The Number of Maximal Independent Sets in Connected Graphs

Zoltán Füredi

MATHEMATICAL INSTITUTE HUNGARIAN ACADEMY OF SCIENCE BUDAPEST, 1364 P.O.B. 127 HUNGARY

ABSTRACT

Generalizing a theorem of Moon and Moser, we determine the maximum number of maximal independent sets in a connected graph on n vertices for n sufficiently large, e.g., n > 50.

1. INTRODUCTION AND EXAMPLES

Let G=(V,E) be a simple graph (i.e., undirected, without loops and multiple edges.) The set of vertices joined to any particular vertex $x\in V$ of G will be denoted by $\Gamma(x)$. The degree of x is $d_G(x)=|\Gamma(x)|$. The maximum degree is denoted by $\Delta(G)$. For a set A the graph G-A is obtained from G by removing the elements of A and their incident edges. For a positive integer n, K_n denotes the complete graph on n vertices, and $G^1+G^2+\ldots+G^t$ or $\sum_{1\leq i\leq t}G^i$ denotes the vertex disjoint union of the graphs G^1,\ldots,G^t . The subset $A\subset V$ is independent if there is no edge $e\in E$, $e\subset A$. The subset A is maximal independent set if it is independent and $A\cup\{x\}$ is not independent for $x\in V-A$. Let $i(G)=|\{A:A\subset V,A$ maximal independent set in $G\}|$. In this paper we deal with the function i(G).

Example 1.1. Let $a_n = i(P_n)$, where P_n denotes the path of length n. Then $a_1 = 1$, $a_2 = 2$, $a_3 = 2$, and $a_n = a_{n-2} + a_{n-3}$ for $n \ge 4$. Hence $a_n \le 2\alpha^{n-2}$, where α is the (unique) real solution of the equation $1 + \alpha = \alpha^3$, $[\alpha = [(1 + \sqrt{23/27})/2]^{1/3} + [(1 - \sqrt{23/27})/2]^{1/3} = 1.32...)$.

Example 1.2. Let $b_n = i(C_n)$, where C_n denotes the circuit of length n. Then $b_3 = 3$, $b_4 = 2$, $b_5 = 5$, and $b_n = b_{n-2} + b_{n-3}$ for $n \ge 6$. Hence $b_n \le 3\alpha^{n-3}$. (For α , see Example 1.1).

Journal of Graph Theory, Vol. 11, No. 4, 463–470 (1987) © 1987 by John Wiley & Sons, Inc. CCC 0364-9024/87/040463-08\$04.00 **Example 1.3.** Let h(1) = 1 and for $n \ge 2$ define

$$h(n) = \begin{cases} 3^t & 3t \\ 4 \cdot 3^{t-1} & \text{for } n = 3t + 1 \\ 2 \cdot 3^t & 3t + 2, \end{cases}$$

where $t \ge 0$, integer. Define the graphs G_n with n vertices as follows:

$$G_n = \begin{cases} tK_3 \text{ (i.e., vertex disjoint union of } t \text{ triangles)} \\ & \text{for } n = 3t, \\ \text{either } (t-1)K_3 + 2K_2 \text{ or } (t-1)K_3 + K_4 \\ & \text{for } n = 3t + 1 \text{ (i.e., in this } \\ & \text{case } G_n \text{ denotes two graphs)} \\ tK_3 + K_2 & \text{for } n = 3t + 2. \end{cases}$$

Clearly $i(G_n) = h(n)$.

Example 1.4 Let $F_2 = 2K_1$, $F_3 = P_3$ or $K_2 + K_1$, $F_4 = P_4$ or $K_3 + K_1$, $F_5 = C_5$, $F_6 = 3K_2$, $F_7 = C_5 + K_2$ and for $n \ge 8$

$$F_n = \begin{cases} (t-2)K_3 + 3K_2 & 3t \\ (t-3)K_3 + 5K_2 & \text{for } n = 3t+1 \\ (t-2)K_3 + 4K_2 & 3t+2 \end{cases}$$

Denote by $h_2(n) = \max\{i(G): |V(G)| = n, \Delta(G) \le 2, G \text{ is not isomorphic to } G_n \text{ (see Example 1.3)}\}$. Our first result is the following easy

Proposition 1.5. $h_2(2) = 1$, $h_2(3) = 2$, $h_2(4) = 3$, $h_2(5) = 5$, $h_2(6) = 8$, $h_2(7) = 10$, and for $n \ge 8$ we have

$$h_2(n) = i(F_n) = \begin{cases} 8 \cdot 3^{t-2} & 3t \\ 32 \cdot 3^{t-3} & \text{for } n = 3t + 1 \\ 16 \cdot 3^{t-2} & 3t + 2 \end{cases}$$

and the extremal graphs are given by Example 1.4.

