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Fifteen years ago Chvatal conjectured that if 9 is a family of k subsets of an n- 
set, 191 > (;I;), d is an arbitrary integer with d< k - 1 and (d+ 1) k <dn, then 
there exist d + 1 sets in 9 with empty intersection such that the intersection of any 
d of them is non-empty. The validity of this conjecture is established for n > n,(k). 
in a more general framework. Another problem which is solved asymptotically is 
when the excluded configuration is a tixed sunflower. ( 1987 Academtc Press, Inc. 

PREFACE 

Extremal problems in combinatorics have a long history. In 1907 Mantel 
[M] proved that every graph on n vertices and more than n2/4 edges 
contains a triangle. 

If 3 is an arbitrary graph one can define the corresponding extremal 
problem. Namely, let ex(n, 9) denote the maximum number of edges in a 
graph on n vertices and not containing 9 as a subgraph. The graph 9 is 
called an excluded subgraph. Let C, be the cycle of length r, r 3 3. 

Mantel’s result can be restated as ex(n, C,) = Ln2/4 J. 
Already in 1938 Erdos [El] considered the function ex(n, C,), although 

in other terms. Nevertheless, the exact value of ex(n, C,) is only known for 
n = q2 + q + 1 where q is a prime power (cf. Fiiredi [ Fti2]). 

Turin [Tl] determined ex(n, K,) for all r 3 3 in 1940. (K, denotes the 
complete graph on r vertices). 

In his memory the determination of ex(n, 3) is called a Turan-type 
problem. 

Turan-type problems are often very difficult and very little is known even 
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about such simple cases when 59 is C, or a fixed complete bipartite graph 
(cf. [Bo3] or [ES]). 

Similar extremal problems were widely investigated for k-uniform 
hypergraphs, i.e., collections of k-element sets, as well. 

The first such result was obtained by Erdos et al. [EKR] before World 
War II. They solved the case when the excluded hypergraph consists of two 
pairwise disjoint edges-the answer is (; I :) for all n >, 2k. 

In general, hypergraph extremal problems are much more difficult than 
ordinary graph problems. 

In this paper we give the solution (at least asymptotically) of a relatively 
wide class of hypergraph extremal problems. This class includes sunflowers 
(d-systems) and simplices (see the definition in the next section). 

1. INTRODUCTION 

Let X be a finite set, 1x1 = n and let 9 be a family of k-element subsets 
of X, i.e., 9 c (f). Such a family is often called a k-graph. Suppose that k 
and d are positive integers. 

DEFINITION 1.1. We say that 9 contains a d-dimensional simplex if 
there exist d + 1 sets F, ,..., Fd+ , E 9 satisfying 

(i) (7;:,’ Fj= 0; 

6) ni+j. I<,<d+ 1 F,#QI for every 1 <jbd+ 1. 

In words, d + 1 sets form a d-dimensional simplex if the intersection of 
all of them is empty but the intersection of every choice of d of them is non- 
empty. 

For d = 1 a simplex consists simply of two disjoint non-empty sets. 
For d = 2 a simplex is called a triangle. 

It is easy to check that if 9 contains a d-dimensional simplex then k 2 d 
holds. Also, if k = d then the unique possibility for a d-dimensional simplex 
is to take all the k-subsets of a (k + l)-set. 

Let us introduce the function s(n, k, d): 

s(n, k, d) = max{ 1.91: F contains no d-dimensional simplex}. 

Thus s(n, k, k) is the maximum number of edges in a k-graph F c (f) 
which contains no complete graph on k + 1 vertices. For k = 2 the answer 
is Ln2/4J and it was already known to Mantel [M]. 

For k > 3 this is a special case of Turan’s problem (cf. [T2, E7]) and it is 
one of the outstanding open problems in combinatorics. It is easy to see 
that s(n, k, k) = Q(n“), e.g., s(n, k, k) > Ln/k J’. For the currently known 
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best upper and lower bounds see [C, FRI. Looking at all sets containing a 
fixed element shows that s(n, k, n) 2 (;‘I t ) holds for all k > d. 

The fact that s(n, k, 1) = (;I ; ) for n 3 2k is a special case of the 
ErdossKo-Rado Theorem [ EKR] (see Theorem 4.3 ). 

In 1971 Erdos made the following conjecture: 

Conjecture 1.2 ( [E4]). Suppose that P contains no triangle, n > 3k/2, 
ka3. Then ]B] <(;I;) holds. 

The year after, Chvatal stated the more general conjecture: 

Conjecture 1.3 ( [Ch 11). Suppose that 9 contains no d-dimensional 
simplex, k > d, n > (d + 1) k/d. Then 191 < (; 1 i ) holds. 

In [Ch2] Chvatal proved his conjecture in the special case k = d + 1. 
The validity of Conjecture 1.3 for the case n < dk/(d- 1) follows from 

Lemma 1 in [Fl]. 
Bermond and Frank1 [BF] proved Conjecture 1.3 for an infinity of the 

values (n, k, d), however, their method does not work for n > k2. 
Let us mention the following result for large values of n. 

THEOREM 1.4 ( [F4]). (i) Suppose that k 2 5, n 3 n,(k). Then Conjec- 
ture 1.2 is true. 

(ii) Suppose that k3 3d+ 1 and n>,n,(k). Then Conjecture 1.3 is 
true. 

(iii) For all fixed k > d we have 

s(n, k, d) 6 

where ck is a constant depending only on k. 

Using linear independence techniques we improve (iii): 

THEOREM 1.5. Suppose that k > d. Then we have 

s(n, k, d) < 

For n > n,(k) we shall establish the validity of Conjecture 1.3. 

(1) 

THEOREM 1.6. Suppose that 9 c (f), 9 contains no simplex of dimen- 
sion d, k > d, n > no(k). Then 191 < (!I i). Moreover, the inequality is strict 
unless9=(FE(f):~EF) holdsforsomexEX. 
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2. SUNFLOWERS 

The family {D, ,..., OS} is called a sunflower of size s and with center C if 
Di n Dj = C holds for all 1 < i <j d s (we assume also Di # Dj). 

Let us define the following function. 

&t, s) = max{ 191: 9 is a t-graph containing no sunflower of size s}. 

Erdos and Rado [ER] proved that q5(t, s)< t!(s- 1)‘. 
This result has had many applications in combinatorics and in computer 

science; cf. e.g., [Ra]. 
Let us mention that Erdiis [E7] offers $1000 for deciding whether 

$(t, 3) < c’ holds for some absolute constant c. 
Obviously, c&t, 2) = 1. Abbott, et al. [AHS] showed that 

~(2,s)=s(s-l)forsoddand~(2,s)=L(2s-l)(s-1)/2Jforseven.Fors 
odd the only way to obtain equality is by taking the disjoint union of two 
complete graphs on s vertices. For s even there are many optimal graphs. 

Except for these &t, s) is only known in the case t = 3, s = 3 when 
4(3, 3) = 20 holds. 

Duke and Erdos [DE] introduced the following function. 

DEFINITION 2.1. f( n, k, 1, s) = max { 19 I: 4 c ( f), 9 contains no sun- 
flower of size s and with center of size I}. 

An old result of Erdos can be formulated as 

THEOREM 2.2 [E3]. Suppose that n > n,(k, s), then one has 

,(n,k,O,s)=(“k)-(“-;+*). 

The case s = 2 of the general problem, i.e., Y contains no two sets inter- 
secting in exactly I vertices goes back to Erdos [E5]. It received particular 
attention in view of possible geometric applications. Erdiis and Sos (see 
[S] determined the value of f(n, k, 1,2) for k = 3, I = 1. Larman [L] 
proved f(n, 5,2,2) = O(n2). 

The present authors [FF3] proved that f(n, k, 1,2) = (;::I i) holds for 
k > 21+ 2 and n B n,,(k) and they showed also that f(n, k, I, 2) = O(n’) for 
k d 21+ 1, as it was conjectured by Erdos [ES]. 

In view of a result of Ftiredi [Fiil] this implies that 
f(n, k, 1, s) = O(nmax(Lk-‘p’) ) for fixed k, Z, and s. In Theorem 2.7, we 
determine the asymptotical value off (n, k, I, s) for k B 2E + 3. 

Let us give two constructions. 
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EXAMPLE 2.3. Let 59 be a family of (I + 1) sets without any sunflower of 
size s and satisfying 191 =&I+ 1, s). Set Y= u 9 and suppose that Yc X. 
Define 

Clearly 19;) = (d(f + 1, s) - O( 1)) (;::I i) and 9 contains no sunflower of 
size s and with center of size 1. 

EXAMPLE 2.4. Define b = I- 1 + s(k - I). Let 59 c (i) be an I-packing, 
i.e., 1 B n B’I < I holds for all distinct B, B’ E L#. Define 

9=Ak(B)= FE 
x 

i 0 k 
:~BE&I,F~B . 

1 

Claim 2.5. The family 9 in Example 2.4 contains no sunflower of size s 
and with center of size 1. 

