
Canad. Math. Bull. Vol. 30 (4), 1987 

EMPTY SIMPLICES IN EUCLIDEAN SPACE 

BY 

1MRE BÂRÂNY AND ZOLTÂN FUREDI 

ABSTRACT. Let P - {pi,p2,. . . ,p„} be an independent point-set in 1R'' 
(i.e., there are no d + 1 on a hyperplane). A simplex determined by 
d + 1 different points of P is called empty if it contains no point of P in 
its interior. Denote the number of empty simplices in P by f,i(P). 
Katchalski and Meir pointed out that//(f) ^ ("(/ ). Here a random con­
struction Pn is given with fAP„) < K(d)(",), where K{d) is a constant 
depending only on d. Several related questions are investigated. 

1. Introduction. We call a set P of n points (n > d + 1) in the ^/-dimensional 
Euclidean space Ud independent if P contains no d 4- 1 on a hyperplane. We call a 
simplex determined by d + 1 different points of P empty if the simplex contains no 
point of P in its interior and denote the number of empty simplices of P by fd(P), or 
briefly/(P). 

Katchalski and Meir [11] asked the following question: Given an independent set 
P of n points in Ud, what can one say about the values of/(P)? If P consists of the 
vertices of a convex poly tope, then clearly/(P) = (d",). So the interesting question 
is to find a lower bound for/(P). Define 

fd(n) = min{/(P):|P| = n, P C U(l independent}. 

They proved that there exists a constant K > 0 such that for all n > 3, 

(1) (H~ l) <f2(n)<Kn2, 

and in general, for every independent P C M(l, \P\ = n 

(The case d = 1 has no importance, obviously f\(P) = n — 1.) The aim of this paper 
is to give bounds for fd{n) and to consider several related questions. 
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Our paper is organized as follows. In section 2 we state the upper bound for 
fd(n). Section 3 contains the results about the number of empty k-gons in the plane. In 
section 4 we deal with a related question: how many points are needed to pin the 
interiors of the empty simplices? Finally sections 5—12 contain the proofs. 

A preliminary version of this work was presented in the 2nd Austrian Geometric 
Conference in Salzburg, 1985. 

2 Random constructions. 

THEOREM 2.1. Let A C Rd be a convex, bounded set with nonempty interior. Choose 
the points p\,. . . ,/?„ randomly and independently from A with uniform distribution. 
Then we have for the expected value off(P) 

E(# empty simplices in P) ^ Ky J. 

Here K is very large: 

rg + i ) ]" , (n ' ra+ i ) ) 2 <(2^ 
,d-

K= 2(2)£/!rf /V- , , /2l 

but independent of the shape of A ! It is very likely that this value can be decreased, 
e.g., when A is a ball we can prove K < dd~. 

COROLLARY 2.2. fd(n) < dd2Q. 

The example, of Katchalski and Meir gives in (1) that K < 200. Corollary 2.2 yields 
AT ̂  16. The following random construction gives a much better upper bound. Let 
/ i , / 2 , . . . , / „ be parallel unit intervals on the plane, /, = {(x,y): x = /, 0 < y < 1}. 
Choose the point /?, randomly from /, with uniform distribution. Let Pn = {p\,. . . ,/?„}. 
Then 

THEOREM 2.3. E(f2(P„)) = 2n2 + 0(n log n). 

On the other hand we have 

THEOREM 2.4. Let P C U2 be an independent point-set with \P\ = n. Then 

n2 - 0 ( w l o g / i ) < / 2 ( P ) . 

We have to remark here that G. Purdy [13] announced f2(n) = 0(n2) without proof. 
H. Harborth [8] pointed out thatf2(n) = n2 - 5n + 7 for n = 3 ,4 ,5 ,6 ,7 , 8,9 but not 
for n = 10 because f2( 10) = 58. 

3. Empty polygons on the plane. More than 50 years ago Erdôs and Szekeres [5] 
proved that for every integer k ^ 3 there exists an integer n{k) with the following 
property: If P C R2, \P\ > n(k) and P is independent, then there exists a subset 
A C P such that \A\ = k and conv A is a convex k-gon. 

