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Abstract. Let al ,  . . . ,  a, be a sequence of nonzero real numbers with sum zero. A subset B of 
{1,2 . . . . .  n} is called a balancing set if ~ a  b = 0 (beB). S. Nabeya showed that the number of (n) 
balancing sets is bounded above by n/2 and this bound achieved for n even with aj = ( -  1) j. Here 

( 2_k ) w h e n n = 2 k + l .  TheessentiaUy his conjecture is verified, showing a tight upper bound 2 k 1 

unique extremal configuration is: a~ = 2, a 2 . . . . .  a k = 1, ak+~ . . . . .  a2k+a = -- 1. 

1. Introduction, Results 

Let  [n]  d e n o t e  the  set  {1, 2 . . . .  , n}, 2 t"l is i ts  power - se t .  Le t  a 1 . . . .  , a ,  be  a sequence  
of  n o n z e r o  rea l  n u m b e r s ,  a n d  s u p p o s e  t h a t  ~ ai = 0. A subse t  B c [n]  is ca l led  a 

balancino set if ~ {ab: b ~ B} = 0. D e n o t e  the  set  of  b a l a n c i n g  sets by  ~ ( a ,  . . . .  , an). 
By de f in i t i on  ~ E ~¢. In  th is  n o t e  we d e t e r m i n e  the m a x i m u m  n u m b e r  of  b a l a n c i n g  
sets. Le t  

f (n )  = m a x  { , ~ ( a  1 . . . . .  a,)l: ~" ai = O, a~ ~ O}. 

Example  1.1. S u p p o s e  n is even  a n d  def ine a 1 . . . . .  a,,/2 = 1, a,,/2+~ . . . . .  

a = _ l .  T h e n l ~ l = ~ ( n ~ 2 ) 2  ( n )  
- n/2 

Example  1.2. S u p p o s e  n is odd ,  n = 2k + 1 (_>3). Def ine  a l  = 2, az . . . . .  a k = 1, 
ak+ 1 . . . . .  aZk+~ = - -1 .  T h e n  

W e  cal l  t w o  sequences  of  rea ls  ( a a , . . . ,  a , )  a n d  (a~ . . . .  , a ; )  to  be  isomorphic if the re  
exists  a p e r m u t a t i o n  re: In ]  ~ I-n] a n d  a n o n z e r o  rea l  ~ such  t h a t  a i = ~a~,). 
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Theorem 1.3. 

I( ) f(n) = n/2 if n is even, 

Moreover IN(a1,..., an)l = f{n) holds if and only if (a 1 . . . .  , an) is isomorphic to one 
of the sequences defined by the above Examples. 

This was conjectured by S. Nabeya [5], who proved the case n even. He used 
generator functions and calculus with complex variables. Our aim is to give an 
elementary proof, showing the strength and applicability of the results of the theory 
of finite sets. 

2. The Proof of the Upper Bound 

A family of finite sets ~ is called a Sperner family if F q: F' holds for any two 
F, F' ~ ~ .  The family ~ is intersecting if F N F' # ~ holds for any two members of 
~ .  The following theorems are probably the most frequently cited results of 
extremal set-theory. 

Theorem 2.1 (Sperner [9]). Suppose ~ c 2 tnl is a Sperner family, then [~1 -< (n) [n/2J " Here equality holds if and only if o~ consists of either all subsets of size 

[n/2J or all subsets of size In/2]. 

Theorem 2.2 (Erd/Ss, Ko and Rado [3]). Suppose ~ ~ 2 tnl is an intersecting 
Sperner family and suppose that every F ~ ~ has at most k elements, k <<_ n/2. Then 

I~1 --< . Here for n > 2k equality holds if and only if ~ is taken to be all 

the k-subsets of In] containing a common element. 

Proof of the upper bound in Theorem 1.3. Let at . . . . .  an be nonzero reals with sum 
zero. Let P = {i: ai > 0}, N = {j: aj < 0}. For  a set B~9~ define B ÷ as B N P  and 
B- = B N N. Moreover let 

S(B) = B ÷ U(N - B-), 

6a(~) = {S(B): B e ~) .  For  a set C c In], C denotes its complement, C = In] - C. 
As B ~ g i m p l i e s / ~  ~ we have 

Moreover we claim 

SESe(~) imples S~6e(~). (2.1) 

6e(~) is a Sperner family. (2.2) 
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Indeed, S(B) c S(B')implies B n P c B'A P and B O N = B'O N. Hence 

ai< E ai = -  ~ a i < - - ~  ai. 
ieBr)P ieB'nP ieB'nN i~BAN 

Then equality is forced, implying B N P = B' N P, B N N = B' N N, a contradiction. 

Now in the case n even, (2.2) and Theorem 2.1 implies I~1 = I~(~)1  < n/2 

with equality holding if ~(N)  consists of all n/2-element sets. 

in the case n = 2 k + l  we have ( [ n j )  ( 2k ) n/2 > 2  k - 1  ' so we need more 

preparations. Define ~ as the set of members of ~(N) with at most k elements. 

Then (2.1)imples I~ l  = ½1~(~)1, and Theorem 2.2 implies I~ l_<(k2_k l ) ,  as 

desired. 

3. The Case of Equality 

We are going to use the following claim 

IfS(B) - S(B') = {i}, S(B') - S(B) = {j} then fail = la~]. (3.1) 

Proof. By definition ~t~ennat + ~r~N_Bat = 0, and the same holds for B'. These 
imply 

E a t -  E a, + E a t -  E at = 0. (3.2) 
t~PO(B\B') t~PA(B'\B) teNA(B'\B) teNO(BNB') 

Now we have four possibilities: i,j ~ N or i,j ~ P imply ai = aj, and in the cases i ~ P, 
j ~ N or i ~ N, j ~ P (3.2) implies a i + aj = O. 

Returning to the proof of Theorem 1.3 we have obtained in the previous section 
that I~(~)1  = f (n ) im p l i e s  (both in the cases n even and odd) the following: There 
exists an element of I-n], say 1, such that SP(9~) contains all the /n/2J-element 
subsets of [nq through the element 1. So (3.1) implies that lail = lajl holds for all 
2 < i < j  < n. This implies easily that (al . . . .  ,a~) is isomorphic to one of the 
Examples 1.1-2. 

4. Remarks 

Instead of the 50 years old Theorem 2.1 and 2.2 we can use a stronger result about 
/ 

intersecting and union-free Sperner families ( i f  ~ - c  2 f~J is a Sperner family, 
\ 

intersecting, and F U F' v~ [hi for any two F, F' ~ ~ then I~1 -< I_n/2J - 1 

was proved independently by a few authors, (see Brace and Daykin [2], Kleitman 
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/ 
and Spencer [4], Sch6nheim [8]). Even our  special case [ i f  ~ c 2 t"j is Sperner  and 

\ 

F ~  implies f f ~ "  then I~1-< [n/2J - 1 was investigated and proved  by 

Bollobfis [1] and Purdy  [7]. But here I wanted  to emphasize  the simplicity of the 
p roof  using the mos t  basic theorems from extremal  hypergraph  theory. 

The  much  more  difficult question, wha t  is the n u m b e r  of  balancing sets if all the 
ai's are different, was essentially solved by Stanley [10] (also see [6]). He  verified 
the conjecture of Erd6s  and Moser  proving that  the best sequence is either 

{ - ( n -  1)/2 . . . .  , - 1 , O ,  1 , . . . , ( n -  1)/2), or { -n /2 , . . . , -2 , -1 ,1 ,2  . . . .  ,n/2}. 

Acknowledgement. The author is indebted to P. Frankl for his valuable remarks. 
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