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ABSTRACT

Generalizing a theorem of Moon and Moser, we determine the maxi-
mum number of maximal independent sets in a connected graph on n
vertices for n sufficiently large, e.g., n > 50.

1. INTRODUCTION AND EXAMPLES

Let G = (V, E) be a simple graph (i.e., undirected, without loops and multiple
edges.) The set of vertices joined to any particular vertex x € V of G will be
denoted by I'(x). The degree of x is d;(x) = |['(x)|. The maximum degree is
denoted by A(G). For a set A the graph G — A is obtained from G by remov-
ing the elements of A and their incident edges. For a positive integer n, K, de-
notes the complete graph on n vertices, and G' + G* + ... + G'or 2., G’
denotes the vertex disjoint union of the graphs G',...,G". The subset A C V
is independent if there is no edge ¢ € E, ¢ C A. The subset A is maximal in-
dependent set if it is independent and A U {x} is not independent for x € V —
A. Let iiG) = {A:A C V, A maximal independent set in G}.
In this paper we deal with the function i(G).

Example 1.1. Let a, = i(P,), where P, denotes the path of length n. Then
a,=1,a,=2,a,=2,and a, = a,_, + a,_; for n = 4. Hence a, < 2a""?,
where a is the (unique) real solution of the equation | + a = o, [& =

[(1 + V23/27)/2]" + [(1 — V23/21)/217 = 1.32..)).

Example 1.2, Let b, = i(C,), where C, denotes the circuit of length n. Then
by=3,b,=2,bs=5,and b,=b,, + b,_, for n = 6. Hence b, = 3a"".
(For a, see Example 1.1).
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Example 1.3. Let A(1) = | and for n = 2 define

3 3t
h(n) = {4 - 3! forn = 3t + 1
23 3t + 2,

where t = 0, integer. Define the graphs G, with n vertices as follows:

(tK, (i.e., vertex disjoint union of ¢ triangles)
forn = 3¢,
G = { either 0 — DK; + 2K, or (t — DK; + K,
" forn = 3¢ + | (i.e., in this
case G, denotes two graphs)
\ K, + K, forn = 31 + 2.

Clearly i(G,) = h(n).

Example 1.4 Let F, = 2K, F, = P,or K. + K\, F,=P,or K; + K, F; =
Cs, Fo=3K,, F;, =Cs+ K,and forn = 8

(t — K5 + 3K, 3t
F, =% — 3)K; + 5K, forn =3¢ + 1
(r — 2)K, + 4K, 3r +2

Denote by h,(n) = max{i(G):|V(G)| = n, A(G) = 2, G is not isomorphic to
G, (see Example 1.3)}. Our first result is the following easy

Proposition 1.5, h,(2) = 1, h.(3) = 2, h,(4) = 3, hy(5) = 5, h,(6) = 8,
h,(7) = 10, and for n = 8 we have

g+ 372 3t
hy(n) = i(F,) = {32 - 3"* forn = 3 + 1
16 - 37° 3+ 2.

and the extremal graphs are given by Example 1.4.

Proof. Let G, = {G:A(G) =<2, |V(G) =n, G + G,}. Each G € G,
consists of paths, circuits, and isolated vertices. Consider the components of a
GEG,G=G" +G*+ ...+ G" Then i(G) = I, i(G". If the path P,
with k = 7 is a component of G, then deleting it and replacing it with
Ci_; + K; we obtain a graph G'. G’ € G,, i(G') > i(G). Similarly, the fol-
lowing operations increase i(G):C, — C, ; + K,, Cs — 3K,;, Py — 3K,, P —>
s, C,— P,.
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Suppose G is extremal, i.e., i(G) = hyn), G € G,. Then we obtained that
G consists of some copies of Cs, Py, K;, P, K,, and K,. The following opera-
tions show that if Cq is a component of G then G = C5or Cs + K,:2C5 —
5K,, C; + P,— 4K, + K|, Cs + K; = 4K,, C; + Py, — 4K,, Cs + 2K, —
K, + 3K,, Cs + K, — 3K,.

From now on we can suppose that G consists of only Py, K3, P;, K, and K.
The following operations imply that if P, is a component of G then G =
P,:2P,— 4K,, P, + K, > Cs + K,, P, + P,— 3K, + K|, P, + K, — 3K,,
P, + K, = 2K, + K,. In the same way, if P; is a component then G = P,
because 2P; — 3K,, P, + Ky — 3K,, P, + K, > C;, Py + K, —> K; + K.