We call a /:-subset A of P empty if conv A contains no point of P in its interior. 
Erdôs [4] asked whether the following sharpening of the Erdos-Szekeres theorem is 
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true. Is there an N(k) such that if |P| ^ N(k). P C R2 independent, then there exists 
an empty fc-gon with vertex set A C P. He pointed out that N(4) = 5 (= «(4)) and [8] 
proved that N(5) = 10 (while n(5) = 9). A proof of the existence ofN(k) was presented 
at a combinatorial conference in 1978 but it turned out to be wrong. This is no wonder 
because Horton [9] proved that N(l) does not exist. The question about the existence 
of N(6) is still open; a recent example of Fabella and O'Rourke [6] shows twenty-two 
independent points in the plane without an empty hexagon. 

EXAMPLE 3.1. (Horton [9]). (This is a squashed version of the well-known van der 
Corput sequence.) We will define by induction a pointset Q(n) where n is a power of 
2. In Q(n) each point has positive integer coordinates and the set of the first coordi­
nates is just {1, 2 , . . . , « } . 7o start with let Q(\) = {(1, 1)} and Q(2) = {(1, 1), (2, 2)}. 
When Q(n) is defined, set 

Q(2n) = {(2x - l,y):(x,y) G Q(n)} U {(2x,y + dn):(x,y) G Q(n)} 

where dn is a large number, e.g., dn — 3" will do. 

Now denote by fk(P) the number of empty A:-gons in P and let fk(n) — min{/*(P): 
P c R2 independent, \P\ — n}. So f\n) is just f2(n) defined in the previous section. 
Though fk(P) can be as large as (n

k\ Example 3.1 shows the following estimations. 

THEOREM 3.2. When n is a power of 2, then 

(3) f\n) tk 2n2 

(4) f\n) tk 3n2 

(5) fin) ^ 2n2 

(6) f%n)^l-n2 

(7) j*(n) = 0 for k ^ l . 

We remark that the random example of Theorem 2.3 gives a quadratic upper bound 
on/ k (n) , too. The only lower bounds we can prove are 

THEOREM 3.3. 

(8) f(n) ^ \n2 - 0(*), f(n)^ 
4 

The second inequality here is implied by N(5) — 10. 

4. The covering number of simplices. Let P be an independent set of points in Rd. 
We say that Q C Rd is a cover of the simplices of P if for every (d + l)-tuple 
{/?i,... ,pd+ i C P there exists a q G Q with q G int conv{/?,,. . . ,/?J+ ,}. Denote by 
g(P) the minimum cardinality of a cover and let gd(n) = max{g(P):P C Rd, \P\ = 
n}. Katchalsky and Meir [11] proved that g2(n) = 2n - 5 and g3(ft) ^ (n — l)2. 
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Actually they proved 

g2(P) — 2\P\ — (# vertices of conv P) — 2. 

Though such an exact result seems to be elusive in higher dimensions, we can 
determine the asymptotic value of gd(n). 

THEOREM 4.1. 

2 ( , " ) + 0(nd/2-1) if d is even 

n * + 0(nw/2]) if d is odd 
gd(n) = < 

holds for any fixed d when n—>°°. 

COROLLARY 4.2. g3(n) = Q) + 0(n). 

The constructions and proofs will be given in section 11. 

The high value of gd(n) is a bit surprising (at least for the authors), because it 
was proved in [2] and [1] that there exists a positive constant c(d) (c(2) = 2/9, 
c(d) > d~d) with the following property. For any pointset P C Rd, \P\ = n there exists 
a point contained in at least c(d)(/+l) simplices of P. 

5. The distribution of volumes of random simplices. Consider a bounded convex 
set A C Rd with Vol (A) > 0. Choose randomly and independently the points 
P\, • • • ,p<t+ i fr°m ^ with uniform distribution. 

LEMMA 5.1. There exists a C = C( d) > 0 such that for every 0 < v < 1, h > 0 

Prob(v < Vol(/7,,... ,pd+l)/Vo\(A) < v + h) < Ch 

where Vol(/?i,.. . ,pd+ \) is a shorthand for Vol(conv{/?i,. . . ,pd+ ,}). 

PROOF. A theorem of Fritz John [10] says that there exist two concentrical and 
homothetic ellipsoids Ex and E2 with E\ C A C E2 and E2 C dE\. As an affine 
transformation does not change the value of Vol(/?i,... ,prf+!)/Vol(A) we may 
assume that E\ and E2 are balls of radius rx and r2 and r2 < drx. Define wd to be the 
volume of the ^/-dimensional unit ball, i.e., 

,,^>MÎ+.))-. 
Let 0 < t < t + a and denote the Euclidean distance between aff(/?i,...,/?,-) and/?/+ j 
by D/. Then 