Proof. Let $G_2 = \{G: \Delta(G) \le 2, |V(G)| = n, G \ne G_n\}$. Each $G \in G_2$ consists of paths, circuits, and isolated vertices. Consider the components of a $G \in G_2$, $G = G^1 + G^2 + \ldots + G'$. Then $i(G) = \prod_{1 \le j \le i} i(G^j)$. If the path P_k with $k \ge 7$ is a component of G, then deleting it and replacing it with $C_{k-3} + K_3$ we obtain a graph G', $G' \in G_2$, i(G') > i(G). Similarly, the following operations increase $i(G): C_k \to C_{k-3} + K_3$, $C_6 \to 3K_2$, $P_6 \to 3K_2$, $P_5 \to C_5$, $C_4 \to P_4$.

From now on we can suppose that G consists of only P_4 , K_3 , P_3 , K_2 , and K_1 . The following operations imply that if P_4 is a component of G then $G = P_4: 2P_4 \rightarrow 4K_2$, $P_4 + K_3 \rightarrow C_5 + K_2$, $P_4 + P_3 \rightarrow 3K_2 + K_1$, $P_4 + K_2 \rightarrow 3K_2$, $P_4 + K_1 \rightarrow 2K_2 + K_1$. In the same way, if P_3 is a component then $G = P_3$ because $2P_3 \rightarrow 3K_2$, $P_3 + K_3 \rightarrow 3K_2$, $P_3 + K_2 \rightarrow C_5$, $P_3 + K_1 \rightarrow K_3 + K_1$.

Hence we can suppose that $G = uK_3 + vK_2 + wK_1$. First we prove that $w \ge 1$ implies $n \le 4:3K_1 \to K_2 + K_1$, $K_3 + 2K_1 \to C_5$, $K_2 + 2K_1 \to K_3 + K_1$, $2K_3 + K_1 \to C_5 + K_2$, $2K_2 + K_1 \to C_5$, $K_3 + K_2 + K_1 \to 3K_2$. Finally, for $n \ge 8$ we have that G consists of some copies of K_3 and K_2 only. Using $6K_2 \to 2K_3 + 3K_2$ we get that an extremal G is isomorphic to F_n .

2. GRAPHS WITH MAXIMUM NUMBER OF MAXIMAL INDEPENDENT SETS

Answering a question raised by Erdös and Moser, Erdös, and later Moon and Moser [5] proved that the graphs G_n given by Example 1.3 have the maximum number of maximal independent subsets. Here we prove somewhat more. Define $h_0(n) = h(n-1)$ for $2 \le n \le 6$ and for $n \ge 6$ let

$$h_0(n) = \begin{cases} 8 \cdot 3^{t-2} & 3t \\ 11 \cdot 3^{t-3} & \text{for } n = 3t + 1 \\ 16 \cdot 3^{t-2} & 3t + 2 \end{cases}.$$

Theorem 2.1. Suppose G is a graph with n vertices. Then either $G \simeq G_n$ [and then i(G) = h(n)] or $i(G) \le h_0(n)$ holds.

This theorem is best possible as the following example shows:

Example 2.2. Let $H_i = :F_i$ for $2 \le i \le 5$ and $H_6 = :2K_3 \cup \{e\}$, i.e., a connected graph with 6 vertices, 7 edges, and $H_7 = K_3 + K_4 \cup \{e\}$. (See Figure 1.) Generally, for $n \ge 6$ let

$$H_n = \begin{cases} H_6 + (t-2)K_3 & 3t \\ H_7 + (t-2)K_3 & \text{for } n = 3t+1 \\ H_6 + K_2 + (t-2)K_3 & 3t+2 \end{cases}.$$



FIGURE 1.

Proof. If $\Delta(G) \le 2$ then by Proposition 1.5 we have $i(G) \le h_2(n) \le h_0(n)$, and we are ready. From now on we can suppose that $\Delta(G) \ge 3$. We use induction on n. It is easy to check the cases $1 \le n \le 4$.