Proof. Suppose that F,,..., F, form such a sunflower and F, c Bit g’. 
Since distinct F,‘s have 1 elements in common while distinct B’s at most 
I- 1, it follows that B, = B,= ... = B,. Thus (F, u ... u F,)c B, holds. 
However, IF, u . . u F,I = I + (k - I) s > 1 B, 1, a contradiction. [ 

Since k > 1, 191 = (i) IBJ holds. By a result of Rod1 [R], for fixed b we 
can choose 1991 as large as (1 -o(l)) (y)/(t). 

We conjecture that Example 2.3 is nearly best possible for k > 21+ 1 
while Example 2.4 is nearly best possible for k < 21+ 1. 

Conjecture 2.6. Suppose that k, 1, s are fixed. Then one of the following 
holds: 

(i) k>21+1 andf(n,k,I,s)=(q5(1+l,s)+o(l))(;:i:;) 

(ii) k<21+ 1, and 

f(n, k, I, s) = ~-*+ks’“-‘))+o(l,>(~)i’(‘-l+s(k-~))~ 
Note that for k = 21+ 1 both examples give a((;)) sets. However, 

f$(I+l,s)>,(s-l)‘+’ which is an upper bound for the coefficient of (7) in 
(ii). 

For the case s= 2, k-1 a prime power, Conjecture 2.6 was proved in 
CFW 

In the case k = 3 and I = 1 the conjecture was recently proved in a more 
exact form by Chung and Frank1 [CF]. 
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THEOREM 2.7. Suppose that k, 1, s are fixed and k > 21+ 3. Then 

(2.1) 

An interesting feature of this result, that it can be proved although very 
little is known about the function b(l+ 1, s). 

Let us also note that Example 2.4 shows that f(n, 4,2, s) 3 (1 - o( 1)) 
((2s - 1 )(s - 1)/6) (;), which solves a problem of Chung et al. [CEG]. 

3. SPECIAL SIMPLICES AND A PROBLEM OF KALAI 

DEFINITION 3.1. The collection X = {H, ,..,, Hd+, } is called a special 
d-dimensional simplex if for some (d + 1 )-element set C = {x, ,..., xd+ , } 
(called the center) Hin C = C- {xi} holds, moreover the sets Hi - C are 
pairwise disjoint, i= l,..., d + 1. 

THEOREM 3.2. Suppose that k > d + 3, n > n,,(k) and 9 c (f) contains no 
special d-dimensional simplex. Then 1.91 < (; I:), moreover, equalitv holds if 
and only if 9 = {FE (;T): x E F} for some x E X. 

We believe that the same is true for the cases k = d + 1, d + 2 as well. 
However, we could only prove it for the case d = 2. 

THEOREM 3.3. Suppose that k > 3, n an,(k) and 9 c (f) contains no 
special triangle. Then 1 Sl < (; 1 i ), moreover, equality holds if and only if 
9={F~(jr):x~F}forsomex~X. 

Note that for k > 5 Theorem 3.3 is covered by Theorem 3.2. The proof of 
the case k = 3 uses a rather involved weight-function argument while for 
the case k = 4 a refinement of the principal methods of the paper is needed. 

For a family 9 and an integer 1 let us define d,(P) = {L: 1 LI = 1, ~FE 9, 
LEF}. 

Let us define the function c(k, d) recursively for k > d by setting 
c(d+l, d) = 1, c(d+2, d) = 2d+ 1 and c(k+l, d) = kc(k, d) - 1 for 
k > d+ 2. Note that c(k, d) < (k - l)! holds for all k > d b 2. For the proof 
of Theorem 3.2 we need the following result. 

THEOREM 3.4. Suppose that 9 c (f), 9 contains no special d-dimen- 
sional simplex, k > d. Then 
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DEFINITION 3.5. Let us define k-trees in the following inductive way. 
Every k-graph consisting of a single edge is a k-tree. Suppose that 
F=(T ,,..., T,}c(f) is a k-tree, SE(~T,~), .v$uF. Then {T ,,..., T,, 
{SW (x}}} is a k-tree. 

Note that for graphs (k = 2) this leads to the usual notion of a tree. 

Conjecture 3.6 (Kalai [K2]). Suppose that F c (f), u is a positive 
integer and 181 > u(~: ,)/k. Then 9 contains every k-tree with u + 1 edges. 

Note that the case k= 2 of the above conjecture is a famous open 
problem of Erdiis and Sos (cf. [ E83). 

To see that -if true- this bound is nearly best possible, consider a (k - l)- 
packing 9 c (k +“;- , ) of maximal size. By the result of Rod1 [R] which we 
cited earlier, 191 = (1 -~(l))(~l,)/(~:!;l) holds. It is easy to check that 
the family F = dk(P) contains no k-tree with u + 1 edges and 

We prove this conjecture for a very restricted class of k-trees. 

DEFINITION 3.7. Call a k-tree star-shaped if it contains an edge which 
intersects all other edges in k - 1 vertices. 

THEOREM 3.8. Suppose that 9 c (f), u is a positive integer and 
191 > u(,l ,)/k. Then 9 contains every star-shaped tree with u + 1 edges. 

4. MORE ON SIMPLICES AND A STRANGE PHENOMENON 

DEFINITION 4.1. A family (S, ,..., Sd+ i } is called a d-dimensional I-sim- 
plex (or for short (d, E)-simplex) if IS, n . . . n S,, ,I < 1 but the intersection 
of any d of the Sj has size at least 1. 

Claim 4.2. If (S, ,..., S,, ,} is a (d, I)-simplex then IS,1 >d+l- 1. 

Proof Define B, = S, n . . * n S,, , , A ; = fii, i Sj for i = l,..., d. Define 
further Bi= Ai- B,. Now the sets B,,,..., B, are pairwise disjoint subsets of 
S rl+, satisfying lBol <I- 1, lBOl + lBil = [Ai1 21. This implies 

IS,+,13 i lBil= f (IB,l+lBiI)-(d-1)IB,I 
I=0 i=l 

ad/---(d- 1)(1- l)=d+Z- 1. 1 

To avoid trivialities we shall assume that k > d + f - 1 holds. 

(4.1) 
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Let us define s(n, k, d, I) = max{ 191: 9 c (t), 9 contains no (d, l)-sim- 
plex}. 

Even the case k = d + l- 1 is rather special. In fact, if {S, ,..., Sd+ , > is a 
(d, I)-simplex with (Sr 1 = . . . =IS,+,[=k=d+l-1, then (4.1) implies 
l&l = I- 1 and lBil = 1 and that every element of Sd+ , is contained in at 
least (d - 1) of the remaining d sets in the simplex. Since the choice of S, + , 
was arbitrary, we obtain (S,u ... uS~+~)-S~+,=S~~ ... nS, and 
thus JS,u ... ~S~+~l=IS~+rl+l=k+l. 

On the other hand, it is easily checked that every collection of (d + 1) k- 
element subsets of a (k + 1)-element set forms a (d, /)-simplex with 
l=k-d+ 1. 

Let us define m(n, k, t, r) as the maximum size of 9 c (f) such that no t 
vertices span r or more edges. This function was introduced by Brown, et 
al. [BESl, BES2]. 

The determination of m(n, k, t, r) is in general a hopelessly difficult 
problem, even for graphs, i.e., k = 2. 

With this definition for k = I+ d - 1 we have 

s(n,k,d,l)=m(n,k,k+l,d+l). 

For d 2 2 let us mention the bounds 

1 n 

-( > 

d-l n 

2k-2 k 
<m(n,k,k+l,d+l)d-- 

0 k k 
+O(n”-1). (4.2) 

In (4.2) the lower bound comes from [FF2] while the upper bound was 
proved by deCaen [C]. 

In the case d= 1 a (d, I)-simplex is just two sets whose intersection has 
size less than 1. In this connection one should mention 

THEOREM 4.3 (Erdos-Ko-Rado [EKR]). Suppose that 9 c (c), and 
IF n F’) > 1 holds for all F, F’ E 9. Then ) 9 I 6 (; I :) holds for n > n,,(k, 1). 

The best possible bound n,(k, I) = (k - I+ 1 )(I + 1) was determined by 
Erdos, Ko, and Rado for 1 = 1, by Frank1 [ F23 for I> 15 and by Wilson 
[W] in general. 

From now on we assume that k 3 d + 1 and d 3 2. 
The easiest way to exclude (d, Qsimplices is to take all k-element sets 

containing a fixed l-element set, This gives 

(4.3) 

EXAMPLE 4.4. Suppose that k > 21. Let X= X, u X2 be a partition with 
IX,I=Lan] where cr=(d-l)/(l+d-1). Let Ac(,X_I,) be a (d-l)-pack- 
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ing of maximal size. By the theorem Rod1 [R] we have /,cil’J = (1 - o( 1)) 
(,Y ,)/($I-:). Define 

Clearly 

p= IdI ‘7’ ( > = (1 -o(l)) ((1 -;)n)( a;)‘( ;I;)=Q@‘+“p’). 

Claim 4.5. The family 9 from Example 4.4 contains no (d, /)-simplex. 

