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ABSTRACT

Let X be a family of ¢-sets on {1,2, ...,k}. A family ¥ of k-sets
on v elements is called a (v,k, ¥ }-packing if for all F € ¥ there is a copy
of ¥, X p such that the t-sets of F corresponding to X p are covered only

by F. Clearly, |F| < ;} /|J( |, and if ¥ is the complete t-hypergraph

then we obtain the usual definition of the (partial) Steiner-system. The
main result of this paper is that for every fixed £ and X the size of the

largest ¥-packing is (1—o(1)) 1t) /|¥ |, whenever v —oa

1. Preliminaries. Packings and near perfect matchings

Let X be a v-element set, X = {1,2,...,v}. For an integer k, 0 <k <v we
denote the collection of all k-subsets of X by )15 , while 2% denotes the power set of

X. A family of subsets of X is just a subset of 92X 1t is called k-uniform if it is a
X X

subset of el A Steiner-system § = S(v,k,t) is an § C Jk such that for every
Te )t(] there is exactly one B € § with T C B. Obviously, IS | = [;}

/
|

‘2:(] is called a (v,k,t)-packing if lPﬂPl| <t holds for every pair P,P € P. Rédl

k
14

] holds. A
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[16] proved that

ma,x{lP kPisa (v,k,t)—packing} = (1—o(1)) [it)]/[l,g] 1)

holds for every fixed k,t whenever v — ca

This theorem was generalized by Frankl and Rodl [13]. To state it, we recall some
definitions. For a family of finite sets ¥ and an arbitrary set A the degree of A is
defined by degz(A) =: {F € F: A C F}|. For A = {a} we set degz(a) =: degs({a}),
the usual definition of the degree of an element. A matching M of ¥ is a subfamily of
pairwise disjoint members, M C 7, MNM = & for all M,M € M. The largest car-

dinality of a matching is denoted by v(¥). Clearly, for ¥ C )Ic( we have

v(F) <v/k. (2)
(Frankl and RGdl [13]) For every € > 0 and k there exists a § > 0 and a vy = vg(k,€)

such that if #F C )k( , and every degree of ¥ is almost d (i.e., |degs(z)~d | < ed holds
for every x € X) and for every z,y € X we have deg#({z,y}) < d/(logv)? then

v(#) > (1~0)

holds for v > v,.
For a family of sets § C 2% the subset A C X is an own rart of GEGIfACG

and deg g (A) = 1, i.e,, A is contained only in G. Hence § C )k( is a (v,k,t)packing

if and only if every G € § has lz: own t-subsets. The aim of this paper is to con-

struct such families ¥ in which for every F € ¥ the family of own ¢-subsets of F is iso-
morphic to a given ¢-uniform hypergraph X. Such a family is called an X-packing. If
X is the complete t-hypergraph on k elements, an X¥-packing is just the usual (v,k,t)-
packing. The existence of large ¥-packings is proved in Chapter 2 and 5. The proof is
probabilistic, the main tool for the construction is (2). In Chapter 3 we give an appli-
cation solvin( (at least asymptotically) the question: what is the maximum size of a

X

family ¥ C A such that none of the members is contained in the union of r others.
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2. M-packings and colored ¥-packings

Let ¥ be a family of ¢-sets over k elements. Suppose that F C [)If] where

|X | = v and for every F € F there exists a copy of ¥ on F (i.e., Xp C { y Np = X).

If every t-set T €Xp is covered only by F (i.e., degz(T) = 1) then we call ¥ a
(vyk, X )-packing (or, briefly, ¥-packing). Clearly,

7] < [';]/ X1 (3)
E.g., the following family ¥ is a (v,4,C,)-packing of size (v2/8)+ O(v).
F=1{2i-1,22} U {27-1,2} 1 <i <j <v/[.

Definition 2.1. Let ¥ C [IE], K|=Fk,c= [I;J—I)II and fix a partition

[If =¥ U{T U ---U{T.} In other words, this is a  coloring

X: If —{0,1,...,¢} with x(T)=0 for T €X. The family ¥ C [{J, X|=vis

called a colored (v,k, X }-packing if
(i) |FNF]<t bolds for every two F,F €%, and

(ii) there exists a coloring of the t-sets of X with c¢+1 colors

‘;( =CoU C,U - --UC, such that for every F € ¥ the induced coloring of f‘

is isomorphic to X, especially Cy N f‘ ~ N. (L.e., there exists an injection

mp: F — K such that for T € [{ we have T € C y(xy(1))-) E-8., the following fam-
ily ¥ is a colored (v,4,C4)packin of size
(V2 /8) + O(v): F = 1{2i —1,2} U {24,2j+1}: 1 <7 < j <w/2[. We prove that

the upper bound in (3) for the size of ¥ is essentially the best possible.
Theorem 2.2, For every given k and X the size of the largest colored (v,k, X )-packing

is (1—o0(1})) ;) /W | when v = oa

In the proof we will use the following
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Lemma 2.3. Suppose n >ny(k), k>t >1,D < n?3. Then there exists a family of
k-sets $ on the n-element set N such that

