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ABSTRACT 

Let M be a family of t-sets on {1,2, . . . ,k}. A family 3 of k-sets 
on v elements is called a (v,k, M)-packing if for all F E 3 there is a copy 
of M ,  M F  such tha t  the t-sets of F corresponding to M F  are covered only 

by F. Clearly, 171 5 b ] / I M  1, and if M is the complete t-hypergraph 

then we obtain the usual definition of the (partial) Steiner-system. The 
main result of this for every fixed k and M the size of the 

largest M-packing is / l M  1, whenever v -+m 

1. Preliminaries. Packings and near perfect matchings 

Let X be a v-element set, X = {1,2, . . . 
denote the collection of all k-subsets of X by 

A family of subsets of X is just a subset 

. For an integer k, 0 5 k 5 v we 

while 2x denotes the  power set of 

I t  is called k-uniform if i t  is a 

such tha t  for every 

X .  

subset of b]. A Steiner-system S = S ( v , k , t )  is an S C 

T E k] there is exactly one B E S with T C B. Obviously, IS I = I]/lj holds. A 

P c k] is called a (v,k,t)-packing if PnP’l < t holds for every pair P,P‘ E P. R6dl 
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[16] proved that 

holds for every fixed k,t whenever u + OQ 

This theorem was generalized by Frankl and R6dl (131. To state it, we recall some 
definitions. For a family of finite sets 3 and an arbitrary set A the degree of A is 
defined by d e g 3 ( A )  =: I{F € 5  A C F } I .  For A = { a }  we set d e g r ( a )  =: degF({a} ) ,  
the usual definition of the degree of an element. A matching M of 3 is a subfamily of 
pairwise disjoint members, M C 3, M f l  Td = 0 for all 

dinality of a matching is denoted by v(3). Clearly, for 3 

E M . The largest car- 

4 7 )  i ./k. (2) 

(Frankl and R6dl 131) For every E > 0 and k there exists a 6 > 0 and a vo = u0(k,e) 

such that if 3 C [:I, and every degree of 3 is almost d (i.e., (deg3(x ) -d  I 5 ~d holds 

for every x E X )  and for every x , y  E X  we have degT( {x , y } )  < d / ( l o g ~ ) ~  then 

v(3) > ; (1-6) 

holds for u > uo. 
For a family of sets 5 C 9 the subset A C X is an own 

and d e g $ ( A )  = 1, i.e., A is contained only in G. Hence 5 C 

of G E 5 if A C G 

is a (u,k,t)-packing 

own t-subsets. The aim of this paper is to con- if and only if every G € 5  has 

struct such families 3 in which for every F E 3 the family of own t-subsets of F is is* 
morphic to a given t-uniform hypergraph U. Such a family is called an U-pack ing .  If 
U is the complete t-hypergraph on k elements, an U-packing is just the usual ( u , k , t ) -  
packing. The existence of large U-packings is proved in Chapter 2 and 5. The proof is 
probabilistic, the main tool for the construction is (2). In Chapter 3 we give an appli- 
cation solvin (at least asymptotically) the question: what is the maximum size of a 

family 3 C I] such that none of the members is contained in the union of r others. 
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2. U-packings and colored U-packings 

Let M be a family of t-sets over k elements. Suppose tha t  3 C k] where 
( 1  

I = 21 and for every F € 7  there exists a copy of M on F (i.e., MF C KJ, MF x M ) .  

If every t-set T E M F  is covered only by F (i.e., degF(T) = 1) then  we call 3 a 
(w,k, M)-packing (or, briefly, M-packing). Clearly, 

E.g., the  following family 3 is a (v,4,C4)-packing of size (w2/8) + O(v). 

7 = 

Definition 2.1. Let M C k], /K I = k, c = - l M  I and fix a partition 

= M U {T,}U * * . U{T,}. In other words, this is a coloring 

x: 71 + {OJ, . . . , c }  with x ( T )  = 0 for T EM. The family 3 C , Bl= v is 

called a colored (21, k, Mtpacking if 

(i) 
(ii) there exists a coloring of the t-sets of X with c + l  colors 

1- {2i-l,2i} u {2j-l,2j}: 1 5 i < j 5 "/2 I 
11 

k/ 
k1 

pn#l 5 t holds for every two F,# €7, and 

M = C o  U C U . . . U C, such tha t  for every F E 3 the induced coloring of 

is isomorphic to x, especially C o  n M .  (I.e., there exists a n  injection 

TF: F -K such tha t  for T E we have T E C x ( T F ( ~ ) . )  E.g., the following fam- 

ily 3 of size (v ,4 ,  C,)-packin colored 

(v2/8) + O(w): 3 = (2i -1,2i} u {2j,2j+l}: 1 5 i < j < w/2 We prove tha t  

the upper bound in (3) for the size of 3 is essentially the best possible. 