Proof: Suppose that F, ,..., Fd+ , E 9 form a (d, /)-simplex. Since k > 21, 
we may suppose that, e.g., F, n X, # Fz n X,. Then IF, n F,I < 1+ d- 2 
holds. 

On the other hand in every (d, I)-simplex the intersection of any two sets 
isatleastI+d-2.Hence IF,nFz’,I=l+d-2andthusF,nX,=F,nX,. 
Since for all 3<i<d+l either F,nX,#FinXi or E;nX,#F,nX, 
holds, we infer F, n X, = F, n X, = . . . = E;+ i n X,. However, this implies 
IF, n ... n Fd+,l 3 IF, n X2/ =I, a contradiction. 1 

In the case k < 21 one can still take a (I + d- 2)-packing of maximal size 
to show (using again the theorem of Rod1 [R]) 

,,n,k,d,,,,,,-.,l,,(l+~-2)1(1+~-2). (4.4) 

THEOREM 4.6. Suppose that k > I+ d. Then (i) and (ii) hold. 

(i) s(n, k, d, I)= O(nma”ikp/“+d-‘)) 

(ii) Zf k 3 21+ d and n > n,,(k) then s(n, k, d, I) = (; I:), the unique 
optimal family consisting of all k-sets through a fixed l-set. 

Conjecture 4.7. (ii) holds also in the case k = 21+ d- 1. Note that in 
the case I= 1 this is a theorem of Chvatal [Ch2]. Let us remark that for 
k < 21 there is a gap of one in the exponent of n between the lower bounds 
and the upper bound in (i). The following theorem shows that it is not by 
chance. 

THEOREM 4.8. For every E > 0 one has s(n, 5, 2, 3) # O(n4-“). On the 
other hand s(n, 5,2,3) = o(n”). 

Let us note that for k = 5 there is only one (2, 3)-simplex, consisting of the 
three sets {a, 6, x1, x2, y3}, {a, b, xl, ~2, x3>, and {a, 6, YI, ~2, ~3). Thus 
Theorem 4.8 solves a problem of Erdijs [E6]. 
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5. SPECIAL SIMPLICES, INTERSECTION CONDENSED FAMILIES, AND TRACES 

For a family d c (:) we call A d the kernel of d and denote it by 
K(d). The center C(a) is defined as the set of vertices of degree at least 
two in ~2. For I&I 2 2 obviously K(d) c C(d) holds with equality if and 
only if d is a sunflower. 

Let now & be a fixed k-graph, )&I > 2 and set p= IK(&)I, 
4= Ic(J4--K(~)l. 

Let us define 

Looking at all k-subsets through a (p + 1 )-set shows that 
ex(n, d) 2 (;I;: i). Now we describe a potentially larger construction. 

Call a set Y t-crosscut of d if IA n Yl = t holds for all A EJX?. Let AzJ,, be 
the corresponding truce, i.e., &‘y = {A n Y: A E JzJ}. We call di, a t-trace 
of d. 

Let us note that if 2p + q < k, then every sunflower of size l&j and 
consisting of (p + 1 )-element sets occurs as a t-trace of d. 

DEFINITION 5.1. Let rr(&‘) denote the maximum size of a (p + 1 )-graph 
B which contains no (p + 1 )-trace of d. 

By a theorem of Erdos and Rado ([ER], see also Sect. 2) n(d) is finite, 
x(&)<(p+ l)!(l&Zzl- l)p+‘. 

EXAMPLE 5.2. Let P49 = &J(d) be a (p + 1 )-graph achieving equality in 
Definition 5.1. Suppose that Y = u g is a subset of X. Define 

It is easy to check that F”(g) = (n(d)--o(l))(;:;: t) and that 9(@) 
contains no copy of &. 

THEOREM 5.3. Suppose that k>3p+q+2. Then ex(n, d) = 
(n(&‘)-o(l))(;::;:;) holds. 

Let us say that yc4 is a special (d, I)-simplex if lK(&‘)l = I - 1 and 
{A - K(A): A E &‘} is a special simplex of dimension d, as defined in 
Section 3. 

Let d(d, I) denote the special (d, I)-simplex. Simple considerations show 
for k>d+l that x(&(d, l))= 1, n(&‘(d,2))=2, n((&‘(2, 3))=2, and 
7c(&(2,4)) = 6. Using Theorem 5.3 one obtains the asymptotic size of 
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ex(n, &(d, I)) for the corresponding cases. Recall that d(t, s) is the 
maximum size of a t-graph containing no sunflower of size s. 

Claim 5.4. For k > d-t I we have 

Proof: Set t = L1/2 J and let 9 be a collection of &t, d + 1) sets of size t, 
without sunflowers of size d+ 1. Set Y = u 9 and for each y E Y let G, be a 
2-element set. Suppose that G,, n G,., = @ for ,V # v’ E Y. Define 

That is, /9&l = 191 and 9$, arises by replacing in 9 every vertex by two new 
ones. 

If 1 is even set W = %$,. If 1 is odd let z be an extra vertex and define 
s= {Bu {z}: BE9iq)). 

We claim that g contains no f-trace of d(d, I). 
Indeed, except possibly for z, the vertices in g came in equivalent pairs, 

while in d(d, I) two vertices are equivalent only if both are of degree 1 or 
d+ 1. Thus the I-trace should be a sunflower of size d + 1 in order to be 
contained in $9. But g has no such sunflower proving our claim. 

The upper bound holds for all ~4 with p + q < k, as we pointed out 
above. 1 

Let us note that in [F3] there is a related conjecture which is not true as 
stated. We propose the following version of it. 

Conjecture 5.5. Suppose that p = 0, q <k and r is the minimal size of a 
l-crosscut of d. Then 

n-l 
ex(n,4=(r-41)) k-l . ( ) 

Note that r < cc is a consequence of q 6 k. Theorem 5.3 shows the 
validity of the conjecture for k 3 q + 2. 

6. Toots OF PROOFS 

a. Shadows: The Kruskal-Katona Theorem 

Recall that for 9 c (t) and 0 <h <k the hth shadow Ah(F) of B is 
defined by 

X 
Ah(P)= HE h { 0 : ~FES, HcF . 
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Given 191, what is the minimum of lAJP)I? This problem was completely 
solved by Kruskal [Kr] and Katona [Kal]. Since their formula for 
Idh( is not too convenient for computation, we shall use the following 
version of their result. 

THEOREM 6.1 (Lovasz [Lo]). Suppose that 9 c ( f) and let the real 
number x 2 k be defmed by 19 I = (i) = x(x - 1) . . . (x - k + 1 )/k! Then 
Id,JF)( 2 (i) holds for all k > h > 0. 

For the simplest proof of these results see [FS]. 

b. Families with Lots of Sunjlowers. 

The main tool in proving most of the theorems is a recent result of the 
second author. 

Recall that a family 9 is closed under intersection if B, B’E~ implies 
(Bn B’)E3?. 

For a family 9 and a set BE 98 let us define the intersection structure of 
B on B by &(B, W)= (Bn B’: B# B’E%!}. The k-graph Be(f) is called 
k-partite if for some k-partition X=X, u ... u X, and for every BE 6?8 we 
have )BnXJ =l, 1 <i6k. 

If %I is k-partite with k-partition X= X, u ... u X, then we define for a 
set A c BE&~ its projection n(A)= {i: A nX, # @} and x(JV(B, 93)) = 
{n(A): A E.M(B, 9?)}. Note that &!(B, a) and n(Jz’(B,%3)) are isomorphic. 

THEOREM 6.2 (Fiiredi [Full). For any two positive integers k and s 
there exists a positive constant c(k, s) such that every family 9 c (f) con- 
tains a subfamily 9* c 9 satisfying (i)-(iv) 

(i) IB*l > c(k, s)lF:l. 

(ii) 9* is k-partite. 

(iii) There is a fumiZy 9 ~2{‘,*,-..~~ such that z(A(F, Y*))=y 
holds for all FE 9*, 

(iv) Every member of JJ’( F, 9*) is the center of a sunflower of size s 
formed by members of .9;*. 

Let us remark that if s> k (which we will always assume), then (iv) 
implies that &‘(F, S*) is closed under intersection. 

For the family % = z(.M(F, 9*)) we define its rank r(f) by 

r(j)=min{IAl: Ac (1, 2 ,..., k}, 3 BE$, AC B}. 

Clearly. r(y) < k with equality holding if and only if f = 
(A:A s {i,2 ,..., k)). 

We shall often use the following simple observation. 
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Claim 6.3. c(k, s)l$l < IB*I <d&F*) 6 (r,>,). 

Proof Let A c (1, 2 ,..., k} be an uncovered set of size r(f), i.e., A CI? B 
holds for all BE f. For FE 9 o-* let A(F) be the unique subset of F satisfy- 
ing n(A(F)) = A. 