Hence we can suppose that G = uK; + vK, + wK,. First we prove that
w = 1 implies n < 4:3K, > K, + K, K; + 2K, = Cs, K, + 2K, = K5 +
K,, 2K, + K, > Cs + K,, 2K, + K, = Cs, K; + K, + K, — 3K,. Finally,
for n = 8 we have that G consists of some copies of K; and K, only. Using
6K, —> 2K, + 3K, we get that an extremal G is isomorphic to F,. 1§

2. GRAPHS WITH MAXIMUM NUMBER OF MAXIMAL
INDEPENDENT SETS

Answering a question raised by Erdés and Moser, Erdés, and later Moon and
Moser |5] proved that the graphs G, given by Example 1.3 have the maximum
number of maximal independent subsets. Here we prove somewhat more.
Define ho(n) = h(n — 1) for2 = n < 6 and for n = 6 let

8372 3t
ho(n) = {11 - 37 forn =3t + 1
16 - 372 3+ 2.

Theorem 2.1. Suppose G is a graph with n vertices. Then either G = G, {and
then i(G) = h(n)] or i(G) = hy(n) holds.

This theorem is best possibie as the following example shows:
Example 2.2. Let H, =:F, for 2 =i < 5 and H, = :2K, U {¢}, i.e., a con-

nected graph with 6 vertices, 7 edges, and H; = K; + K, U {e}. (See
Figure 1.) Generally, for n = 6 let

Hg + (t — 2)K; 3t
H, =<H, + (t — 2)K; forn = 3t + 1
Hy + K, + (1 — 2)K, 3r + 2.
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FIGURE 1.

Proof. 1f A(G) = 2 then by Proposition 1.5 we have i(G) = hy(n) = hy(n),
and we are ready. From now on we can suppose that A(G) = 3. We use induc-
tion on n. It is easy to check the cases 1 = n = 4.

For n = 5 let x be a vertex with maximum degree. A maximal independent
set D is maximal in G — x if x & D. Similarly, if x € D then the set D — x is
maximal in G — x — I'(x). Hence we have

i{G) = i(G —x) +i[G —x — T(x)]. (D
Now (1) implies that
(G)=h(n — 1)+ hin — 4).
Hence i(G) = Sforn = 5. Forn = 6 wecanuse A(n — 4) = (1/3)h(n ~ 1).
We obtain i(G) = (4/3)i(n — 1) = hy(n) for n = 0 or 2 (mod 3).
From now on it is enough to consider the case n = 3¢r + 1 (= 7). If
A(G) = 4 then (1) yields
(G) = h(3t) + h(3t — 4) =3 +2-37=h(3t + 1)
and we are ready.
IfG ~x#G;, =tK;theni(G —x) =8 32 by the induction hypothe-
sis, hence (1) gives
HG) < hy(3t) + h(3t = 3) =8-372+ 3 = h(3r + 1).
Finally, the only remaining case is n = 3t + I, G — x = 1K;, A(G) = 3,
G+G,=K,+( — DK;. Theneither G =L, + (t+ — 3)K;,orG =L, +
(t — 2)K;, where L,(L,) is a connected graph on 7(10) vertices consisting of

2K,(3K;) and an extra vertex of degree 3 (see Figure 2). In both cases
i(G) = 3 < hy(n). 1

3. INDEPENDENT SETS IN CONNECTED GRAPHS

H. S. Wilf [10] posed the problem to determine max i(G) over the class of con-
nected graphs. P. Erdds (private communication) conjectured that this maxi-
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10
FIGURE 2.

mum is attained in a “connected version of G,.” In this section we prove this
conjecture and determine the extremal graphs, at least for n sufficiently large.

Example 3.1. Let G = 1K;,x € V(G) and join x with one edge to each of the
other (+ — 1) components. We obtain T, (see Figure 3).

Forn = 3r + 1 let G = K| + 1K, denote the isolated point by x. Join x
with one edge to (¢ — 1) copies of K, and with 3 edges to the rth copy. We
obtain 75,,.

For n = 3t + 2 consider G = K, + (+ — 1)K; + K|, and join the isolated
point with an edge to each component, and with 3 edges to one K.

Clearly, for the above defined graphs T, (n = 8) we have

237"+ 27! 3t
i(T,) =:¢c)n) =13 + 27 forn =3t + 1
4370 4 3.2 3t + 2.

Denote by c(n) =: max{i(G):|V(G)| = n, G is connected}.
Theorem 3.2. For n > 50 we have c(n) = cy(n).

Besides Theorem 2.1 the following lemma is the main tool of the proof:

. _
3t Tree1 T3¢,

1{T)=h(n-1) +25"1 n(n-1)+251 h(n-1) +3°2
FIGURE 3.

t-2
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Lemma 3.3. Let G be a connected graph with n vertices, A(G) < 6. Then
(G) = 3™ 1.0097"" [=: z(n)].