kl 11 
1- 

a M 
lS t 

Theorem 2.2. For every given k and M the  size of the largest colored (u,k,M)-packing 

is (1-0(1)) k \ / \ N  I when Y -00 

In the proof we will use the following 
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Lemma 2.3. Suppose n > n,(k) ,  k > t 2 1, D 5 n2b.  Then there exists a family of 
k-sets S on the n-element set N such that 

(i) 
and 
(ii) 

IS f l  S‘ 1 5 t holds for every two S , S‘ E S 

ldegS(T)--D I <2- holds for every T E 

Let f ( v , k , U )  = max(131 3 i s  a (u,k,U)-packing 

a colored (v,k,U)-packing}. Then fc 5 f .  If lU I < 

. In other words, there 

exists a “near” D-(n,k,t)-design. Of course, for D < 4klogn (ii) is meaningless. 

f , ( v , k , U )  = max{I?I: ?is 

we cannot expect equal- 

ity in (3). The following two results are consequences of a theorem of Bollobk [2]. 

(4) (PI) If lU 1 = 1, then f ( v , k , U )  = 

(5) (171) If IU I = a complete hypergraph then for u > u,(k) we have 

f ( u , k , U )  I ~ - ~ + ‘ ] ~ l ~ \ ,  where equality holds if and only if there exists a Steiner 
system S(u-k+s, s , t ) .  
Another special case of Theorem 2.2 (when U is a star) was proved in [7]. Theorem 2.2 

says that I f ( v , k , U )  - b ] / \ N  I!= o(uf ) .  In the cases (4) and (5) 

/IN I - f ( v , k , U )  > 0(u f - ’ ) .  In general, the gap may be much larger: Let K be the t l 
graph with vertex-set {u,b,c ,d}  and edges {u ,d} ,  {b,c>, {b ,d) ,  {c,d}. 

Proposition 2.4. Suppose that U is a graph, and that it has an induced subgraph isc- 
morphic to K .  Then 
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3. r-cover-free families 

We call the family of sets 7 r-cover- free if Fo (Z F,U . . . UF, holds for all 
Fo,F1, . . . , F, E 7 (Fi # Fj for i # j ) .  Let us denote by f, ( n , k )  the maximum cardi- 

nality of an r-cover-free family 7 c , I N I  = n. Let us set t = k1 
integer part). An (n,k,t)-packing is r-cover-free, hence by (1) 

On the other hand every F € 7  has an own t-subset. Indeed, F can be covered by r 

t-sets, F = T,U * * * UT,, Ti E . If for every i degF(Ti;.) > 1 then F is covered by r 

others, which is a contradiction. This yields 
M 

Proposition 3.1. ([7]) For fixed k and r 

exists and is positive. 

calculation of it is a finite problem depending only on k. 
In the next theorem we determine the value of c , ( k ) ,  or at least we show that the 

Definition 3.2. Let k,t ,E be positive integers Ic 2 t( l+l),  and 

m ( k , t , l )  = max{IN 1 N C I = k, U does not contain 1+1 pairwise disjoint 

members}. 

, kl 
For k < t ( l + l )  define m ( k , t , l )  = and m ( k , t , O )  = 0. Considering all the t-sets 

1) - I;'] holds. In several intersecting a given 1-set we obtain that m ( k , t , l )  2 
cases this is best possible: 

(6) (ErdEs, KO and Rado [S]) m ( k , t , l )  = '--l t-l for k 2 2 t ,  

k1 

I 1  
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Later k o ( t , l )  < 2t31 was established by Bollobis, Daykin and Erdljs [3]. We can prove 
ko( t , l )  < 2t21 (cf. [12]). The case t -2 was solved completely by Erdljs and Gallai 181 
in 1959: 

for k 2 21+1 and the only extremal graphs are either K,(+, or Kk - Kk-,. 

A general upper bound was given by Frankl (see, e.g., in [lo] or [ 1 1 ] )  

For k and r let Ic = r ( t -1)  + 1+1 where 0 5 1 < r (i.e., t = /r  . F b  

Other results and additional constructions can be found in [6] and [7] where exact 
results are proved for the case r = 2  and the cases (6)-(S), and also for k = 2r .  

4. Proof of Lemma 2.3 

nally, the Bernstein's improvement of Chebysheff inequality, see, e.g., Re'nyi [15]). 
We are going to use the following consequence of Chernoff inequality [4] (origi- 

(9) Let Y l ,  . . . ,Y, be independent random variables with 
P r o b ( F = 1 )  = q ,  Prob(I.;.=O) = 1-q ,  then 

Prob ( IC yi - mq I > a 6 )  < 2 e-O2B . 

