+ 2B((2*® — 1)/b)HX(p(b) — 1)
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where ¢ denotes the Euler ¢-function (i.e., ¢(m) is the number of integers £, 1 = 1 < m,
which are relatively prime to m).
If a is odd, define

H:= 184H%a+2)+2B((2*® — 1)/b)HX($(b) — 1).
Then an easy calculation shows that {7*(#)} = r, as required. a

4. An upper bound on the denominator. Let N, = {7*(#): # has rank at most r}.
Then N, = {1,3,2,3,3, -+ } and U, , N, consists of all rationals not smaller than 1.

THEOREM 4.1. If u/v € N,, (u, v) = 1, then u/v Z (2 log v)/(r log r). In particular,
the set N, is a discrete sequence.

The proof of this result is based on the following ideas. A hypergraph # is called
r*-critical if 7*(H") < 7*(H) holds for each subhypergraph #” of #, i.e., we cannot
delete an edge without changing (decreasing) the value of 7*.

LEMMA 4.2 (Fiiredi [Fii81]). If S is v*-critical, then |E(X)| = |U {E € E(#)}],
1.e., # has no more edges than nonisolated vertices.

Other (more general) versions of this lemma are well known in the theory of linear
programming. This lemma just means that the number of constraints of a linear program
can be reduced to the number of variables without changing the optimal value.

LEMMA 4.3. If # is v*-critical of rank r then |E(H)| = rr*.

Proof of 4.3. There exists an optimal fractional matching wy (i.e., [wy| = 7*) which
is a vertex of the fractional matching polytope FMP (#°). Thus, the vector {wo(E)} ge g()
is contained in at least | E(H#)| facets of FMP (), say

w(E)=0 if E€ &, E(H),
S w(E)=1 ifxeVocV(H),

x€FE

where V| + |&q| = | E(A)]. We have

Vol = 2 (Z W(E))= 2 WENENV| = Zw(E)y=1*r

xeVy \xeFE Ee E(X)

Hence |E(#) — &y = rr*. Let E(H) = E(H) — &,. Then 7*(H") = |wyl, since wo
is a fractional matching of S#'. However, 7*(#') < 7*(H), i.e., 75(H") = *(H). H is
r*-critical, so we have # = A", |E(H)| = rr*. O

Applications of these lemmas can be found in [Fii86], [FF]. We now move to the
proof of Theorem 4.1.

Proof of Theorem 4.1. Let S be a hypergraph of rank r with +*(#°) = u/v. We can
assume that S is r*-critical. Hence, | E(#)! = (ru)/v by Lemma 4.3. The value of 7*
can then be obtained (by Cramer’s rule) as a ratio of two 0-1 determinants of size at most
(ru)/v. Every row contains at most r 1’s by Hadamard’s upper bound,

v =|denominator| = [det (0-1 matrix)| = rU/2r/?,

PROPOSITION 4.4. The smallest seven elements of Ny are 1,%,3,3,2 %, 2.

Proof. Figure 2 shows the incidence matrices of seven hypergraphs of rank 3 with
these fractional matching numbers (optimal fractional matchings and coverings are also
indicated). (By Lemmas 4.2 and 4.3, it is sufficient to consider hypergraphs having at
most five edges and vertices.) A short case-by-case study shows that these are all values
of N3 which are not larger than 2. O
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FIG. 2

5. Remarks.

Remark 5.1, One can prove in a way similar to that used for Lemma 4.3 that every
vertex ¢ € RIFU! of FMP () has at most 77* nonzero coordinates. This implies that
there exists an integer M = M(c) = r''/2" such that Mc is an integer point.

Remark 5.2. Let N, = {10,19, -+ 10, -+ 1,1 <\ |. Although this is a discrete
sequence, Theorem 3.1 implies that for r = 3,

lim (¢, ~tM)=0
1> o0
(since 7*(H") = 1 + 7*(H) if A" is formed from # by adding a single disjoint edge).

Remark 5.3. Define d,(n) = max {denominator of v*(#): S is an r-graph with

|E()| = n}. The examples in § 3 and Theorem 4.1 imply that

nlog V2+0(1)=log ds(n) = n log V3.

It seems likely that lim,, . ., log ds(n)/n exists. If so, is it equal to 4 log 2?
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