We claim that A(F) #A(F) for F, FEB*. Indeed, the contrary would 
imply A=~~(A(F))c~(F~F’)E~(A&‘(F,~*))=~, a contradiction. Thus 
l,P*l d 4,J8*) 6 (r,‘>,) and therefore by (i) the statement follows. 1 

The next observation was essentially proved in [DEF]. 

Claim 6.4. Suppose that 4. c 9 is a sunflower of size kr with center Ki 
for i = l,..., r. Set R=K,u ... UK,. Then there exist Ails, 1 di<r such 
that Ain R = K, and the sets A ;-- R are pairwise disjoint. 1 

c. Families with Many Intersection Conditions 

Another tool for investigating the intersection structure A’(F, F*) is the 
following result of Frank1 and Katona. 

THEOREM 6.5 [FK]. Suppose that 9 = {D,,..., D,} is a collection of 
not necessarily distinct subsets of Y. Let s be a positive integer and suppose 
thatforallt, 1dt<mand1<i,<i,<‘.. <i,<mwehave 

IDi, n . . . n Di,J # t - s. 

Then (9’)=m<lY~+s-1 holds. 

We shall need the following strengthening of this theorem. 

THEOREM 6.6. [FF3]. Suppose that 9 satisfies the assumptions of 
Theorem6.5 and l9l=IYl+s-l. Ifs>2 then 9 consists of IYl+s-1 
copies of Y. 

For s = 1 the situation is much more involved. Families achieving the 
upper bound are the disjoint unions of well-intersection designs, which in 
their turn are generalizations of semi biplanes. 

7. MORE ON FAMILIES CLOSED UNDER INTERSECTION 

Let F be a k-element set and let 2 c 2F be a family closed under intersec- 
tion with F+! 8. Set r = r(f). 

LEMMA 7.1. Suppose that r(f)> k- 1. Then (i) or (ii) hold. 

(i) (A:xoA + F}c%for some xEF. 

(ii) 2’c 9 for some BE (krZ). 
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Proof. If there is at most one (k - 1)-element subset of F which is not in 
2, then we can choose x E F such that all k - 1 subsets of size k - 1 of F 
through x are in j. Let A, ,..., Ak _ r be these sets. Since j is closed under 
intersection, for all choices of j and 1 < il < . . . <i,< k - 1 the set 
Ai,n ..’ n A, is in $. This implies that (i) hold. 

Suppose now that F- {x} and F- { y} are not in f. Since r(f) 2 k - 2, 
F- {x, y} must be in 2. Set B=F- {x, y]. For ZE B define 
B;=(B- (z})u {x}. S ince r(2) > k- 1, there exists Dz E 3 satisfying 
B,cD=. Since Dzu{z}=F-{ } x is not in f, Dz n B = Bz E f follows. 

Again, using that f is closed under intersection we infer 2’ c f, i.e., (ii) 
holds. i 

LEMMA 7.2. Suppose that r(f) > max{k - 1, I + d}. Then either 9 con- 
tains a (d, &simplex or k > 21+ d and {B: Y c B $ F} c f holds for some 
YE (7). 

Proof Set r=r(y) and Z= {z,,..., z,} be an uncovered r-subset of F, 
i.e., Z d A holds for all A E I. By definition for every i, 1 6 id r, there 
exists Aie,$@ with (Z- {zi})cAi, and consequently A i n Z = (Z - { zi} ). 

Define Y=F-Z, Dj=Ain Y. 
Suppose first that for some s and 1 d i, < ... < i, d r we have 

IDi, n . . . n D& = s - (r - I + 1). Assume, by symmetry, that i, =j, 
j = l,..., s. Since r>l+d, it follows that s>d+l. Now IA,n ... nA,yI= 

I4 n ..* nD,\+IZI--s=s-(r-l+l)+r-s=l-1. 
Defining Bi = A i n (n;= d+ z Ai) for i = l,..., d + 1, one verifies that these 

d + 1 sets form a (d, &simplex. Since 9 is closed under intersection, Bj E 9 
follows, i = l,..., d + 1. That is, f contains a (d, l)-simplex. 

Suppose next that 

ID, n ... nDLI #s-(r-l+ 1) holds for all 1 < i, < . . . < i, 6 r. 

Applying Theorem 6.5 gives r 6 1 YI + (r - 1) = k - 1. Since we assumed 
r>k-Z, r=k-1 and IYI =Zfollow. 

Now Theorem 6.6 yields that D, = Dz = ... = D,= Y, i.e., Ai= F- {zi} 
holds for i = l,..., r. Using that 2 is closed under intersection, we infer 
{B: YcB$ F}c$ 1 

Let d be a fixed k-graph and recall the definitions of K(d) and C(d) 
from Section 5. Also p = IK(d)l, q= [C(d)1 - p. 

Set Y=C(d)anddeIinethefulZtraceof~%‘as’%(d)={AnY:A~d}. 

LEMMA 7.3. Suppose that r(y)> k-p- 1, ka 3p+q+2. Then either 
f contains the full trace of .d or {E. B c E $ F} c 2 holds for some 
Bd,:,). 
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Prooj Let us define inductively sets Ei and families g c 2Ef - {E,) 
satisfying the following three conditions: 

(i) J$ is closed under intersection, 

(ii) EicE, ,, I&1-E;I32, 

(iii) r(A) 2 r(A- ,) - 1. 

First set E,= F, yO=y. 
Suppose that Ei and A were already defined and consider the maximal 

(for containment) sets in A. If there is a maximal set E with IEJ 6 lEil - 2 
then set E,+,=Eand A.+,={E~D:DEJ~}. 

Otherwise stop. Let this procedure terminate with the pair E,, 9,. By (ii) 
and (iii) we have 

k-p- 1 -t6r($t)< lEtI <k-2t. 

Thus t<p+l and consequently IE,I>r(Yt)>k-p-l-t> 
k-2(p+l)ap+q.LetB,,..., B, be the maximal sets in A: Bi = E, - {xi>, 
i = l,..., s. Then the set {x1 ,..., x,> is not contained in any member of yta,. 
This observation yields s > r(f,) 2 k - p - 1 - t > p + q. 

Define B= B, n ... n B,<. We have 

(BI=lE,l-s<(k-2t)-(k-p-l-t)=p+l-t. (7.1) 

From (7.1) it follows that either IBJ <p or (BI =p+l and t=O, 
s = k - p - 1. In this second case using (i) gives {E: B c E C+ F} c 2 = yta,. 
In the first case using lE,l > p + q, s > p + q and IBI < p we find sets D,, D, 
with BcD,cD~cE*, ID,I=p, ID,I=p+q and (E:D,cEcD,} 
c 2, cf. Thus % contains the full trace of &. 1 

Let us recall also the following statement which was proved in [FF3]. 

LEMMA 7.4. Suppose that k 3 21+ 3 and r (9) 3 k - l- 1. Then either 9 
contains some l-element set or for some (I+ 1)-element set B we have 
{E:BCE~ F}CJC 

Note that for k k 31+ 2 this lemma is a special case of Lemma 7.3. Its proof 
is very similar to the proof of Lemma 7.2. 

8. THE PROOF OF THEOREMS 2.7, 4.6 (i) AND 5.3 

We start with Theorem 4.6(i). Let us define h = max {k - 1, I + d - 1 }. We 
are going to prove that 

lAJP-)I 2 c(k, Cd+ 1) k)l9I. (8.1) 
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Apply Theorem 6.2 (with s = (d+ 1) k) to 9 to obtain 9* and 2. In 
view of Claim 6.3 it is sufficient to show that r(f) < h. However, the con- 
trary implies by Lemma 7.2 that 9 contains a (d, I)-simplex, and thus 
M(F, 9*) as well. Since every member of k’(F, 9*) is the center of a sun- 
flower of size (d+ 1) k, Claim 6.4 implies that F* contains a (d, I)-simplex, 
a contradiction. 1 

Now we prove Theorems 2.7 and 5.3 together. Set h = k - I- 1 
(h = k - p - 1) in the case of Theorem 2.7 (5.3) respectively. Apply 
Theorem 6.2 to obtain 9, =%* and 9, =y. If r($)<h- 1 then stop. If 
not, apply Theorem 6.2 with 9 - 9i instead of 8, and so on. This way in 
the mth step we obtain 9m = (9 - (9i u ... u FmP ,))* and A,. We stop 
either if there are no more sets, or if r(yM) <h - 1. We get a partition of 9 
into pairwise disjoint families 9, ,..., &,, (a - (8 u . . u Fm)) 2’ B so 
that the corresponding families $, ,..., fm satisfy r(,&) 3 h for 1 d i < m and 
r(fm) < h - 1. 

In view of Claim 6.3 c(k, s)l(W u Fm)I d I9,,,I < (hl ,)=0((z)). Thus we 
can forget about 92u&,. Set 9=91u ... u9$-,. 

Using Lemmas 7.3 and 7.4, respectively, we infer for every FE 9 the 
existence of a (k- h)-element set B(F) such that all the set E with 
B(F) c E $ F are the centers of a sunflower of size s in 9. 