For every F E k] let Y, be a random variable 
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Prob(YF=O) = 1 - Prob(YF=l) . 

E(YT) = D . 

AS Y, is a sum of 21; independent random variables (9) gives that for every fixed T 

Frob( PT - D I > (2kDlogn) 'F) < - . 2 
n k  

I 1  
Hence 

1 
t +1 

Proposition 4.1. Prob(3U E ltY1] with degF(U) 1 3 k )  < -. 

Proof: We can choose a set U in [ t ; l ]  distinct ways. Then we can choose 3k k-sets 

through U in ['<:-')] ways. The probability of the appearance of such a configura- 

tion is (D/ )3k .  Altogether, the probability in the left hand side is not larger 

n -t -1 

than I 1  
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3k 

D3k 
(3k)!  

Using ~ ~ ~ ~ ~ ] / ~ - - ~ ]  = (k-t)/(n--t) < k/n and D 5 n2p  we obtain 4.1. 0 

Proposition 4.2. Let s = 6 [k-' (D l ~ g n ) ' . ~ ] .  Then the probability tha t  there exists a 

T E k] and 29 distinct members of 3 such tha t  F,, . . . , F, E 3 with T C Fi and 

Fs+i E 3 with pi n I > t (1 5 i 5 s) is less than  l/k2. 

Proof: It is analogous to the 4.1. We can choose such a configuration in  at most 

distinct ways. The probability of the appearance of each of these configuration in 3 is 

2s. For n sufficiently large (e.g., n > e ~ p ( k " 4 ~ ) )  an easy calculation gives (D 1 [ k-t ] ) 
4.2. 0 

The proof of 2.3. Choose a family 3 at random as in (10). Then the  sum of the proba- 
bilities in (ll),  4.1 and 4.2 is o(1) + l/(t+l) + l/k' < 1. Hence there exists a family 
3 without the configurations described in 4.1 and 4.2 and for which 

ldegF(T) - D I < ( 2 k D l o g n ) ' F  (12) 

holds for every T E k]. 
Now call a set F E 7 bad if there exists an F' E 3, F # F' with pFn# I > t. Let 

8 = {F E 7: F is bad}, and define S = 3-8 .  We claim tha t  S fulfils the  constraints 

of 2.3. Obviously (i) holds. If we prove tha t  for every T E k1 
degB ( T )  < ( 2 - f i )  

holds, then we are ready by (12). Suppose on the contrary, tha t  for some T we have 
degB(T) > 3 k 3 s .  Then by 4.1 we can find B,, . . . , B s k  € 8 ,  Bi 3 T such tha t  
(Bi--T) n (Bj-T) = 0 for 1 < i  < j 5 sk. There exists B: EB with DinBi I > t .  
Then we can choose a subsequence of Bj's such t h a t  Bi,, Biz, . . . ,B;8 %,id 
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B$!,, . . . are 2s distinct members. This contradicts 4.2. 0 

5. Proof of Theorem 2.2 

To avoid trivialities sup ose tha t  t 2 2. To construct a colored (v,k,U)-packing 

we begin with a family S C I = u ,  given by Lemma 2.3 with D = %. In the 

following calculations we suppose tha t  h is a small bu t  fixed positive real depending 
only on k (e.g., h = 4-k ) .  Furthermore, we suppose tha t  w > vo(k). Let p = v-h and 

let 2, be a random variable for every T E 

, kl 
with distribution kl 

Prob(ZT = i) = p for i=1 ,2 ,  . . . , c  and 

Prob(2T = 0) = 1 - cp  . 
In other words we color randomly and independently the t-sets of X .  Recall tha t  

c = 1) - lU I. Let C i  =: {T: 2, = i}, then for i 2 1 

E ( ~ c i ~ ) = p k ] ,  

and by (9) 

B o b (  I IC i  I - p I > d-') < 2e-" . (13) 11 
Call a set  S E S well-colored (with respect to the coloration {C 

restriction of the coloration to 

C . . . , C c}) if the  

is isomorphic to x. Denote the set of well-colored k1 
k-sets by W .  If g is the number of non-isomorphic embeddings of x into 

1 1 - c  
P ~ O ~ ( S  is well-colored) = g p'(1-p) . 