For $n \ge 5$ let x be a vertex with maximum degree. A maximal independent set D is maximal in G - x if $x \notin D$. Similarly, if $x \in D$ then the set D - x is maximal in $G - x - \Gamma(x)$. Hence we have

$$i(G) \le i(G - x) + i[G - x - \Gamma(x)]. \tag{1}$$

Now (1) implies that

$$i(G) \leq h(n-1) + h(n-4).$$

Hence $i(G) \le 5$ for n = 5. For $n \ge 6$ we can use h(n - 4) = (1/3)h(n - 1). We obtain $i(G) \le (4/3)h(n - 1) = h_0(n)$ for $n \equiv 0$ or 2 (mod 3).

From now on it is enough to consider the case $n = 3t + 1 \ (\ge 7)$. If $\Delta(G) \ge 4$ then (1) yields

$$i(G) \le h(3t) + h(3t - 4) = 3^{t} + 2 \cdot 3^{t-2} = h_0(3t + 1)$$

and we are ready.

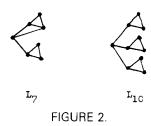
If $G - x \neq G_{3t} = tK_3$ then $i(G - x) \leq 8 \cdot 3^{t-2}$ by the induction hypothesis, hence (1) gives

$$i(G) \le h_0(3t) + h(3t - 3) = 8 \cdot 3^{t-2} + 3^t = h_0(3t + 1)$$
.

Finally, the only remaining case is n = 3t + 1, $G - x = tK_3$, $\Delta(G) = 3$, $G \neq G_n = K_4 + (t - 1)K_3$. Then either $G = L_{10} + (t - 3)K_3$, or $G = L_7 + (t - 2)K_3$, where $L_7(L_{10})$ is a connected graph on 7(10) vertices consisting of $2K_3(3K_3)$ and an extra vertex of degree 3 (see Figure 2). In both cases $i(G) = 3^t < h_0(n)$.

3. INDEPENDENT SETS IN CONNECTED GRAPHS

H. S. Wilf [10] posed the problem to determine max i(G) over the class of connected graphs. P. Erdös (private communication) conjectured that this maxi-



mum is attained in a "connected version of G_n ." In this section we prove this conjecture and determine the extremal graphs, at least for n sufficiently large.

Example 3.1. Let $G = tK_3, x \in V(G)$ and join x with one edge to each of the other (t - 1) components. We obtain T_{3t} (see Figure 3).

For n = 3t + 1 let $G = K_1 + tK_3$ denote the isolated point by x. Join x with one edge to (t - 1) copies of K_3 and with 3 edges to the tth copy. We obtain T_{3t+1} .

For n = 3t + 2 consider $G = K_4 + (t - 1)K_3 + K_1$, and join the isolated point with an edge to each component, and with 3 edges to one K_3 .

Clearly, for the above defined graphs T_n ($n \ge 8$) we have

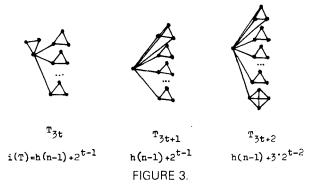
$$i(T_n) =: c_0(n) = \begin{cases} 2 \cdot 3^{t-1} + 2^{t-1} & 3t \\ 3^t + 2^{t-1} & \text{for } n = 3t + 1 \\ 4 \cdot 3^{t-1} + 3 \cdot 2^{t-2} & 3t + 2 \end{cases}.$$

10970118, 1987, 4, Downloaded from https://oinel libitrary.wiley.com/doi/1010102/jg3190110403 by University Of Illinois At, Wiley Online Library on [1706/225]. See the Terms and Conditions (https://oinel libitrary.wiley.com/terms-and-conditions) on Wiley Online Library for nules of use; OA articles as governed by the applicable Creative Common License

Denote by $c(n) =: \max\{i(G): |V(G)| = n, G \text{ is connected}\}.$

Theorem 3.2. For n > 50 we have $c(n) = c_0(n)$.