/ - 1 
W / _ , r 2 

Prob(r <Di<t + a)^ (wrf+1-f(r + « ) J + ' - ' - w,+ 1 _ / + | - ' ) 
Vol (A) 

holds for every / = 1,. . . , d\ the right hand side is the volume of the difference of two 
cylinders. Hence we have 
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a(t\d-l(d+ 1 - /)wJ+ ,_,w /_, wdr2 
?vob(t < Di < t + a) ^ 

r2\r2/ wd vol(A) 

vr2/ 

The choice of /?, and p, is independent so we have 

(9) Prob(f, < D, < f, + a holds for i = 1 , . . . , d) 

^B j^r'----(^v'"( |+< 
Now Vol(p]9...,pd+l) = (J!)"1D,-D2- . . . -D J . Hence (9) yields 

(10) Prob(v < Vol(p, , . . . ,p d + I) /Vol(A) < v + h) 

. . . jcr/ V? 2 • • .xd^\2dlddl^ddx\dx2. . . d ^ 
, = 0 Jxd = 0 

where the integration is taken for (JCI, . . . ,JC,/) with 

v Vol(A) < r2xx . . .xd(d\yl < (v + /i)Vol(A). 

Because 

0 < xd - d\vr2
d-Vol A/(xx...xd-x) < /id ! (Vol A/r'2

l)/(xx . . . jcrf_,) 

we have 

j dxd = hd\(yolA/rd
2)/(xy...xd-y). 

Hence the right-hand-side of (10) equals 

\(2"d* + d)d\y^]h [ • • • f xi'2. . .xd_2dxt . ..dxd-x 
L r2

 J • / o < . v , < 2 J o<.v ( / . , < 2 

= (2(d>/(d - 1)!) • C0h < (7df\ 

where C0 is the coefficient in square brackets. 

6. Proof of Theorem 2.1. For given / ? , , . . .,/?, /+ , choose the points pd + 2, • . • ,p„ 
randomly. Define |JL(V) = Prob(Vol(/?,,. . . ,pd+,) < v). Obviously we have 

Prob(p,,. . . ,/?,/+, is empty) = (1 - v)nd]d\x(v) 
J 0 < v < 1 

< I (1 - v)" ''"'O/v = C/(n - d). 
* 0 < v < I 

Hence 

C C /w 

^^U,) d + 1/fl-rf J + 1 w 
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7. Proof of Theorem 2.3. Consider the points A = (i,x), B = (i + a,y), and 
C — (i + k,z) where/: = a + b ̂  3. Let m = |jy — JC + (a/k)(z — JC)|, i.e., the distance 
between 5 and // + „ fl [AC]. Choose randomly a point pf on /,-, (i < j < i + k, 
j =£ / + a). Then 

Prob(AZ?C is an empty triangle) 

- ( > - = ) ( ' - ^ ) - ( ' - < « - " = ) ( ' - < * - ' > Ï ) - ( ' - Ï ) 

< exp 2 - - . . . - (a - 1 ) - - (b - 1 ) - - . . . - 2 - - -
L a a a b b b^ 

- « p ( - ( ; ) = - ( ; ) = ) - « p < - ( . - ^ / 2 , . 

Now choose the points p, (1 < / < ft) randomly. We obtain 

Prob(/?,/?,+ „/?, + * is empty) ^ exp(-(& - 2)m/2)dxdydz 
•*0<x< 1 •'()<>< I ^ 0 < r < I 

< 2 J exp(-(* - 2)m/2)dm < 4/(* - 2). 
-'()<//;< 1/2 

Hence we have 

£(/(/>)) < /i - 1 + 2 2 2 4/(* - 2) 
!</'</» 3 < A- < u - / 1< « < k 

v 4 ( * - 1) 
= w - 1 + Z (/Î — A: + 1) 

3 < A - < « fc - 2 

= « - 1 + 2 (ft - £ + \)4/(k - 2) + 4 2 (/i - * + 1) 
3 < A- < // 3 < * < n 

= 0(n log ft) + 2ft2. 

8. A lemma on graphs. 

LEMMA 8.1. Let G be a graph on the vertices {1 ,2 , . . . , f t} . Suppose that there exist 
no four vertices i < j < k < i such that (i,k), (/,€), and (y,€) G E(G). Then 

(11) \E(G)\ <3«riog2«l. 