() 15NS| <t holds for every two §,5 € §

and
(i) ldeg ¢ (T)—D | < 2VkDlogn holds for every T € [}t\{] In other words, there

exists a “near” D—(n,k,t)-design. Of course, for D < 4klogn (ii) is meaningless,
Let f(v,k,}) = max{|F|: Fis a (v,k,¥)-packing} and f,(v,k,¥) = max{|F|: ¥ is

a colored (v,k, ¥ )-packing}. Then f, < f. If W< Itc then we cannot expect equal-

ity in (3). The following two results are consequences of a theorem of Bollobds (2].

(4) ([2]) It ¥ | =1, then f(v,k,X) = v—iH-t

Gy (1) ¥ Wl= [‘: a complete hypergraph then for v >wvy(k) we have

Flo, kM) < {U—Jz+s]/ ':], where equality holds if and only if there exists a Steiner

system S{v—k+s, s,t).
Another special case of Theorem 2.2 (when ¥ is a star) was proved in [7]. Theorem 2.2

says that  |f(v,k,¥) — ;} /Mll=0("). In the cases (4) and (5)

[1; /I)l |—f(v,k,¥) > O(v'™!). In general, the gap may be much larger: Let K be the
graph with vertex-set {a,b,c,d} and edges {a,d}, {b,c}, {0,d}, {c,d}.

Proposition 2.4. Suppose that X is a graph, and that it has an induced subgraph iso-
morphic to K. Then

v 1
[2]/|)(|— flv, k.30 >W2—pl—| o2,
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3. r-cover-free families

We call the family of sets ¥ r-cover-free if Fy ¢ FyU *--UF, holds for all
Fo,Fy, ..., F, €F (F; # F; for i #+ 7). Let us denote by f,(n,k) the maximum cardi-

nality of an r-cover-free family ¥ C ]]:'T , INl=n. Let us set t = Pc/r] (upper
integer part). An {(n,k,t)-packing is r-cover-free, hence by (1)
fr(nvk) 2 (1 _0(1)) [?]/[Itc] -
On the other hand every F' € ¥ has an own t-subset. Indeed, F can be covered by r
t-sets, F=T\U - -UT,,T; € f . If for every 1 deg#(T;) > 1 then F is covered by r
others, which is a contradiction. This yields
fr(n,k) < [7;] .

Proposition 3.1. ([7]) For fixed k¥ and r
lim f,(n,k)/[?] = lim sup fr(n,lc)/[?] =: ¢, (k)
n—00 n —00

exists and is positive.

In the next theorem we determine the value of ¢, {k), or at least we show that the
calculation of it is a finite problem depending only on k.

Definition  3.2. Let  k,¢t,{ be positive integers k& >t{{+1), and
m(k,t,l) = max{|[N} N C It{]’ IK| =k, N does not contain [+1 pairwise disjoint

members}.

For k <t(I+1) define m(k,t,l) = [’:] and m(k,t,0) = 0. Considering all the ¢-sets

intersecting a given [-set we obtain that m(k,t,l) > [Itc] — [k;l] holds. In several

cases this is best possible:

(6) (Erdss, Ko and Rado [8]) m.(k,¢,1) = [’t“:ll] for k > 2t,

(7) (ExdSs [5]) m(k,t,0) = [’;] - [’“t"] for k > ko(t,1).
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Later ko(t,l) < 2t3! was established by Bollobés, Daykin and ErdSs [3]. We can prove
ko(t,l) < 2t%l (cf. [12]). The case t =2 was solved completely by Erdds and Gallai [8]

in 1959:
Na ®

for k£ > 2141 and the only extremal graphs are either Ky, or K — K;_,.

, [I:] - [k;lJ for all

A general upper bound was given by Frankl (see, e.g., in [10] or [11})

m(k,2,!) = max

I

2l+1
2

ti+t—1

Congecture 3.3. (Erdds [5]) m(k,t,!) = max ¢

k> (t+1)l.

mk,t,0) < 1[’{:11] )

For k and r let & = r(t—1) + {+1 where 0 <! <r (ie., t = Fc/r})
-1

Theorem 3.4. ¢, (k) = [;:] —m(k,t,l)

Other results and additional constructions can be found in [6] and [7] where exact
results are proved for the case r =2 and the cases (6)-(8), and also for k£ = 2r.

4. Proof of Lemma 2.3

We are going to use the following consequence of Chernoff inequality [4] (origi-
nally, the Bernstein’s improvement of Chebysheff inequality, see, e.g., Rényi [15]).