Besides Theorem 2.1 the following lemma is the main tool of the proof:



Lemma 3.3. Let G be a connected graph with n vertices, $\Delta(G) \leq 6$. Then $i(G) \le 3^{n/3} \cdot 1.009^{-n+3} = [z(n)].$

Proof of 3.3. It is easy to check that $h(n) \le z(n)$ for $1 \le n \le 4$ and $h_0(n) \le z(n)$ holds for $5 \le n \le 9$. We use induction on n. Let x be a vertex of G with maximum degree Δ . Consider the components of $G - x = G^{\perp} +$ $G^{2} + \ldots + G^{u}$ ($u \leq \Delta$) and $G - x - \Gamma(x) = H^{1} + H^{2} + \ldots + H^{v}$ $(\nu \leq \Delta(\Delta - 1))$. Apply the induction hypothesis for G^a and H^b . The inequality (1) yields

$$i(G) \leq i(G - x) + i[G - x - \Gamma(x)]$$

$$= \prod_{1 \leq i \leq u} i(G') + \prod_{1 \leq i \leq v} i(H')$$

$$\leq \prod_{1 \leq i \leq u} z[|V(G')|] + \prod_{1 \leq i \leq v} z[|V(H')|]$$

$$= 3^{(n-1)/3} \cdot 1.009^{-n+1+3u} + 3^{(n-1-\Delta)/3} \cdot 1.009^{-n+1+\Delta+3v}$$

$$\leq 3^{n/3} \cdot 1.009^{-n+3} \left[\frac{1}{3^{1/3}} 1.009^{3\Delta-2} + \frac{1}{3^{(\Delta+1)/3}} 1.009^{3\Delta(\Delta-1)+\Delta-2} \right]$$

Here the sum in the parentheses is less than 1 for $3 \le \Delta \le 6$. The case $\Delta = 2$ follows from the fact $a_n, b_n \le 3\alpha^{n-3} \le z(n)$. (See Example 1.2).

The proof of Theorem 3.2. Let G be a connected graph on n vertices with $i(G) = c(n) \ge 4 \cdot 3^{-5/3} \cdot 3^{n/3}$. For n > 50 we have z(n) < c(n), hence by Lemma 3.3 we can suppose that $\Delta \ge 7$. Let x be a vertex with maximum degree. If $G - x \neq G_{n-1}$ given by Example 1.3, then (1) and Theorem 2.1 yields 10970111, 1987, 4, Downloaded from https://onlinelthrury.wiley.com/ubiv/10.1002/jg1.390110403 by University Of Illinois At, Wiley Online Library on [17:06-2025]. See the Terms and Conditions (https://onlinelthrury.wiley.com/terms-and-conditions) on Wiley Online Library for nites of use; OA articles are governed by the applicable Certainve Commons License

$$h(n-1) < c(n) = i(G) \le i(G-x) + i[G-x-\Gamma(x)]$$

$$\le h_0(n-1) + h(n-8) \le \frac{11}{12}h(n-1) + \frac{1}{12}h(n-1) = h(n-1),$$

a contradiction. Hence we obtain that $G - x \approx G_{n-1}$. Now, knowing the structure of G it is easy to calculate i(G) and to show that i(G) is maximal when $G \simeq T_n$ (given by Example 3.1.).

The first few values of our functions $a_n, b_n, c(n), \ldots$ can be seen in Table 1.

4. REMARKS AND PROBLEMS

Let **F** be a family of finite sets. We say **F** has property Δ if for all distinct $A, B, C \in \mathbb{F}$ we have that the symmetric difference $A \Delta B \not\subset C$. Denote by

$$g(n) = \max\{|\mathbf{F}|: \mathbf{F} \subset 2^{V}, |V| = n, F \text{ has property } \Delta\}, \text{ and}$$
 $g_k(n) = \max\{|\mathbf{F}|: \mathbf{F} \subset 2^{V}, |V| = n,$

F has property Δ and for all $F \in \mathbf{F}$ we have $|F| = k\}$.

Erdös and Katona posed the problem to determine g and g_k . They have

Conjecture 4.1 [4].

$$g(n) = h(n) \le 3^{n/3} \tag{2}$$

and

$$g_k(n) = \prod_{0 \le i \le k-1} \lfloor n + i/k \rfloor \le (n/k)^k. \tag{3}$$

Simple constructions show that the right-hand sides of (2) and (3) are lower bounds. The best upper bound for g(n), $g(n) \le 1.5^n$ is due to Frankl and the author [3]. For k = 2, $g_2(n) = \lfloor n^2/4 \rfloor$ is a reformulation of Turán's theorem [7]. Bollobás [1] proved the case k = 3 and recently Sidorenko [6] proved the case k = 4. Some further results about $g_3(n)$ can be found in [2,8]. Clearly, for a graph G = (V, E) the maximal independent sets form a family with property Δ . Hence (2) would be a generalization of the Moon–Moser theorem.

