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Abstract. Let f(n, k) denote the maximum length of a sequence (F1, F z .... ) of distinct subsets of an 
n-element set with the property that I F~\F~I < k for all i < j. We determine the exact values off(n, 2) 

and characterize all the extremal sequences. For k _> 3 we prove that f(n, k) = (1 + o(1)) k "Some 

related problems are also considered. 

1. Introduction 

Let ~ be a system of distinct subsets of  an n-element set X, and let k _> 2 be a fixed 
natural  number.  It is well-known (see [7], [12] or  (3) below) that  if [F~\Fj[ < k for 

k - l ( n )  and this bound  cannot  be improved. all F~, F~e~- then I~1 -< Y'.i=o i 

In  the present note we consider the following related question (raised in [1], [2] 
and [7]): Wha t  is the max imum length of  a sequence (Fx,F 2 . . . . .  F,,,) of distinct 
subsets of  an n-element set X with the proper ty  that  

[F,\Fjl < k for all i < j ?  (1) 

Let us denote this max imum by f(n, k). We can clearly suppose without  loss of  
generality that  the Fi's are listed in increasing order  of  their cardinalities, i.e., I F~l _< 
I~1 for all i < j .  

It is easy to show that  

f (n ,k )> + 2  k - 1  + k - 2  + ' " +  - , i f n > 2 k .  

(2) 
To this end fix a chain of subsets E 1 = E2 = " " =  En = X with lUll = i 

(1 _ i _< n) and  let o~ := {F ___ XIIFI =j, F =_ Ej-k+~} (k _<j _< n -- k). Then the 
number  of  elements of  

~ := {F ~ X,IFI < k} t.J( uk  ~ ) u  {F ~ XI,FI > n -- k} 
\ j = k  
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is equal to the right-hand side of (2), and enumerating them in increasing order of 
size they will obviously satisfy (1), too. 

g set-sequence ~ = (/71, F2,... , F~) having property (1) is called extremal if 
m = f(n, k). Set fi := [{f E ~ II F I = i} 1. Two extremal sequences o~ and o~' are said 
to be essentially different if f / ~  f/' for some i (0 < i < n). 

Our next two theorems show that the lower bound (2) is sharp if k = 2 and is 
asymptotically sharp for all k > 3 (n ~ oo). 

Theorem 1. I f  n >_ 4 then f(n,2) = ( ~ )  + 2n - l. Furthermore, in this case there 

are exactly 2 n-a essentially different extremal sequences. 

k - 1  for all n >_ 2k. 

The above problem can be reformulated in the following more general setting. 
Given a natural number n and a class 2 '  of (0, 0-matrices (so called 'forbidden 
submatrices'), determine the maximum integer m such that there exists an m x n 
(0, 1)-matrix M without repeated rows and containing no element of ~o as a 
submatrix. Let us denote this maximum by ex(n, ~) .  In view of the condition that 
all rows of M should be distinct, we have ex(n, ~o) _< 2 n. 

Let A k denote a 2 x k matrix whose first and second rows contain only l's and 
0's, respectively. Using the above notation, we obviously get ex(n, {Ak}) = f(n,k). 

Next, let ~k be the family of all 2 k x k matrices which contain every (0, 0-vector 
of length k (as a row) exactly once. The members of ~k differ in the order of rows 
only, hence I~kl = 2k" A well-known theorem of Saber [-12] and Shelah [13] (see 
also [8], I-9]) states that 

ex(n, .L~ak) = • . (3) 
i=O 

From this we can easily deduce the following general result. 

Theorem 3. Let ~L~ be any family of forbidden (0, 1)-matrices, and suppose that there 
is a j  x k matrix Le.LP. Then 

,), 
holds for every natural number n. 

