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Abstract. Let f{n, k) denote the maximum length of a sequence (Fy, F,, ... ) of distinct subsets of an
n-element set with the property that | F;\F;| < kfor alli < j. We determine the exact values of f (n.2)

and characterize all the extremal sequences. For k > 3 we prove that f(n, k) = (1 + o(1)) (Z) Some

related problems are also considered.

1. Introduction

Let # be a system of distinct subsets of an n-element set X, and let k > 2 be a fixed
natural number. It is well-known (see [7], [12] or (3) below) that if | F\F}| < k for

all F,, Fe Z then |#| <) 5§ (n) and this bound cannot be improved.
i

In the present note we consider the following related question (raised in [1], [2]
and [7]): What is the maximum length of a sequence (F,F,,...,F,) of distinct
subsets of an n-element set X with the property that

|[F\F}| <k foralli<j? (1)

Let us denote this maximum by f(n, k). We can clearly suppose without loss of
generality that the F’s are listed in increasing order of their cardinalities, i.e., | F;| <
|Fj| for all i < j.

It is easy to show that

f(n,k)z(:>+2<(kf1)+(kf2)+--~+(z>>—<2kk_1), ifn22k.()
2

To this end fix a chain of subsets E, c E, =---c E,= X with |E,| =i
(1<i<n)andlet & :={F< X||[F|=j,F2E;_44;} (k<j<n—k). Then the
number of elements of

n—k
# = {F < X||F| <k}U< Z)U{F§X||F| >n— k)

Jj=k
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is equal to the right-hand side of (2), and enumerating them in increasing order of
size they will obviously satisfy (1), too.

A set-sequence F = (F,F,,...,F,) having property (1) is called extremal if
m = f(n,k). Set f;:= |{F e F||F| = i}|. Two extremal sequences & and %’ are said
to be essentially different if f; # f; for some i (0 < i < n).

Our next two theorems show that the lower bound (2) is sharp if k = 2 and is
asymptotically sharp for all k > 3 (n — o0).

n

2
are exactly 2"~ essentially different extremal sequences.

Theorem 1. If n > 4 then f(n,2) = ) + 2n — 1. Furthermore, in this case there

h

Theorem 2. (1, k) < <k) + 5k2 (k n 1) for alln > 2k.

The above problem can be reformulated in the following more general setting.
Given a natural number n and a class % of (0, 1)-matrices (so called ‘forbidden
submatrices’), determine the maximum integer m such that there exists an m x n
(0, 1)-matrix M without repeated rows and containing no element of % as a
submatrix. Let us denote this maximum by ex(n, Sf). In view of the condition that
all rows of M should be distinct, we have ex(n, F)<2m

Let A, denote a 2 x k matrix whose first and second rows contain only 1’s and
0’s, respectively. Using the above notation, we obviously get ex(n, {4,}) = f(n, k).

Next, let %, be the family of all 2* x k matrices which contain every (0, 1)-vector
of length k (as a row) exactly once. The members of %, differ in the order of rows
only, hence |.%,| = 2*. A well-known theorem of Sauer [12] and Shelah [13] (see
also [8], [9]) states that

k-1 n
ex(m f)= % (z) ®
From this we can easily deduce the following general result.

Theorem 3. Let £ be any family of forbidden (0, 1)-matrices, and suppose that there
isajx k matrix Le &. Then

o (i-9() E ) ) o

holds for every natural number n.

Proof. Let M be an m x n (0,1)-matrix with distinct rows M,, M,, ..., M,, and
suppose that m exceeds the upper bound in the theorem. By repeated application

of (3) we obtain that for every g <1 <q<(j-— 1)(';) + 1) there exists a 2* x k

submatrix L, of M, which is equivalent to some member of %, and whose rows are

chosen from among
o-a(50)+)<=o(50) )

fr
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Now, by the pigeonhole principle, there are at least j submatrices (say,
L,,L,,....L, ) sitting on the same set of k columns. Selecting a copy of the i-th
row of L from L (i =1,2,..., j), we get a submatrix of M equivalent to L. O

A weaker upper bound for ex(n, &) was found by Anstee [2]. For more problems
and results of this kind consult [3].

2. Proof of Theorem 1

Let # = {F,F,,...,F,} be a system of subsets of an n-element set X satisfying
condition (1), and put &: = {Fe F||F| =i}, f;; = |#l,i=0, 1, .... n. For every
pair Fe#, Fie (0 <i<j<n)

IFENF|l>i—k+ 1. (4)

In particular, any two members of &, have at least i — k + 1 elements in common,
ie, #is (i — k + 1) - intersecting.