Set D(F) = F- B(F). For a fixed h-element subset D let B, ,..., B,(D) be all 
the (k - h)-subsets such that D = D(D u Bi) holds, i = l,...,r(D). Clearly 
191 = CDEcZ, r(D) holds. Thus it is sufficient to show that r(D) < n(d) in the 
case of Theorem 5.3 and that r(D) < #(1+ 1, s) in the case of Theorem 2.7. 
Consider first Theorem 5.3. If r(D) > n(d) for some D then we can find not 
necessarily distinct B, ,..., B, with Bi = B(D u Bi) and such that for an 
appropriate isomorphic copy of & = {A, ,..., A,} and a set Y we have 
AinY=Bi. Since IDl=k--p-1>2p+q+l>p+q=lW(d)l, we can 
find not necessarily distinct subsets D,c D, i= l,..., t, such that 
(4 u D, ,..., B,u D,} is a copy of q(d). 

Finally, since each Biu Di is the center of a large sunflower, Claim 6.4 
provides us with a copy of d in 9, a contradiction. 

The case of Theorem 2.7 is slightly simpler. Again, we have to show that 
r(D) <&I+ 1, s) holds. Suppose the contrary. Then we can find a sun- 
flower {B, ,..., B,} such that (BiuD)e9 and B(B,uD)=Bi, l<i<s. 

Let c be the size of the center of the sunflower and D, a (1- c)-subset of 
D. 

Then the sets B, u Do,..., B, u D, form a sunflower whose center has size 
1. An application of Claim 6.4 gives the desired contradiction. i 

582a/45/2-6 
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9. EXACT BOUNDS FOR SIMPLICES 

Let k, 1 and r be positive integers, k > 1. Throughout this section we 
consider k-graphs 9 c (f) having the following property. 

If F’E 9 and L E (7) are such that each set E with 
L c E $ F is the center of a sunflower in 8 of size rk, 
then Lc F’ holds for every 8” ET with IF n (F- L)I > 
k-l- 1. (9.1) 

The proofs of this section are based on the following, rather technical 
lemma, which was essentially proved in [FF3]. For completeness’ sake we 
include a (somewhat sketchy) proof. 

Let ci be a positive constant depending on k, 1, and r only (1 d i < 6) 
throughout the statement and the proof of 

LEMMA 9.1. Suppose that 9 = S$ u % is a partition veryfying (i), (ii). 

(i) /&I <clnkp’-‘. 

(ii) For each FE 5j there exists an l-set L = L(F) c F such that every 
E with L c E $ F is the center of some sunflower in 9 of size rk. 

(iii) IdkP,(?2)l > c,l%l for afl 9 c 5. 

Thenforn>n,(k,I,r)either IFI<(;I:)~~~={FE(~):L~F} holdsfor 
some L E ( r). 

Proof Without loss of generality we may assume that 5r is maximal, 
i.e., (ii) fails for all FEY~. Let us assume that 1.91 >(;I!). Let {L ,,..., L,) 
be a labeling of {L(F): FEDS}. For l<i<t define 2$= 
{FE%: L(F)=L,}, s= {F-L(F): FE%}. 

Then (i) implies 

(9.2) 

Using (9.1) it is not hard to see that the families d, _ I- ,(@J are pairwise 
disjoint. Define real numbers xi> k - I by l%:.I= I$$]= (k-~,). Assume for 
convenience that xl>xj for 2dj<t. Since LCJL- I) = 
(x - k + I+ 1 )/(k - I) is a monotone increasing function of x, Theorem 6.1 
implies 
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Using (9.2) we obtain 

243 

< “I,“‘;” (k-;-l)’ 
Comparing the two extreme sides gives x, > n - cj. 

This implies that 

(9.3) 

Consequently, 

I$l> ;I; ( 1 -(c, +c,)nk-‘-1. 

If 3, F 9, then we have nothing to prove. Thus suppose 9 - 9, # @ and 
letthepartitionF-%,=G3u8bedetinedbyQ=(E:L~ EEL}. 

We distinguish two cases according whether 191 or [&‘I is larger. 

Define $= {D-L:DE~). Note that 131 = ($31. Apply Theorem6.2 
with s = rk to 3 and let 5@* and f be the families, we obtain. Suppose that 
DE G3*. Since D 4 9, and 2 is closed under intersection, D - L contains a 
(k - I - 1 )-element set which is neither in A, _ IP , (3, ) nor contained in 
M(D, 29*). 

Choosing one such set from each D - L shows together with the obvious 

gives 

( 
(9.4) 
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Using 12 > n,(k, I, Y), I$@*1 > c(k - 1, rk)JgI and 191 > Ial, we infer 

Substituting this into (9.4) and using /Y/ = igi;i + /?Y +/d/ gives 
191 < (;: I i), a contradiction. 

Define xbk-1 by l&l =(k:,). 
Then 13,1 > (;:7), (9.3) and (i) imply x<c~~‘-“(~~‘). Using 

Theorem 6.1 we obtain for n > n,(k, 1, r), 

Since L d E holds for all EEC?, (9.1) implies that d,_.,P,(%i)n 
~,-,L,(a=(21. 

Further, by Theorem 6.1 we have 

Since x, < n, (9.6) implies 

(9.7) 

Adding up (9.5) and (9.7), and using 191 = I%,/ + IdI + 191 gives 
L;- II 2 Id,-,- 1(%,)l + Id,-,- ,(&)I > lW(k-;p 1M;-i), i.e., ITI < (;:7:), 
a contradiction. 1 

Let us prove now Theorems 1.6, 3.2 and 4.6(ii) together. Set I= 1 in the 
case of the first two theorems and define h = k- 1. Consider a family 
9 c (;T) which contains no corresponding simplex. It is straightforward to 
verify that 9 satisfies (9.1). Starting with the family 9 let us apply 
Theorem 6.2 repeatedly as in Section 8 to obtain pairwise disjoint families 
2 i ,..., #m so that the corresponding families yi ,..., yM satisfy r(A) B h for 
1 <i<m- 1 and r(yM)<h- 1. 

Define 9, = Yt; u . . . u &$, _ i and PO = tim. Lemmas 7.1 and 7.2 imply 
that 9, has property (ii) and that 9 has property (iii). Claim 6.3 implies 
that PO has property (i). 

Now Lemma 9.1 gives the desired conclusion. 
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10. A LINEAR INDEPENDENCE PROOF 

Let us prove Theorem 1.5. 
Let 9 = {F, ,..., F,} and dkPl(9)= {Gi,...,G,}. Define the u by v 

matrix ~=bu),.i..,,.j., by 

1 
mu= 

if Gic F, 

0 if G, & Fi 

Clearly it is sufficient to show that M has rank v. Suppose the contrary 
and let aj~ Q be the coefftcients of a non-trivial linear dependence among 
the columns. That is for every Gj we have 

1 aj=O. 
G,c I;, 

(10.1) 

Let us suppose by symmetry that a, # 0. In view of Theorem in [FS] we 
can find Fj with aj # 0 such that 1 F, n F,I = d. Again by symmetry suppose 
that j= 2 and, say, a2 > 0. Set F, n F, = {xl ,..., sd). 

In view of (10.1) we can find sets Fj,i, such that Fjc,) n F, = F, - {xi}, 
i = l,..., d and ajci,<O. Note that F,(,,n . ..nFjo.xF,-F, and 
~(4 ncfLi Fj(L>))). Thus F, 9 Fj,, )t...> Fj,dj form a d-dimensional simplex 
if F, n Fjc,) n . . . n Fjcdj = 0. Thus we may assume that some element 
XEF, is common to all the F,,;,. That is, Fjci,= (Fz- {x;})u {x}. Apply 
now (10.1) to the (k-l)-element set F,,l,nFj,,,. Since ait,)< and 
a,(,, ~0, there exists some F,, say F, with a3 > 0 and Fjf,, n F,,,, c F3. 
NOW f’,, F,t F,, Fj(,,, f’j~4,~...~ Fjtdj form a d-dimensional simplex, a 
contradiction. 1 

11. WEIGHT FUNCTIONS AND THEOREM 3.4 

First we prove Theorem 3.4 in the case k = d+ 1. For a d-element set D 
let deg, (D) denote the number of Fe9 with DC F. Define a weight 
function w: (1;) x 9 + R+ by 

w(D, F)= 
lldegF(D) for DcF 
o for D ti F. 

By definition 

(11.1) 
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FR~POSITION 11.1. For euery FE 9 we haue 

,c, w(D, F) 3 1. (11.2) 
c 

Proof: Let D, ,..., Ddf , be the d-subsets of some FEN. For 16 id d+ 1 
let A, be the set of those XE(X-F) that (D,u {.Y))E~. 

The sets A ,,..., Ad+, could not have a system of distinct representatives 
say xl ,..., xd+, because then D, u {x,} ,..., Dd+, u (xd+ ,} is a d-dimen- 
sional special simplex. Thus Hall’s theorem implies that for some non- 
empty Ic { 1,2 ,..., d+ I} we have IViE, Ai1 6 /II - 1. Then degAD,)= 
[A,[ + 1 < 111 holds for i E I. Consequently, 

DzFw(Dp F) 2 1 l/deg,(Dj) 2 1. 1 
is/ 

Now, reversing the order of summation in (11.1) gives 

Now we prove Theorem 3.4 for fixed d by induction on k. Suppose that 
k > d + 1 and the statement is true for k - 1. 