Proof. Let M be an m x n (0, 1)-matrix with distinct rows M 1, M E . . . . .  M~ and 
suppose that m exceeds the upper bound in the theorem. By repeated application 

( ,(n) ) of (3) we obtain that for everyq l < _ q _ < ( j - 1  k ÷ 1 there ex i s t sa2  k x k 

submatrix L 0 of M, which is equivalent to some member of &o k and whose rows are 
chosen from among 
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Now,  by the pigeonhole  principle, there are at  least j submatr ices  (say, 
Lq~, Lq2 . . . . .  Lqj) sitting on the same set of  k columns. Selecting a copy of the i-th 
row of L f rom Lq (i = 1, 2 , . . . ,  j), we get a submat r ix  of  M equivalent  to L. [ ]  

A weaker  upper  bound  for ex(n, ~ )  was found by Anstee I-2]. F o r  more  p rob lems  
and results of this k ind consult  I-3]. 

2. P roo f  of  Theorem 1 

Let ~- = (F1 ,F2 , . . . ,F~}  be a system of subsets of an n-element set X satisfying 
condit ion (1), and put  ~//: = { F • ~ I I F  I = i}, f~: = I~1, i = O, 1 . . . . .  n. For  every 
pair  F ~ • ~ ,  F j • ~  (0 < i < j  < n) 

[F~ n F~l > i - k + 1. (4) 

In part icular,  any two member s  of ~ have at  least i - k + 1 elements in common ,  
i.e., ~ is (i - k + 1) - intersecting. 

F r o m  now on assume k = 2. 
If  ~ has at least two member s  F '  and F", say, then there are two possibilities. 

Either 

(i) F ~ F '  N F" for every F • ~ ,  or 

(ii) F c F '  U F" for every F • ~ .  

In the first case we say tha t  ~ is a sunflower with centre F' N F" and the one element 
sets F\(F '  N F") are its petals. In  the second case ~ is said to be an inverse sunflower, 
F ' N  F" is its centre and the one element sets (F 'U F") \F,  F • ~ ,  are called holes. 

L e m m a  1. Let  .~i be a sunflower and ~ be an inverse sunflower for some i < j. Then 
rain (f~,fj} < j - i + 2. 

Proof. Suppose,  for contradict ion,  that  bo th  ~ and  ~,~ have at least j - i + 3 
members .  Let  C i and Cj denote  the centres of  ~ and  ~ ,  respectively. Then  ]Ci] = 
i -  1, pC~r = j  + 1 and  lU { F ] F • ~ } I  > ( j - -  i + 3) + ( i -  1) = j  + 2, hence there is 
an F • ~  such that  Fq~ Cj. If  ]F\C~] > 1, then taking any  F ' • ~ ,  the pair  (F,F')  
will violate condi t ion (1). So we can assume ]F\CjF = 1. In this case ]Cj\FI = 
( j  + 1) - (i - 1) = j  - i + 2, thus there is a hole of~,~ in C~NF, i.e., there exists an 
F ' •  ~ with (F\F ' )  N Cj # ~ ,  again a contradict ion.  [ ]  

L e m m a  2. Let q be a natural number, 3 <_ q <_ n. Then 

I{il2 <_ i <_ n -- 2 and f~ >_ q}l < n - q. 

Proof. Suppose  wi thout  loss of  generali ty tha t  f~ = f , -1  = n. Let  Iq (and I'q) denote  
the set of  all indices i (1 _< i < n - 1) for which ~ is a sunflower (an inverse 
sunflower, resp.) a n d f l  _> q. Clearly 1 • Iq ,  n - 1 •I'q. Choose  a pair  i • lq , j • I ' q ,  i < j ,  
such tha t  j - i is minimal.  Then  there are no elements of  Iq U I'q in the interval 
Jq = {i + 1,i + 2 . . . . .  j -  1}, and by L e m m a  1 we have q _ < j -  i + 2, i.e., [Jq[ >_ 
q - 3. Hence  [Iq U I~1 < (n - 1) -- [Jq[ <_ n -- q + 2. [] 
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Lemma 2 shows that the i-th largest element of the sequence (f2,f3 .. . .  ,fn-2) is 
at most  n - i (i = 1, 2 , . . . ,  n - 3), thus 

n - - 3  

I l-<fo +A +fn-1 +In+ 
i = 1  

as desired. 