Define an  lU tuniform A with vertex-set 

kl-c-l lU D/h]. By 

the choice'of p and D we have 
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d > v o 4  (14) 

Proposition 5.1. Let T E Co, then 

Prob( ldegA ( T )  - d I > < e-” . 
Proof: Consider the sets S,, S,, . . . ,S, E S  with T C S i .  ks T ECo, 

Prob(Si E W )  = g p c  (1 - c )  I U . v k ] .  Moreover these events are independent, 

hence by (9) 

Prob( IdegA (TI  - 1 I > vh VT) < 2e-u* < e-’* . 
However Idegg (T)  - d I > v0.3 implies IdegA (T) - 1 I > vh VT. 0 

which 
This proposition and (13) yield that there exists a choice of {Co, C1, . . . , C,} for 

holds for all i 2 1, and for every T E C 

ldegA (T)  - d I 5 . 

But by (14 )  d and for every T ,  # T2, T I ,  T2 E k] we have 

degI({Tl,T2}) _< 1 < d / ( l ~ g v ) ~ .  Thus we can apply (2) to A .  This gives that when- 
ever v --coo 

v ( A )  2 (1-0(1)) l C o I / l ~  I = (1-4)) t /IN I. 11 
Finally, a matching M in A gives a colored U-cover, 7 = {S E s: 

6. Proof of 2.4 

Let 3 be a (v,/c,U)-packing and let g denote the set of “crowded” edges, i.e., 
9 = {{i,j) either {i,j} is uncovered or degF({i , j})  2 2). For a vertex z E X  denote 
by f, the number of F E 3 for which the vertex corresponding to  a in F is x. Then 

The main point is that 
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Indeed, if 2 = aF and {aF,bF} 
Moreover, 

UF, {uF,cF} U p  then, clearly { b F , c F }  # {bp,cp}. 

f, 5n - 1  (17) 

holds for all z EX because {aF, dF} is an own edge. Finally (15)-(17) give 
14 I 2 ."/2/2 fi I. 
7. Proof of Theorem 3.4 

does not contain 1+1 
Construction. Let N be a family of t-sets over the k-element set K such that N 

members and suppose that IN I is maximal, i.e., 

let 3 be a colored (n,k,U)-packing with size IN I = m ( k , t , l ) .  Let 

We claim that 3 is an r-cover-free family. Suppose on the contrary, that 
FO CFlU  * - UFr. As  ponFi 15 t and pol = ~ ( t - 1 )  + 1+1, we have at least 1+1 
4 such that l(4 \ (Flu - * * Uc-l)) n Fo( 2 t .  Then ponFi I = t must hold and 
thus we have at least 1+1 disjoint sets FonFi such that FonFi E N ,  a contradiction. 

Upper bound. Let F0 be an r-cover-free family. Let 30 be the sets with small own 
parts, i e . ,  , 30 = {F E 7: 3U C F,  IU I 5 t-1 such that degF(U) = 1). Clearly 

17~1s ltZlJ. Consider an F E7-F0 and let NF be the non-own parts of F with t 
( \  

elements, i.e., N F  = {T E 

Propoclition 7.1. If F E7-F0 then NF does not contain 1+1 pairwise disjoint 
members. 

: 3$ E 3 such that F n F /  3 T}. KJ 

Prooj: Suppose for contradiction that T,, . . . ,TI+, E NF with IUII: I = (I+l)t. Let 
P = {T,, . . . ,T,+,, S,, . . . ,Sr-1-,} be a partition of F such that ISi I = t-1. Then 
for each P E P  there exists an Fp €3, Fp # F with P C Fp. Hence 
F C u { F p :  P E P}, a contradiction. 0 

Now Proposition 7.1 implies that lUFl 5 m(k,t , l ) ,  i.e., every F €7-7, contains at 

least I] - m(k , t , l )  own t-subsets. Hence 
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A slightly more complicated argument gives tha t  for n > no(k )  

8. Final Remarks 

Actually, using the argument in Chapter 5 we can prove the  following stronger 
statement. 

Theorem 8.1. Let M be a family of t-sets on {1,2, . . . ,k}. There exists a family 

3 c k] , I = w of size 

(whenever w + 00) with the following properties: 

(i) PFnF’I 5 t for all distinct F,F’ E 3 
(ii) For every F E 3 there is a permutation of its elements F = (zl, . . . , z k )  such 

tha t  whenever PFnF’I = t and F’ = (yl, . . . , y k )  and FnF’ = { x i l ,  . . . ,zit} 

then xi,  = yi, for 1 5 a 5 t ,  and {il, . . . ,it} 6 U. I t  remains open whether we 
can suppose in this theorem t h a t  the orderings o n  each F E 3 can be obtained as 
a restriction of an ordering of X .  

Another open problem arises from the  fact tha t  our  proof is probabilistic. It 
would be interesting to give other (“real”) constructions. It is not necessarily hopeless, 
e.g., N. Alon [I] pointed out  tha t  an exponentially large r-cover-free family can be 
obtained using a recent explicit construction of J. Friedman [14] of certain generalized 
Justensen codes. 
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