Let $c_d(n) = \max\{i(G): |V(G)| = n, G \text{ connected}, \Delta(G) \le d\}.$

Example 4.2. Let $V = \bigcup_{1 \le i \le t(d-1)} V(K_3^i) \cup X$ where $|V(K_3^1)| = \cdots = |V[K_3^{t(d-1)}]| = 3, X = \{x_1, \dots, x_t\}$. Consider $G = t(d-1)K_3 = K_1^1 + K_1^2 + \cdots + K_1^{t(d-1)}$. Join the vertex x_i to triangles K_3^i with an edge for $(i-1) \cdot (d-1) + 1 \le j \le i(d-1) + 1$ (see Figure 4). We obtain the connected graph E_n for n = (3d-2)t, $\Delta(E_n) = d$, $i(E_n) = 3^{t(d-1)}$. This example shows that the coefficient 1.009 in Lemma 3.3 can be improved to at most $3^{1/39} = 1.028 \dots$ We have the following:

TABLE 1.

n	P _n	C _n	G _n h(n)	F_n $h_2(n)$	H_n $h_0(n)$	$C_0(n)$	c(n)	z(n)
1	1		1				1	1.46
2	2		2	1	1		2	2.09
3	2	3	3	2	2	3	3	3
4	3	2	4	3	3	4	4	4.28
5	4	5	6	5	5	5	5	6.12
6	5	5	9	8	8	8	8	8.76
7	7	7	12	10	11	11	11	12.52
8	9	10	18	16	16	15	15	17.9
9	12	12	27	24	24	22		25.58
10	16	17	36	32	33	31		36.57
11	21	22	54	48	48	42		52.27
12	28	29	81	72	72	62		74.72

FIGURE 4.

Conjecture 4.3. For fixed $d \ge 3$, $\lim_{n\to\infty} \sqrt[n]{c_d(n)} = 3^{(d-1)\ell(3d-2)}$. It would be interesting to determine max i(G) and the extremal graphs for other classes of graphs.

A more exact calculation, and a version of Lemma 3.3 about $c_5(n)$, yield that Theorem 3.2 holds for $n \ge 48$ and for n = 40, 43, 45, 46.

Conjecture 4.4. Theorem 3.2 holds for all n.

Note added in proof. Wilf's problem (and our Conjecture 4.4) was proved independently by J. Griggs, C. Grinstead and D. Guichard [9].

ACKNOWLEDGMENT

The author is indebted to A. Balog (Budapest, Hungary) and H. S. Wilf (Philadelphia, PA) for their helpful comments.

References

- [1] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third. *Discrete Math.* **8** (1974) 21–24.
- [2] P. Frankl and Z. Füredi, A new generalization of the Erdös-Ko-Rado theorem. *Combinatorica* 3 (1983) 341-349.
- [3] P. Frankl and Z. Füredi, Union-free hypergraphs and probability theory. *Eur. J. Combinat.* **5** (1984) 127–131.
- [4] G. O. H. Katona, Extremal problems for hypergraphs. In *Combinatorics* M. Hall, Jr., and J. H. Van Lint, Eds., Mathematics Centre Tracts 56, Amsterdam (1974), part 2, 13-42.
- [5] J. W. Moon and L. Moser, On cliques in graphs. *Isr. J. Math.* 3 (1965) 23–28.
- [6] A. F. Sidorenko, A combinatorial-analytical approach to extremal problems [in Russian]. *U.D. K.* **519** 1–517.
- [7] P. Turán, An extremal problem in graph theory. *Mat. Fiz. Lapok* 48 (1941) 436-452 [in Hungarian].
- [8] D. de Caen, Uniform hypergraphs with no block containing the symmetric difference of any two other blocks. *Congressus Numerantium* 47 (1985) 249–253.
- [9] J. R. Griggs, C. M. Grinstead, and D. Guichard, The maximum number of maximal independent sets in a connected graph, *Discrete Math.*, to appear.
- [10] H. S. Wilf, The number of maximal independent sets in a tree, SIAM J. Alg. Disc. Meth. 7 (1986) 125-130.