2 - + 2 n -  1, 

f n \  
If [ ~ [ = t 2 ) +  2 n - l ,  then fo = f n =  1, f l = f , _  l = n  and the sequence 

\ - - /  

(f2,f3 . . . .  fn-2) is some permuta t ion  of the numbers  3, 4 . . . . .  n - 1. Fur thermore ,  

J q = { i l 2 < _ i < _ n - 2 a n d f ~ < q } ,  JJql = q -  3 

and the only element mq+l ~Jq+l\Jq is equal either to minJq+l or to maxJq+l 
(q = 3,4 . . . . .  n - 1). In the first case mq+l eIq, in the latter one mq+~ eI'q, i.e., ~-mq.~ 
is a sunflower or an inverse sunflower, respectively. In view of the fact that  rain J ,  ¢ 
max J4 and for all q = 3 we have exactly 2 choices, we obtain that there are at most  
2 n-4 essentially different extremal sequences. It is easy to see that  all of  them can 
be realized in exactly 2 non- isomorphic  ways (o~,~, can be a sunflower and an inverse 

sunf lower  as well). This completes the proof. 

3. Proof of  Theorem 2 

Let ~ = {F1, F2, . . .  } be a system of distinct subsets of X = {1, 2 . . . . .  n} satisfying 
condit ion (1) for a fixed k > 3, let ~ := {Feo~ l lF I  = i} andf~ := I~1 ,0  _< i < n. By 
(4), ~ is (i - k + 1)-intersecting, hence using a theorem of 1-6] (see also [10]) we 
obtain 

f ' - <  k - 1  - - 

This immediately implies f(n, k) <_ n k - 1 

To improve on this bound,  we will apply first/some simple operat ions (so-called 
left-shifts, cf. [4])  to our  family ~ .  Given a pair i,j (1 _< i < j  _< n), let 

C~j(F):= {(F F \ { j } ) U { i }  ifiq~F, jEF,(F\{j})U{i}6~otherwise 

for any F e ~ .  Further,  set C~j(~, ~ )  := {Cii(F)I F e o~}. The following statement can 
readily be checked. 

Lemma 3. Cij( ~ )  also satisfies condition (1). [ ]  

Repeating this operat ion for all pairs i, j (possibly several times), after a finite 
number  of steps wc obtain a left-shifted family ~ ' ,  i.e., one for which Ci j (~ ' )  = ~- '  
(1 _< i < j___  n). 

Thus we can assume without  loss of generality that  ~- is left-shifted. Then  ~ is 
left-shifted for all i and we can use the following. 
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Lemma 4. (I-5]) Suppose that i > k, ~ is left-shifted and (i - k + 1)-intersecting. Then 
for any F ~ ~ there exists a minimal integer t = t(F), 0 < t < k - 1 such that 

IFN{1 ,2  . . . .  , i - k  + l + 2 t } l = i - k  + l +t .  [] 

A set F e o~ will be called exceptional if i _> k and at least one of the following 
four condit ions is satisfied: 

{i) {i -- k -  1 + 2t(F), i -  k + 2t(F), i - k + 1 + 2t(F)} ~g F; 
(ii) { i - k  + 2 + 2 t ( F ) , i - k  + 3 +  2t(F)}NF ~fg .  
(iii) there exists an r (1 _< r _< i - k + 2t(F)) such that  r , r  + 1CF;  
(iv) there exists an r (i -- k + 2t(F) < r  < n) such that  r, r + 1 e F. 