Let us set PO = 9. Suppose that 9j is defined already. Consider A, _ ,(PJ. 
If there is some GE A, _ i(E) which is contained in at most c(k, d) members 
of 8, then define q+ i =e- {Fee: GcF} and continue. 

Finally we obtain a family FV so that each G E A, _ ,(Ps) is contained in 
more than c(k, d) members of FT. The definition implies 

s~lA,~,(~)-A,~,(~~)l, 19--Ts;I<c(k,d)s (11.3) 

Now let us consider $. 

Claim 11.2. A, ~ i (F?) contains no special simplex of dimension d. 

Proof of the Claim. Suppose for contradiction that G, ,..., G,, i is a d- 
dimensional special simplex in A, _ ,(Fs). Set A = G, u . ’ u G,, i. Then 
lAl = (d + l)(k - d). We want to show that there exist F,,..., E;,, with 
G,cF,, F,nF?=G,nG<, l<i#i’<d+l. 

Suppose F, is defined for i<j. Set Ai=F,u ... uF~uG~+~u ... uG,, 
lAjl = IAl +j, IA,-G,+,I = IAl +j-(k- l)<d(k-d)+ 1 <c(k,d). There- 
fore there exists Fj+I~Fs with Gj+,cFj+, and F,,,c-IA~=G~+~, as 
desired. Now F, ,..., F,, , form a special simplex of dimension d, a con- 
tradiction. 1 
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Applying the induction hypothesis to Ak _ ,(FJ) we infer 

IALA%)I 24k- 1, C114-M)I. (11.4) 

On the other hand each GE A,- I(E) has only k - 1 (k -2)-element 
subsets while each HE A,-*(e) is covered by at least c(k, d) + 2 members 
of Akp,(K). This yields IAkp2(E)I Q (k- l)/(c(k, d)+2)(A,-,(%)I. Com- 
paring this with (11.4) gives c(k, d) + 2 < (k - 1) c(k - 1, d), a contradic- 
tion. Consequently we must have 9s = 0. Therefore ( 11.3) implies 
IAk- I(*) 2 (llc(k 4)lW I 

12. STAR-SHAPED TREES 

Here we prove Theorem 3.8. Define again a weight function 
w:(~:,)x~--*R+ by 

w(G F)= 
WgAG) ifGcF 
o if G d F. 

(12.0) 

As we saw in Section 11 we have 

c c w(G,F)=lA,-,(B)l< 
Gsdk-,(F) Gc,=E.% 

Reversing the order of summation gives 

Using 191 > z&E 1 )/k, the above inequality implies that for some FE F, 

,c, WCC, F) <k/u. 
c 

(12.1) 

Let G, ,..., G, be the (k - 1 )-subsets of F, define ai = deg,(G,). Suppose by 
symmetry that a, < a2 < . . . < ak holds. 

Substituting into (12.1) yields 

,$, llai < klu. (12.2) 

Examining (12.2) shows that 

a,>L 
k 

holds for 1 < i < k. (12.3) 
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Let 1 <A, < .. < d, be the degrees of the star-shaped tree with u + 1 
edges. Note that Eli= , (d, - 1) = u. 

Let A, be the set of vertices outside F such that (G, u {xj) E 9 holds for 
-YEA,. By definition lAil =a;- 1. Using (12.3) we infer 

,Ai,>~~l-ldj~lT(d,-l)+ ... +(d,-1). 

Consequently we can choose successively sets D, c A, ,..., D, c Ak such that 
1 D,I = d, - 1 and D, ,..., D, are pairwise disjoint. 

Now F together with the edges {G, u { y,]: y, E D,, 1 6 i < k} forms the 
sought after star-shaped tree. 1 

Remark. More careful analysis shows that the conclusion of the 
theorem holds for 191 = u(~ Y ,)/k, unless 9 = dk(.Y) for a (k - 1)-packing 
PC( .+i- ,) with 

Namely, the above argument gives desired star-shaped tree unless 
ldk-i(.9)l =(k:,) and for every FEP’ we have equality in (12.2) 

This still implies the inequality (12.3) for 1 < i < k - 1. If (12.3) holds for 
i= k as well, then the argument works. The only case it fails is if 
a, =a,= ... =ak=u. More exactly A,=A,= ... =A,. 

Repeating this argument with F replaced by Gj u { yj}, yie A;, 1 < i< k, 
etc., gives that (“y “1) c 9. 

Since the same holds for all FE 9 and since for F # F’, F u A, and 
F u A’, either coincide or overlap in at most k - 2 vertices, 9 = d,Jgl) 
holds for some (k- l)-packing Pc(,,+f-i). Now 191 =(“+~P1)191 
implies 191 = (,: ,)/(“:k;‘), i.e., 9 is a perfect packing. 

13. TRIPLE-SYSTEMS WITHOUT SPECIAL TRIANGLES 

In this section we prove Theorem 3.3 for the case k = 3. The proof is 
based on a refinement of the weight function argument from Section 12. 
Recall the definition of the weight function 

w(G, F): 
if GcF 
otherwise. 
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To give the flavor of the argument first we give a short proof of Chvatal’s 
theorem, i.e., the case k = d + 1 of Conjecture 1.3. 

Suppose that 9 c (t), k = d + 12 3 and F contains no d-dimensional 
simplex. 

We are going to show that for n > k + 2 necessarily ]BJ < (; I :) holds. 

Claim 13.1. 

holds for all FE 9. (13.0) 

Proof. Note that deg,(G) < n - d holds for every GE (1;). Thus (13.0) 
follows immediately for all FE 9 which contain some GE (1;) with 
deg,(G) = 1. Suppose next that deg,(G) > 2 holds for some FE 9 and all 
GE (z). We claim that if for some GE (z) the inequality is strict, i.e., if 
deg,(G) b 3 then 5 contains a d-dimensional simplex. Indeed, let 
(G,, Gz,..., G/c} = (5, with deg,(G,)> 3. Since deg,(G,)>,2, we may 
choose xi+ F such that Fi = G,u (.xi} is in 9. If {F, ,..., F,} is a simplex 
then we are done, if not then F, n .. n Fk # a. Consequently, 
x,= ... =xk. Using deg,(G,)> 3 choose y, #x1, y1 4 F such that 
F’, = G, u { y, } E F. Now {F, , F2 ,..., Fk) is a simplex in 9, the desired 
contradiction. 

Therefore deg,(G,) = 2 for i = l,..., k, yielding 

&w(G, F)=;= 1 +y. 
c 

Now (13.0) follows for n > k + 2 if k > 4 and n > 6 if k = 3. Moreover, for 
n 2 k + 3 the inequality is strict unless deg,(G) = 1 for some G c F and this 
degree is n - d for the d remaining sets (z). 

Summing (13.0) for all FE 9 gives 

Comparing the extreme sides gives 19;) < ((n - d)/n)(i) = (“; ‘), as desired. 
Let us recall the following special case of a theorem of Bollobas [Boll. 

PROPOSITION 13.2. Suppose that 9 c (f) and for every FE 9 there is 
some GE(~!,) with deg,(G)= 1. Then 191 <(;I!) with equality holding if 
and only if Y consists of all k-subsets of X through some fixed element of X. 
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Combining this proposition with our preceding observations shows the 
uniqueness of the optimal families for n 2 k + 3. 

Now we turn to Theorem 3.3, k = d + 1 = 3. Since 9 does not contain 
the special simplex { ( 1,2,4), { 1, 3, 5 }, { 2, 3, 6) }, it contains even less the 
star-shaped tree {{1,2,3), {1,2,4}, {1,3,5}, {2,3,6}}. 

Let, with the notation of Section 12, a,, a,, a3 be, in non-increasing 
order, the degrees of the 2-subsets of some fixed FE 9. We call (aI, a,, Us) 
the type of F. 

Then, as we proved in Section 12, either a, = 1 or a, = a, = 2 or 
a,=a,=a,=3 hold. 

Unfortunately, in the last two cases (13.0) need not be satisfied. This 
makes our argument more complicated. Call F, F’E~ neighbors if 
lFnF’l=2. 

We will get by this difficulty by transferring some of the weights from 
sets for which (13.0) is “generously” satisfied to its neighbors and showing 
that (13.0) holds for these modified weights. 

Define the weight w(F) of FE 9 by w(F) = (l/a,) + (l/a,) + (l/a,). We 
first define auxiliary functions W,(H): 9 + R+ for all FE 9. 

The definition of W,(H) will depend on the type of F. 

(a) F has type (1, 1, aj) with a3 > 4 then 

1 

l/k-2) if IHnFI=2 

WAH) = w(F) - (a3 - l)/(n - 2) ifH=F 
0 otherwise. 