(9) Let Y,,..., Y, be independent random variables with
Prob(Y;=1) = q, Prob(Y;=0) = 1—gq, then

Prob(IY; — mg| > aVmg) < 2¢™%72

N

& let Yy be a random variable

For every F €
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Prob(Yp=1)=D/ [Z:f], (10)

Prob(Yp=0) =1 — Prob(Yp=1) .

Let ¥ be the random family, defined by ¥ = {F € [‘27

:Yp=1f For T € (]tV] define

Yrp=13%] {YF: T CF}. Then
E(YT) =D,

: independent random variables (9) gives that for every fixed T

As Yr is a sum of [Z:t

Prob(Yp —D| > (2leogn)l/2) < —2k- .
n

i

Hence

Prob(AT € ];,] with [Yp—D|> (2kDlogn)/?) < — - =o(1). (11)
n
Proposition 4.1. Prob(AU € |,V | with deg#(U) > 3k) < ——
roposition 4.1. Prob( t41 | with degz ) > 3k) T

Proof: We can choose a set U in distinet ways. Then we can chocse 3k k-sets

n
t+1
n—t—l1

(f—t—
through U in k 3tk 1 ways. The probability of the appearance of such a configura-

tion is (D/ Z:f])Sk Altogether, the probability in the left hand side is not larger

than
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3k
i—1 . [n—t—l
—t— 3 i
n (k—t—l) D ] < nitl k—t—1 D3
t+1 3k n— {t+12 "t (3%
k—t k—t

Using

Z::___i]/ k t] (k=t)/(n—t) <k/n and D < n2/ we obtain 4.1. O

Proposition 4.2. Let s =6 llc‘“ (D logn)o'SJ. Then the probability that there exists a
Te ]tV and 2s distinct members of ¥ such that Fy,...,F, €F with T CF; and

F,.; €Fwith |[F; N F,y; | >t (1 <4 <s)is less than 1/k%

Proof: It is analogous to the 4.1. We can choose such a configuration in at most

)] ( i

distinct ways. The probability of the appearance of each of these configuration in ¥ is

£+1

0/ Zj Y. For n sufficiently large (e.g., n > exp(k104k)) an easy calculation gives
4.2. 0O

The proof of 2.3. Choose a family ¥ at random as in {10). Then the sum of the proba-
bilities in (11), 4.1 and 4.2 is o(1) + 1/t+1) + 1/k? < 1. Hence there exists a family
F without the configurations deseribed in 4.1 and 4.2 and for which

|deg 7(T) — D | < (2k D logn)'/? (12)
N]
|

Now call a set F € F bad if there exists an ' €, F # F with [FNF|>¢t. Let
B = {F €¥: F is bad}, and define § = F—B. We claim that § fulfils the constraints

N
t

holds for every T €

of 2.3. Obviously (i) holds. If we prove that for every T €

degs(T) < (2—V2) Vk Dlogn

holds, then we are ready by (12). Suppose on the contrary, that for some T we have
degg(T) >3k%s. Then by 4.1 we can find By,...,By EB B; DT such that
(B;=T)N (B;—T) = for 1 <4 <j < sk. There ex1sts B; €B w1th [B NB;|>t.
Then we can choose a subsequence of B;'s such that B;,B;,...,B; -ud
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B,fl, ces ,B,{. are 2s distinct members. This contradicts 4.2, O

5. Proof of Theorem 2.2

To avoid trivialities suppose that ¢ > 2. To construct a colored (v,k, ¥ }-packing
we begin with a family § C (

‘f , |X | = v, given by Lemma 2.3 with D = V. In the

following calculations we suppose that A is a small but fixed positive real depending
only on k (e.g., h = 4“"). Furthermore, we suppose that v > vo(k). Let p = v™* and

let Z7 be a random variable for every T € )t( with distribution
Prob(Zy =7)=p for 1=1,2,...,c and
Prob(Zp =0)=1—cp .
In other words we color randomly and independently the t-sets of X. Recall that
c= 5| = WL Let ¢, =: {Tx Zp = i}, then for i >1
and by (9)
Prob(|Ic;]1—p [;)] | >+ ) < 2¢7 . (13)

Call a set S € S well-colored (with respect to the coloration {C¢, €y, ...,C,}) if the

restriction of the coloration to 'f is isomorphic to x. Denote the set of well-colored
k-sets by W. If ¢ is the number of non-isomorphic embeddings of x into [‘?] then

f-

Define an ¥ Funiform hypergraph A with vertex-set

k
k
t]' By

Prob(S is well—colored) = g p°(1—p)

i
S N Cy: S €8 well—colored|. Let d =: gp°(1—p) Wip/

Co,g-—- t

the choice of p and D we have
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d >t (14)
Proposition 5.1. Let T €Cg, then
Prob(|deg 4 (T) — d | > v°?) < e,
Proof: Consider the sets 8,,5,,...,5 €S8 with T CS;. As TE€C,,