Proof of 3.3. It is easy to check that h(n) < z(n) for | = n = 4 and
ho(n) = z(n) holds for 5 < n < 9. We use induction on n. Let x be a vertex of
G with maximum degree A. Consider the components of G — x = G' +
G+ ...+G* " wu=ANandG —x -T'x) =H' +H*+ ...+ HY
(v = A(A — 1)). Apply the induction hypothesis for G* and H’. The incquality
(1) yields

i(G) =i(G ~x) +i[G — x — T'(x)]

.o i(G) + N i(H)

H <I<u lV(G I + HI.-:ISIJZ“V(HI)I]

— 3n—1)/3 . 1.m9'n+l+311 + 3(n—-l—A)/] . 1009 ntl+d+ 3w

. |
< 3. 1.009—,”1[ 1.009%2 + 3“”)/11 009ida-1+a- 2]

3]3

Here the sum in the parentheses is less than 1 for 3 =< A < 6. The case A = 2
follows from the fact a,, b, < 3a™* < z(n). (See Example 1.2). 1

The proof of Theorem 3.2. Let G be a connected graph on n vertices with
i(G) = c(n) =4-37"-3" For n > 50 we have z(n) < c(n), hence by
Lemma 3.3 we can suppose that A = 7. Let x be a vertex with maximum de-
gree. If G — x # G,_, given by Example 1.3, then (1) and Theorem 2.1 yields

hin — 1) < c(n) = i(G) = i(G — x) + i[G — x — T(x)]
11 1
Shfn — 1)+ hin — 8 SEh(n - 1) + Eh(n -1 =hn -1,
a contradiction. Hence we obtain that G — x = G, ;. Now, knowing the struc-
ture of G it is easy to calculate i(G) and to show that i{(G) is maximal when

G =T, (given by Example 3.1.). 1
The first few values of our functions a,,b,, c(n), ... can be seen in Table 1.

4. REMARKS AND PROBLEMS

Let F be a family of finite sets. We say F has property A if for all distinct
A,B,C € F we have that the symmetric difference AAB ¢ C. Denote by
g(n) = max{|F|:F C 2",|V| = n, F has property A}, and
g(n) = max{|F|:F C 2",|V| = n,
F has property A and for all F € F we have |[F| = k}.
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Erdés and Katona posed the problem to determine g and g,. They have

Conjecture 4.1 [4].
g(n) = h(n) = 3™ (2)

and

8i(n) = Iyeiyoyln + ilk)] = (’l/k)k- (3)
Simple constructions show that the right-hand sides of (2) and (3) are lower
bounds. The best upper bound for g(n), g(n) = 1.5" is due to Frankl and the
author {3). For k = 2, g,(n) = Ln?/4] is a reformulation of Turdn’s theorem
[7]. Bollobds [1] proved the case £ = 3 and recently Sidorenko {6} proved the
case k = 4. Some further results about g,(n) can be found in [2, 8]. Clearly,
for a graph G = (V, E') the maximal independent sets form a family with prop-
erty A. Hence (2) would be a generalization of the Moon—Moser theorem.

Let c,(n) = max{i(G):|V(G)| = n, G connected, A(G) < d}.

Example 4.2. Let V = U, _,o,q-1, V(K}) U X where [V(K)| =+ =
VIK“ )| =3,X ={x,,...,x} Consider G = d — DK, = K| + K| +
<o+ 4+ K'“Y Join the vertex x; to triangles K} with an edge for (i — 1)
d-1)+1=j=id— 1)+ 1 (see Figure 4). We obtain the connected
graph E, for n = (3d — 2)t,A(E,) = d,i(E,) = 3"“"". This example shows
that the coefficient 1.009 in Lemma 3.3 can be improved to at most 3'* =
1.028 ... We have the following:

TABLE 1.
P, C, G, F, H, T,

n a, b, hin) h,(n) holn) coln) cln) z(n)
1 1 1 1 1.46...
2 2 2 1 1 2 2.09
3 2 3 3 2 2 3 3 3
4 3 2 4 3 3 4 4 4.28
5 4q 5 6 5 5 5 5 6.12
6 5 5 9 8 8 8 8 8.76
7 7 7 12 10 1 1 11 12.52
8 9 10 18 16 16 15 15 179
9 12 12 27 24 24 22 25.58

10 16 17 36 32 33 31 36.57

1 21 22 b4 48 48 42 52.27

12 28 29 81 72 72 62 74.72

FIGURE 4.
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Conjecture 4.3. For fixed d = 3, lim,_., Ve, (n) = 3“ "2 It would be
interesting to determine max i(G) and the extremal graphs for other classes
of graphs.

A more exact calculation, and a version of Lemma 3.3 about ¢4(n), yield that
Theorem 3.2 holds for n = 48 and for n = 40,43, 45, 46.

Conjecture 4.4. Theorem 3.2 holds for all n.

Note added in proof. Wilf’s problem (and our Conjecture 4.4) was proved
independently by J. Griggs, C. Grinstead and D. Guichard [9].
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