PROOF. Let £(G) = E(G,) U . . . £(G,) U .. . where 1 < i < [log2nl and £(G,) = 
{(w, v): 1 < u < v < ft, 2'" ' < v - u < 2', (ft, v) G £(G)}. Split £(G,) into three parts 
U, D and 7: 

£/ = {(«, v):(ft, v) G E(Gj) and 3w such that w < w < v 
and (w,v) £ E(G;)} 

D = {(w,v):(w,v) G E(Gj) and 3w such that ft < w < v 
and (u,w) G £(G,)} 
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and T = £(G,) - U - D. 
Clearly U C\ D = 0, U, D and T do not contain a circuit. Hence their cardinality is 

at most n — 1. 
We note that (11) can be improved to \n log2 n], and there exists a graph G" with 

|£(G)| > n(\og2n - 2) which fulfills the constraints of Lemma 8.1. 

9. Proof of Theorem 2.4. Consider the points/?,, ...,p„ E IR2 and an arbitrary line 
e C R2. Let g, be the projection of p, on e. We can choose e such that g, =£ g r We can 
suppose that qi lays between qi_] and g m (eventually reordering the indices). 

Let Gu and Gd be two graphs on vertices {q{,. . . , </„} such that 

E(GU) = {qiqf. every pk for i < k < j is below the [/?,•/?,•] and only (at most) 
one PiPkPi triangle is empty} 

E(Gd) = {(qiqj): every /?* for i < k < j is above the [/?,/?,] and only (at most) 
one of the triangles PiPkP, is empty}. 

It is easy to see that Gu and Gd fulfills the constraints of Lemma 8.1. Indeed, suppose 
on contrary (#,<?*), (g,g<), (g ,^ ) E E(GU). Then one can find a n / , / < j ' < y and a 
k', k < k' < t such that the triangles Piphp( and pipk,pi are empty, contradicting 
/?,/?< E E(GU). Hence 

/ ( ^ ) = 2 #(empty triangles with vertices PiPkPj, i < k < j) 
i < / < / < » 

> 2 Q - | £ (GJ | - \E{Gd)\ = n2 - 0(w log «). 

10. Proof of 3.2. Let P be a pointset in the plane, consider ux, u2 E P with 
w, = (x,, j , ) , w2 = (x2, .y2). We say that the line segment [uv u2] connecting w, and 
w2 is empty from below if the interior of the "infinite triangle" with vertices U\,u2, 
(ii_i^ _oo) contains no point of P. Emptiness from above is defined analogously. 
Denote by h2(P) and h2{P), respectively the number of segments in P empty from 
below and above. 

Consider Q(2n) from Example 3.1. Q(2n) splits in a natural way into two 
parts: Q + (n) and Q~(n) where Q + (n) = {(2x,y + d„):(x,y) E Q(n)} and Q~(n) = 
{(2x — l,y)',(x,y) E Q(n)}. The next two statements are obvious. 

(12) If u\,u2 E Q(2n) and [u\,u2] is empty from below in Q(2n) then 
either U\,u2 E Q~(n) or ux E (2 (ft) and w2 E <2 + (w) 
and |JC, — x2\ = 1 or H, E ô + (n) and w2 E Q~(n) 
and |JCI — JC2| = 1. 

(13) h2(Q{2n)) = h2(Q~(n)) + 2n - \. 

Using induction (13) implies that 

(14) h2(Q(n)) < In. 
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Q(n) is centrally symmetric and so 

(15) h2\Q(n))<2n. 

Now call a triple (w,, w2, w3) e Q(n) empty from below if all the three Une segments 
[uxu2\ [w,w3], [u2u3] are empty from below and denote by h^{Q(n)) the number of 
triples of Q(n), that are empty from below. Clearly, 

h3'(Q(2n)) = h3'(Q-(n)) + n - 1 

hence by induction 

hAQ(n)) < n. 

To prove (3) , (4) , . . . ,(7) we can use induction and the facts established about 
h2,h2 ,h3

+ and h3~. For instance, we can estimate f4(Q(2n)) in the following way: 

f\Q{2n)) =f\Q + (n)) + / z 3
+ ( Ô » ) " + h-(Q + (n))h+

2(Q(n)) 

+ nhUQ-(n)) + /4(G~(")) < 2f(Q(n)) + 6n2. 

which shows t\mtf4(Q(2n)) ^ 12«2. 

The proofs of (3), (5), (6) are similar. 

11. Proof of 3.3. Consider an arbitrary «-element set P in the plane, and assume no 
three points of P are on a Une. 

LEMMA 11.1. Suppose w, v, a, b G P and the segments [wv] and [ab] intersect 
(in an interior point). Then there exist a\ bf G P such that uva'b' is an empty quadri­
latéral with diagonal [wv]. 