(b) F has type (1,2, Us) or (1, 3, Us) with a3 > 4 

I 

2/b - 2) if IHnFI =2 and deg,(HnF)63 

Wp(H)= w(F)-2(a,-l)/(n-2) ifH=F 
0 otherwise. 

(c) Fhastype(a,,a,,a,)witha,<3,2~a,63(i.e.,oneof(1,1,2), 
(1, 1, 3), (1, 2,2), (1, 2, 3), (1, 3, 3), (2, 2,2), (2, 2, 3), (2, 3, 3)), then 

W,(H)= w(F)-2(Ca,-3)/(n-2) 

/ 

2/b - 2) if lHnFI=2 

ifH=F 
0 otherwise. 

(d) For the remaining FE 9 we define 

for H= F 
otherwise. 
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Finally, we define the new weight function by 

It should be noted that 

“‘& W(H) = 1 w(F) holds. 
HE5 

(13.1) 

Hence if W(H) z 1 + 2/(n - 2) held for all HE 9, we would obtain as 
above 

< 1 W(H)= 2 w(H) = IAz(S)I < 

which yields 191 6 (“5 ‘), as desired. Since we are looking for the maximal 
families, we may assume that 

(13.3) 

Divide 9 into four parts, 9 = &, u 9i u 4 v & : 
& = {FE 9: the type of F falls in a), b) or c), i.e., either (1, 1, a), 

(1, 2, a), (1, 3, a), (1, 1, 2), (1, 1, 3) (1, 2, 2), (1, 2, 3), (1, 3, 3), (2,2,2), 
(2, 2, 3) or (2, 3, 3), where a > 4}, 

Fj = {FE@: the type of F is (1, a,, a,), where a*, a3 > 4}, 

&={FE~: thetypeofFis(2,2,a), whereak4) 

and 

F3 = {FE 9: the type of F is (3, 3,3)}. 

A simple case by case analysis gives 

PROPOSITION 13.3. Zf FE & then for n 3 75 

W(F) > 1 + 2/(n - 2). 

Here equality holds only if F has type (1, 1, n - 2). 

Proof. If the type of F is not (1, 1, a) then W(F) > w(F) - 5(2/(n - 2)). 
However, w(F) >/ ) + 3 + f. 1 
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PROPOSITION 13.4. If FE &, then 

W(F)> 1 +2/(n-2). 

Here equality holds only if F has type ( 1, II - 2, II - 2). 

Proof: For FE fi u Yz u 4 we have W(F) 3 w(F)( 3 1). In the case of 
FEF,, if its type is (1, a2, a,), we get W(F) b 1 + l/a2 + l/a, 3 
1 + 2/(n - 2), (because ai < n - 2). [ 

Now consider a set FEDS with W(F) d 1 + 2/(n -2), F= { 1, 2, 3}, 
deg.,({l, 2})>4. 

Claim 13.5. There exists a (unique) element of X, say 4, such that 
( w~3.41)c55, and deg,({ 3,4}) 24. Then, by definition of &, we have 
degy({i,j))=2 for 16i<2, 3<j64. 

Proof Consider the triples { 1, 3, x> and { 2, 3, y }, x, y E X-, F. We 
claim x = y. Indeed, deg,( { 1, 2)) > 4 implies that there exists a triple 
(1,2,u}~~,~#~,~#y,u#3,hence {1,2,u), (1,3,x), {2,3,y}forma 
special triangle. So we have that e.g., F2 = ( 1, 3, 4}, F, = (2, 3, 4) E F. As 
degA{l, 3))=2 we have Fz $ % u 4. Moreover F2 E P0 would imply 
W(F) > w(F) + 2/(n - 2) so the only possibility is that F2 E 4. Similarly 
F3EFJ. The type of F2 is (2, 2, a) where a 2 4. We claim that 
deg,,( { 1,4} ) = 2, deg,( { 3,4}) 3 4. Suppose the opposite, and consider 
F3={2,3,4}. As deg,((2,3})=deg,({3,4})=2 and its type (2,2,6) 
(b>4)wehavedegY({2,4})=b.Theneachofthepairs {1,2), {1,4}and 
(2, 4) has degree > 4, a contradiction. 

So we have deg,({3,4})=a>4, deg,((l,2})=ba4, and 
deg,({i,j})=2holdfori~{1,2},j~{3,4}.ThenthereexistsanF4#F~ 
containing { 1, 4). We claim F4 c { 1, 2, 3, 4}, i.e., F4 = { 1, 2,4}. Otherwise, 
if F4={lr4,5} then F4, F, and a triple F, (distinct from F,, F4 and 
(1,2, 51) through (1,2} would form a triangle. u 

PROPOSITION 13.6. Let {F,, F,, F,, F,} = ( (I. 2j3,4i) c q2 as in the 
previous claim. Suppose that W( F, ) d 1 + 2/(n - 2). Then 

,<T<, W(Fi)>4(1 +2/‘(n-2)). 
. . 

ProoJ: Clearly, C W(F)=2(++++(l/a))+2(f+t+(l/b)), so 
1 W(F) < 4( 1 + 2/(n - 2)) implies 

a+b>n-2. (13.4) 

Let A=:(xEF-{1,2,3,4}:{3,4,x}~~}, B=:{xEF-(1,2,3,4}: 
{1,2,x}~Y}. First we show that IAnBIdl. Indeed, XEA~B implies 
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deg,( (i, x}) = 1, i.e., the type of { 1,2, x} is (1, 1, b). So { 1,2, x} (by the 
definition of W) transfers a weight l/(n--2) to F, (and to F4 also). As 

1 + l/(n - 2) < w(F) < W(F) < 1 + 2/(n - 2), 

there exists at most one such an x E A u B. 
Consider a vertex y E AAB, say y E A -B, {3,4, y} E 9. Then 

deg,({i, y})=O for i= 1, 2. (Otherwise, if, e.g., { 1, y, U} ~9 then 
(1, Y, ~1, {3,4, Y} and { 1,2,3} f orm a traingle.) So (13.4) implies that 
there are at least 21AABI 2 2(a + b - 5) 2 2(n - 7) uncovered pairs. Hence 
by (13.2) 

19-l < 14,(9)1 < ; 
0 

- 2(n - 7). 

This contradicts (13.3). m 

As a triple FE 4 can belong to only one configuration given in 
Claim 13.5 we have 

PROPOSITION 13.7. If 4 # /zr then (1/19zI)CFE9z W(F) > 1 + 
2/b - 2). I 

PROPOSITION 13.8. For FE& we have W(F)3 1 + 2/(n-2). 

Proof. Suppose on the contrary that for F= (1,2, 3) EF~ 
W(F) < 1 + 2/(n - 2) holds. Then (by the definition of W) we have 

W(F) = 1. (13.5) 

For every pair Gc F, there are two elements XL and xi such that 
(Gu {x;;})E~ (i= 1,2). A n easy case by case checking (a similar one to 
Proposition 13.5) shows that (xb, x’,} must be the same pair for all three 
G c F. For example, {i, j, k) E 9 for 1 < i< j< 3, k = 4,5. Consider the 
triple F2= { 1, 2, 4). As deg,({l,2})=3 and deg,({l,4})>2, 
deg,((2,4})>2 its type is either (2,2, 3) (2, 3, 3) or (3, 3,3). But in the 
first two cases F, transfers some weight to F which contradicts to (13.5). 
Hence all the 6 triples intersecting F in 2 elements have type (3, 3, 3). This 
implies that ( t l, *. $ 4, 5 ) ) c Fs. 

Denote (1,2,3,4, 5} by K. For every point x E X- K one of the follow- 
ing holds: 

(i) there exist two elements i,jeK such that 
deg,({x,i})=deg,({x,j})=O, or 

(ii) there exists an element VEX-K- (x} such that {x, y, i} E F 
for at least 4 elements ie K, and these triples have type (1, 1, a) (where 
a>4). 
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Suppose (i) does not hold. Then there are i, , i,, i,, i, E K such that 
deg,({x,i,})>l,i.e., {x,i,,?i}~~(l~j~4).Theny,=... =y,follows. 
This also implies that deg,( { x, i,})= 1, hence deg,,( (y, i,})= 1, i.e., (ii) 
holds. Denote the number of elements of X-K satisfying (i) by p. Then 
(n - 5 - p)/2 pairs satisfy (ii). In the second case delete four triangles of the 
form {x, y, i} (i E K). We obtain the family 9’ 

and 

-2p-4(n-p-5). 

Using IFI d lAZ(F’)l we obtain 

IFI-2(n-p-5)6 ; -2p-(n-p-5), 
0 

i.e., 181 <(; )-2(n-5)<(“;‘) which contradicts (13.3). 1 

The Proof of Theorem 3.3. for k = 3. Proposition 13.3, 13.4, 13.7, and 
13.8 imply that 

holds for i= 0, 1,2, 3 (resp.). Then the argument given in (13.2) gives 
191 d (n ; ’ ), as desired. Moreover, if equality holds here then 

for FE& its type is (1, 1, n-2), 

for FEY, its type is (1, n-2, n-2), 

92 = % and 4=%. 