Prob(S; €W) =gp°(1—c) U I)(l/[lf] Moreover these events are independent,
hence by (9)
Prob(|deg 4(T) — 1| > " Vi) < 2¢"" <V,
However |deg 4 (T) — d | > v°3 implies |deg 4 (T) — | > " Vi. o
This proposition and (13) yield that there exists a choice of {C¢, Cy,...,C.} for
which

+ ,Ut—l < ,Ut—h

lci 1< P[it)
holds for all ¢ > 1, and for every T €C
ldeg 4 (T) — d | < 0%

X

But by (14) d>v®" and for every T, # T, T, TQEt we have

deg y ({T1,To}) <1 < dflogv)®. Thus we can apply (2) to A. This gives that when-

ever v —* 00O

v(4) = (1-0(1)) ICol/ ¥ | = (1—0(1)) [f]/l?l l.

S

Finally, a matching M in A gives a colored ¥-cover, F = {S € §: ¢

NCoEM}. O

6. Proof of 2.4

Let ¥ be a (v,k,¥)-packing and let G denote the set of ‘“crowded” edges, i.e.,
G = {i,5): either {i,5} is uncovered or degs({i,i}) = 2}. For a vertex z €X denote
by f, the number of F € ¥ for which the vertex corresponding to @ in F' is z. Then

% S - 7= 5 [[2]— 51| - (15)

The main point is that
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Indeed, if = ap and {af,bp} € ¥ F, {ap,cr} & N p then, clearly {bp,cp} # {bp,cp}.
Moreover,

fz S n—1 (17)
holds for all x €X because {ap, dr} is an own edge. Finally (15)-(17) give

5122 /2Valn |

7. Proof of Theorem 3.4
Construction. Let N be a family of ¢-sets over the k-element set K such that N
does not contain {+1 pairwise disjoint members and suppose that |N|is maximal, i.e.,

[N|=m(k,t,l). Let X = K

Pl N and let ¥ be a colored (n,k, ¥ }-packing with size

7] = (1—0(1)) [';]/ .

We claim that ¥ is an r-cover-free family. Suppose on the contrary, that
Fo CFU -+ UF,. As |FoNF;| <t and |Fy| = r{t—1) + [+1, we have at least [+1
F; such that |[(F;\(FyU ‘- UF,_)) N Fo|l>t. Then |FyNF;|=t must hold and
thus we have at least /41 disjoint sets FyN F; such that FoNF; €N, a contradiction.

Upper bound. Let ¥y be an r-cover-free family. Let ¥, be the sets with small own
parts, Le., Fo={FE€FIUCF, [U|<t—1 such that degs(U)=1}. Clearly

17l < [tﬁl . Consider an F € F—F%, and let Ny be the non-own parts of F with ¢

f]-. 3F € 7 such that FNF D T},

elements, i.e., Np = {T €

Proposition 7.1. If FE€¥F—F, then Ny does not contain /41 pairwise disjoint
members.

Proof: Suppose for contradiction that Ty, ..., T4 € Np with | JT; | = ({+1)t. Let
P={Ty,...,Ti41» S1,- -+ »Sr_i_1} be a partition of F such that |S;|=t—1. Then
for each P E€P there exists an Fp€F, Fp#F with P CFp. Hence
F C{J{Fp: P €P}, 2 contradiction. O

Now Proposition 7.1 implies that |Np| < m(k,t,l), i.e., every F € F—F, contains at

k

¢ | —m(k,t,l) own t-subsets. Hence

least
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n
t

/ [’g]-m(k,t,e) .o

7] = il + 17-Fl < [tﬁl] +

A slightly more complicated argument gives that for n > ng(k)

I71< [’;]/ [’;] — mk,t,0)

8. Final Remarks

Actually, using the argument in Chapter 5 we can prove the following stronger
statement.

Theorem 8.1. Let ¥ be a family of ¢-sets on {1,2,...,k}. There exists a family
FC )lf , IX| = v of size

SN

(whenever v — od with the following properties:
() |FNF|<t for all distinct F.F € F

(i) For every F €F there is a permutation of its elements F = (z, ..., z;) such
that whenever lFﬂf‘Jl =t and F = (¥1, - -+ »vx) and FNF = {w,—l, s T,
then z; =y; for 1 <a<t,and {{},...,5} & ¥. It remains open whether we
can suppose in this theorem that the orderings on each F € ¥ can be obtained as
a restriction of an ordering of X.

Another open problem arises from the fact that our proof is probabilistic. It
would be interesting to give other (‘“‘real”) constructions. It is not necessarily hopeless,
e.g., N. Alon [1] pointed out that an exponentially large r-cover-free family can be
obtained using a recent explicit construction of J. Friedman [14] of certain generalized
Justensen codes.
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