PROOF. Trivial: if the uva triangle is empty then take a' = a if not let a' E P be the 
nearest to [uv] point from the interior of the triangle uva. 

Now define a graph G with vertex set P. A pair {w, v} C P is an edge of G if [wv] 
is not a diagonal of any convex empty quadrilateral of P. By the above Lemma G must 
be a planar graph hence the number of its edges is at most 3n — 6. All other pairs are 
contained in an empty quadrilateral hence f4(P) ^ ICO - On - 6)). 

12. Proof of 4.1. First we give the upper bound. Our main tool is Radon's theorem 
[3] which we need in the following form. 

LEMMA 12.1. Let xx,. . . ,x(i+] E Rd be the vertices of a simplex S and let L be a line 
not parallel to any one of the facets ofS. Then there exists a line L' parallel to L such 
that L' D S — [ab] and a E relint Fa and b E re lint Fh with Fa and Fh disjoint faces 
ofS. 

PROOF. Consider the projection of x\,..., xd+ , onto the subspace orthogonal to L 
and apply Radon's theorem in that subspace. 

We use the lemma in the following way. Pick a line L not parallel to any affine 
subspace spanned by at most d points of P. Choose e > 0 small enough and let v be 
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a vector parallel to L and ||v|| = e. We define a covering system Q as follows: 

Q = \v+]-Zx:tSd-^,XCP,\X\ = t} 

when d is odd, and 

Q = j sv + - E JC:8 = ± 1 , r ^ ^ ,X C F, |X| = t 
^ t xE.X 2 

when d is even. 
Now we give a construction for the lower bound. Let p(i) = (/, r , . . . , /'') E /?'', 

/ = 1,. . . , n and set P = {/?(/):/ = 1,. . . , n}. P is the set of vertices of the cyclic 
polytope [7, 12]. We will use certain properties of the cyclic polytope without 
explanation. Consider first the case when d is odd. Define 

3F = j {/|,...,/,/+ i} C {1, . . . , n} ia < ia f i for 1 ̂  a ^ d and 

Ï2P = I 2 P - I + 1 for 1 ^ p ^ ^ - y 1 

So the members of the family J^ are unions of segments of {1, 2 , . . . , n) of even 
length. Clearly 

J + 1 
0(w ( < / - l ) / 2 \ 

We claim that the simplices conv{p(/):/ E F}, F G ? are pairwise disjoint. Let 
F | ,F 2 E 3F with Fx = {/,,..., i(l+,}, F2 = {y'i,. . . ,./f/+1} and let /c be the minimal 
element of the symmetric difference Fx AF2, k E Fj, say. Clearly A: = /2a_ i, i.e., its 
order in F\ is odd. Consider the hyperplane H passing through the vertices {/?(/): 
i E: F\ — {k}}. We claim that H separates conv Fx and conv F2. The equation of H is 

H(xux2,. . . ,xd) = det 

1 * . 

1 / , 

1 

1 id f 

* d 

where the row corresponding to k is missing. Set/(f) = H{t,t2,. . . ,td), this is a 
polynomial in t of degree d. Then/(/,) = 0 for is ^ k, i.e., its roots are exactly 
{/i,..., id+ \}\{k}. Let, say f(k) > 0. Then the sign off(t) is negative for every integer 
t > k except for those with t = is. So H(x) > 0 for x E {/?(/):/ E F,} and //(JC) ^ 0 
for* E {/?(/):/ E F2}. Thus we obtained |2F| pairwise disjoint simplices. To cover them 
requires at least that many points so gd(n) > |2F|. 
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The case d is even is similar. We define 

Q = {p(i):i = 1,2 /i - 2} U {v, -v} 

where v is in general position with respect \op(i) and ||v|| is large enough. This means 
that each facet of TT = conv{/?(/) : / = 1,. . . , n — 2} is visible from either v o r - v . As 
it is well-known [7, 12], IT has <Jn) + 0(nd/2']) facets Fl9...,Fs. Now in the 
following set of simplices no two have a common interior point: 

{conv(F, U {v}):Fj is visible from v} 

U {conv(F/ U {v}):Fj is visible from — v} 

U {conv{/?(/,),. . . ,/?(/,/+.,):l ^ /, < i2 < . . . < id < id+] = n - 2, 

/2p
 = «2p - i + 1 for p = 1,. . . , d/2}. 

This set of simplices shows that the simplices of Q cannot be covered by less than 2(d"2) 
+ 0(nd/2~]) points. Details are left to the reader. 
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