From now on assume k = 2.

If #, has at least two members F’ and F”, say, then there are two possibilities.
Either

(i) Fo> FNF" forevery Fe&#, or
(ii) FcFUF” forevery Fe%,

In the first case we say that % is a sunflower with centre F' N F” and the one element
sets F\(F' N F") are its petals. In the second case %; is said to be an inverse sunflower,
F'(F" is its centre and the one element sets (F' U F")\F, F € &, are called holes.

Lemma 1. Let #,; be a sunflower and %; be an inverse sunflower for some i < j. Then
min { f;, f;} gj—l+2.

Proof. Suppose, for contradiction, that both % and % have at least j — i + 3
members Let C; and C; denote the centres of & and %, respectlvely Then |G| =
~LIGl=j+ 1land|U{F|FeZ}| > (j—i+3)+ (i— 1) = j + 2, hence there is
an Fe#, such that F¢ C,. If [F\Cj| > 1, then taking any F’'€ %, the pair (F, F’)
will violate condition (1 ) So we can assume [F\Cj| =1. In thls case |C\F| =
(j+ 1) (i — 1) =j — i + 2, thus there is a hole of & in C;N F, i.e, there exists an
F'e # with (F\F')N C; # @, again a contradiction. O

Lemma 2. Let q be a natural number, 3 < q < n. Then
Hil2<i<n—2 and fizq}l<n-—aq.

Proof. Suppose without loss of generality that f; = f,_, = n. Let I, (and I,) denote
the set of all indices i (1 <i<n— 1) for which % is a sunflower (an inverse
sunflower, resp.) and f; > q. Clearly 1e I, n — 1 eI. Choose a pair iel,jel,,i<j,
such that j — i is minimal. Then there are no elements of I, UI, in the interval
Jy={i+Li+2,...,j—1}, and by Lemma 1 we have ¢ <j—i+ 2, ie, |J| >
g—3.Hence |[[LUL|<(n—1)—|J|<n—q+2. O
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Lemma 2 shows that the i-th largest element of the sequence (f>, f3,..., f,-,) is
atmostn —i(i=1,2,...,n — 3), thus

|97|sf0+f1+f,,_1+fn+'f(n—i)szn+2+(11—~3)2-(ﬂ=<;>+2n—1,

as desired.
If |#|= (;) +2n—1, then fo=f,=1, fi=f,_, =n and the sequence
(f25f35- - fu-2) is some permutation of the numbers 3, 4, ..., n — 1. Furthermore,
Jy={il2<i<n-2andfi<gq}, |Jl=q—-3

and the only element m,, €J,,,\J, is equal either to minJ,,,; or to maxJ
(g = 3.4,...,n — 1). In the first case m,, €I, in the latter one m_,, €I}, ie., P,
is a sunflower or an inverse sunflower, respectively. In view of the fact that min J, #
max J, and for all ¢ = 3 we have exactly 2 choices, we obtain that there are at most
2""4 essentially different extremal sequences. It is easy to see that all of them can
be realized in exactly 2 non-isomorphic ways (&, can be a sunflower and an inverse
sunflower as well). This completes the proof.

3. Proof of Theorem 2

Let # = {F,,F,,...} be a system of distinct subsets of X = {1,2,...,n} satisfying
condition (1)forafixed k > 3,let & := {Fe F||F| = i} and f;:= | %[, 0 < i < n. By
(4), #;is (i — k + 1)-intersecting, hence using a theorem of [6] (see also [10]) we
obtain

ﬁs(knl), 0<i<n

This immediately implies f(n,k) < n ( X " 1) ~ k<:>

To improve on this bound, we will apply first some simple operations (so-called
left-shifts, cf. [4]) to our family & . Given a pair i,j (1 <i <j < n), let

_ (L)Y iigFjeF (F\U})U (i} ¢#
CilF) = {F otherwise

for any F e #. Further, set C;;(#) := {C;;(F)|F € #}. The following statement can
readily be checked.