L e m m a S " T h e n u m b e r ° f e x c e p t i ° n a l m e m b e r s ° f ~ i s a t m ° s t 4 k 2 ( n )  " k - 1  

Proof. By a simple counting argument.  The pair  (t(F), I l l )  can take a t m o s t  kn 
different values. In each case 

I { 1 , 2 , . . . , I F I -  k + 1 + 2t(F)}kFI = t(F), 

IFN { I F I -  k + 2 + 2t(F) . . . . .  n}l = k - 1 - t(F). 

Thus, e.g. the number  of all members of ~- which are exceptional because of (i) does 
not  exceed 

~ 3 ( i - k ; 2 t ) ( n - ( i - k + l + 2 t ) ) < 3 k (  n ) < k 2  ( n ) 
,,i t - -  k - l - t  - k - 1  - k - 1  " 

The other  three cases can be treated similarly. [ ]  

Each non-exceptional  member  F e o~ will be assigned with a k-tuple 

X F := ({1 ,2 , . . . , IF[  - k + 1 + 2t(F)}kF)U {IVl -- k + 1 + 2t(F)} 

U {x - i l x s ( f N  { I f l -  k + 2 + 2t(F) . . . . .  n})}. 

Lemma 6. Let F and G be two distinct non-exceptional members of o ~ .  Then XF ¢ X~. 

Proof. Suppose in order  to obtain a contradict ion that  I l l  < IGI and Xv = 
XG. IF I - - IGI  implies F = G, thus we may  assume that  IFI < IGI and I F I -  
k + l + 2 t ( F ) < l G l - k + l + 2 t ( G ) . L e t  

F'  := FU(XFk{IG [ - k + 1 + 2t(G)})k{x + llxeXr\{IGI- k + 1 + 2t(G)}}. 

Since o~ is left-shifted, obviously F' e ~-. On  the other  hand, all elements of the 
set 

(XFN{IG I - k + 1 + 2t(G)})U{IG[-  k-t- 2 + 2t(G)} 

belong to F'kG. Hence [F'kGI >_ k, contradict ing (1). [ ]  

By Lemma 6, ~ has at most  ( ~ )  non-exceptional  members. Thus, in view of 

Lemma 5, 
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I~1--- +4k~" k 1 +Y~f , ,  
- -  i < k  

and the p roof  of  Theorem 2 is complete.  

4. Concluding Remarks and Problems 

Conjecture 1. There  exists a sufficiently large constant  no(k)> 2k such that  if 
n > no(k ) then 

As it was pointed  out  by N. Alon [1], (5) is not  valid for k = 3, n = 7. Next  we show 
that  this is not  an isolated example.  

Proposition. If  k is large enough then no(k) > 2k + x//k/10. 

Proof. Let t ,-~ v /k /10  be an integer such that  k + t is odd, let n = 2k + t, X = X 1 U 
X 2 an n-element set, I X l l  = k, IX21 = k + t. Then 

:= {F c XllFI < k or IF[ > n - k} 

U{F c Xlk < lFl <_ k + t and lFnXll  < ~ - ~ }  

(listed in increasing order  of  cardinality) obviously satisfies (1). N o w  by the formulas 
of Stirling and Moivre-Laplace  we obta in  that  

n 

A set-system ~" is called a Sperner family if F ~ G holds for every pair  F, G ~ f t .  

Conjecture 2. Let  ~ = {F 1, F2, . . .  } be a Sperner  family of subsets of an n-element 

( n ) h o l d s f o r n > 2 k - 3 .  set satisfying condit ion (1). Then I~1 < k - 1 

Remark. Let us ment ion  that  the above inequali ty follows f rom Sperner 's  theorem 
for 2k - 3 < n < 2k - 1. We could prove  it for n = 2k as well. Their  are four 
opt imal  families. No te  tha t  this is a s t ronger  version of a Conjectur e of Frankl  [7] 
which states that  the same inequality holds under  the condit ion that  IF,\F~I < k for 
all i, j. 

Conjecture 3. Let £,a,j, k denote  the same as in Theo rem 3. Then  ex(n, &a) =O(jnk) .  
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