Lemma 3. C;;(#) also satisfies condition (1). O

Repeating this operation for all pairs i, j (possibly several times), after a finite
number of steps we obtain a left-shifted family &', i.e., one for which C;)(#') = #’
(I<i<j<n)

Thus we can assume without loss of generality that & is left-shifted. Then & is
left-shifted for all i and we can use the following.
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Lemma 4. ([5]) Suppose that i > k, 7, is left-shifted and (i — k + 1)-intersecting. Then

for any F € &, there exists a minimal integer t = t(F), 0 <t < k — 1 such that
[FN{L2,...,i—k+1+2t}|=i—k+1+t a

A set Fe %, will be called exceptional if i > k and at least one of the following
four conditions is satisfied:

() {i—k—1+26F)i—k+2e(F)i—k+1+2(F)}¢F
(i) i—k+2+2t(F)i—k+3+2(F)}NF+#g.

(iii) there exists anr (1 <r <i— k + 2¢(F))such thatr,r + 1 ¢ F;
(iv) there exists anr (i — k + 2¢(F) < r < n)such thatr,r + 1€ F.

Lemma 5. The number of exceptional members of F is at most 4k* ( K i 1).
Proof. By a simple counting argument. The pair (t(F),|F|) can take at most kn
different values. In each case

{1,2,...,|F| — k + 1 + 2t(F)}\F| = ¢(F),

IFO{F| =k +2+ 2t(F),...,n}| = k — 1 — (F).

Thus, e.g. the number of all members of & which are exceptional because of (i) does
not exceed

23 (l tk_-: 2t> (n (zk _k1+—1t+ 2t)) < 3k(k f 1) i (k i 1>.
The other three cases can be treated similarly. ]
Each non-exceptional member F € # will be assigned with a k-tuple
Xpi=({1,2,.. ,|Fl —k+ 14+ 2((F)\FYU{IF| — k + 1 + 2t(F)}
U{x — 1|xe(FN{IF] — k + 2 4 2¢(F),...,n})}.

Lemma 6. Let F and G be two distinct non-exceptional members of & . Then Xy # Xg.

Proof. Suppose in order to obtain a contradiction that |F| < |G| and X =
Xg- |F] =G| implies F = G, thus we may assume that |F| < |G| and |F|—
k+1+42t(F) < |G| — k + 1 + 2t(G). Let

F':= FU(XP\{|G] — k + 1 + 2((G)})\{x + 1Ixe X,\{IG| — k + 1 + 2¢(G)} }.

Since # is left-shifted, obviously F' € &#. On the other hand, all elements of the
set

(XF\{|G| —k+1+ 2t(G)})U {1Gl—k+2+ 2t(G)}
belong to F'\G. Hence | F'\G| > k, contradicting (1). |

By Lemma 6, # has at most (n

k> non-exceptional members. Thus, in view of

Lemma 5,
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F n 2,
|,/|s<k)+4k (k—1)+§kﬁ’

and the proof of Theorem 2 is complete.

4. Concluding Remarks and Problems

Conjecture 1. There ex1sts a sufficiently large constant n,(k) > 2k such that if
n > n,(k) then

S k) = (Z) +2(<kf1> i <kﬁ2) T <g)>_<2kk— 1)' ®)

As it was pointed out by N. Alon [1], (5)is not valid for k = 3, n = 7. Next we show
that this is not an isolated example.
Proposition. If k is large enough then n,(k) > 2k + \/E/ 10.

Proof. Lett ~ \/E/IO be an integer such that k + tisodd,letn =2k + £, X = X, U
X, an n-clement set, | X,| = k, | X,| = k + ¢. Then

F:={F<X||F|<kor|F|>n~—k}
U{FCX|kS|F|Sk+tand|FﬂX1|<%}

(listed in increasing order of cardinality) obviously satisfies (1). Now by the formulas
of Stirling and Moivre-Laplace we obtain that

7| >-§~(Z>+2<<k_"_1)+<kiz)+'”+<g>>’

A set-system & is called a Sperner family if F & G holds for every pair F, Ge #

Conjecture 2. Let F = {F,,F,,...} be a Sperner family of subsets of an n-element

set satisfying condition (1). Then |#| < ( " " 1) holds for n > 2k — 3.

Remark. Let us mention that the above inequality follows from Sperner’s theorem
for 2k — 3 <n <2k — 1. We could prove it for n = 2k as well. Their are four
optimal families. Note that this is a stronger version of a conjecture of Frankl [7]
which states that the same inequality holds under the condition that | F;\F;| < k for
all i, j.

Conjecture 3. Let 2, j, k denote the same as in Theorem 3. Then ex(n, £) = O( jn*).
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