The first 3 statements are implied by Propositions 13.3, 13.4, and 13.7, 
respectively. To prove 4 = 121 consider a triple FEDS with 
W(F) = 1 + 2/(n - 2). Then F has received a weight 2/(n - 2) from an edge 
HE 9$. But this is impossible because all edges in F0 have type (1, 1, n - 2). 

Summarizing, we have that in the case of 191 = (“; ‘), 

every FEF has a GEA,(F) with deg,(G)= 1. (13.6) 

Then Proposition 13.2 gives that n 9 # 0. 1 
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14. QUADRUPLE-SYSTEMS WITHOUT SPECIAL TRIANGLES 

Here we prove Theorem 3.3 for the case k = 4. We will proceed as in Sec- 
tion 9. Consider a family % c ($‘) which does not contain a configuration 
isomorphic to { { 1,2, a, b}, { 1, 3, c, d}, { 2, 3, e, f} }. We can suppose that 

(14.1) 

Starting with the family % let us apply Theorem 6.2 (with s = 20) 
repeatedly as in Section 8 to obtain pairwise disjoint families Z1 = %*, X2 
= (% - s,)*,..., Jpm = (F-X,- . . . -sffmpl)*, a = %-((x;u ... 
u Zm) so that the corresponding families f1 ,..., ym satisfy r(A) = 3 for 
1 < i < m - 1 and r(jm) d 2. In view of Claim 6.3, 

(14.2) 

Instead of Lemma 7.1 we need the following more exact statement: Let F 
be a 4-element set F= { 1, 2, 3,4}, and let $ c 2F - (F} be a family closed 
under intersection. Suppose that r(y) = 3, and j does not contain a sub- 
family isomorphic to either { { 1, 2}, { 1, 3}, (2, 3)) or d = { { 1, 2}, { 1, 3}, 
(2, 3,411. 

LEMMA 14.1. Either 

(i) f= {A:.xEA $ F} for some XEF, or 

(ii) The family of maximal members in f is isomorphic to 

{{1,2,3}, {1,2,4}, (334)). 

Proof If 2 contains 2 or 3 3-element subsets then $ is isomorphic to 
the family given by (ii) or (i), respectively. If 3 contains 0, or 1 3-sets then 
(because every 2-set is covered by f) it contains a triangle, or a family 
isomorphic to ~2, respectively. Finally, if f contains 4 3-sets, then it 
contains a triangle also because it is closed under intersection. 1 

Continuing the proof of Theorem 3.3 define 

%1 = u {&: A fulfills (i)), 

%* = u { 8: A fulfills (ii)} (1 <i<m). 

The only thing that we have to prove, that 8 fulfills the constraints of 
Lemma9.1 with k=4, I=l, (r=20)and %O=:%zu#muB, %1=:%,. 
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It is clear that (9.1 ) holds. Condition (ii) holds by definition, and (iii) is 
proved by Theorem 3.4 (k = 4, d= 2). So we have to prove (i), i.e., 
I,$ u ,rt”, u %? = O(n’). By (14.2), it is sufficient to prove 

l&l = O(n’). (14.3) 

To prove ( 14.3) we need 

PROPOSITION 14.2. IF,1 + 2141 < (;). 

Proof: We associate i 3-sets to every FE @ (i = 1,2). These will all be 
distinct implying z i/z] < (;). 

For FE% let B(F)= (:‘)\&, and for FEJ& let (C(F), C’(F)} =(:)\j$. 
We claim that these 3-sets are all distinct. Suppose on the contrary, we will 
get a contradiction with the fact that & u 4 is triangle-free. Without 
loss of generality we can suppose F= (1, 2, 3, 4}, F’= (2, 3, 4, 5}, 
{ 2, 3,4} 4 jQu yr. We distinguish three cases. Denote by y* the maximal 
members of $. 

If F,F’E~, then fi={(1,2,3}, {1,2,4}, {1,3,4}}. Hence (1,2}, 
{ 1, 3) E ,&, thus there exist an F2 and Fx E B such that Fz n F= { 1,2}, 
F,nF’= (2) and F,nF= {1,3}, F,nF’= (31, F,nF2= (1). Then F, 
F,, and F3 form a triangle a contradiction. 

If FE6 and FE@* then we can suppose that $F={(3,4}, {2,3,5}, 
(2,4,5)}. Then (1, 3}, {1,4}~2~, (3,4)~,$$, these form a triangle and 
all of them are centers of sunflowers. Thus there are F’, F*, and F3 ~9, 
through them forming a triangle. 

If F, F E 4 then we have two possibilities for 2;. Either yF= { { 3,4}, 
{1,2, 31, {1,2,4}} or fF= ((2, 31, (1,2,4}, {1,3,4}}. In the first case 
11, 2, 31, {3,4}, and {2,4, 5} form a special triangle (consequently there 
exists a special triangle through them), and in the second case (2, 3}, 
(3, 4}, and (2, 4, 5} form a triangle. B 

Proof of (14.3). Proposition 14.2 implies that 

1% + 141 < ; - 141. 
0 

Hence (14.1) and (14.2) give 

n-l ( > 3 
~isl=lwd+lau~l~(;)-l~l+~(;), 

i.e., I41 G (1 + +)(;). 
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15. AN EXTREMAL PROBLEM WITH No EXPONENT 

More than 10 years ago Ruzsa and Szemeredi proved the following 
result: 

Let us call a k-graph 9 linear if 1Fn FI Q 1 holds for any two distinct F, 

FEF. 
Let Y = (S, , S,, S,} be a 2-dimensional special simplex with 

IS,/ = I&J = IS,1 = 3. 
Let us denote by m(n) the maximum size of J? c (f), such that 2 is 

linear and 2 contains no 2-dimensional special simplex. 

THEOREM 15.1 [RS]. m(n) = o(n’) but m(n) # O(n* -“) for every E > 0. 

Now we shall use this result to prove Theorem 4.8. First we show that 
s(n,5,2,3)#O(n4-” ) holds for every E > 0. Let X= X, u X2 u X, be a par- 
tition with lX,I = 1X2( = Ln/3]. Let further Xc (11) be a linear 3-graph 
without a special triangle and with 1X1= m(Ln/3 _I). Define 

cF= FE 
i 0 

t : (FnX,EX, IFnX,I = [FnX,( = l}. 

Clearly, 191 = [%?I (X,1 IX,1 >, m(Ln/3j)Ln/3]* # O(n4-“). We have to 
show that F contains no (2, 3)-simplex. Suppose the contrary and let 
F,, F,, Fs form such a simplex. 

Let us consider the sets Hi=FinX,, Ai=Fin(X,uX,), i=l,2,3. 
If Ai # A, then IF, n Fjl 3 3 and the linearity of 2 imply Hi = Hi. But 
then the third F cannot meet both Fi and Fi in at least three vertices. 
Thus A,=&=A, and IHinHjl>l for l<i<j<3. Since X contains 
no triangle, we infer H, n H, n H3 # @. However, this yields 
IF, n F2 n F,I > 3, a contradiction. 

To prove s(n, 5,2, 3) = o(n”) suppose that B c (f) contains no (2,3)- 
simplex. 

Let us apply Theorem 6.2 to obtain 9* and 3. If r(g)< 3, then 
IF*/ < (;). Thus we may assume that r(y) > 4 holds. 

If f contains 3 or more 4-element sets, then in FE F* we can choose 
A i, A,, A, distinct 4-subsets which are centers of large sunflowers. Since 
A i, A,, A, form a (2, 3)-simplex, Claim 6.4 implies that 4* contains a 
(2, 3 )-simplex, a contradiction. 

Thus we may suppose that, e.g., (1, 2) is contained in no 4-element 
member of %. This implies by Theorem 6.2(iii) that for all x1 E X, and 
x,EX, the 3-graph S(~,,~,)=(HE(~):({X~,~,}~H)E~} is linear. 
Now Theorem 15.1 implies IF-(x,, x2)1 = 4n2). Consequently, 
IF’1 < n20(n2) = o(n’) holds. 1 

582a:45/2-7 
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16. OPEN PROBLEMS 

It is not hard to find open problems in this area. Actually, the deter- 
mination of ex(n, 2) is unsolved for almost all k-graphs X. 

We believe that the main progress in the near future will come by 
singling out those (possibly very few) X’s for which the determination of 
ex(n, 2) is a solvably difftcult problem. 

As mentioned in the Introduction, this does not seem to be the case for 
even such simple graphs as the cycle of length 21, 12 6. 

An important distinction between k-graphs is whether they are k-partite 
or not. 

For every k-partite k-graph 2 we know by a theorem of Erdiis [E2] 
that ex(n, &“) = O(&“‘“’ ), where E(&) is a positive real, depending only 
on X. 

The determination of the best possible value of E(X) is an open problem 
even for such simple 3-graphs as K(t, t, t)= {{x, y, z>: xc-X, ye Y, z~Z}, 
X, Y, and 2 being pairwise disjoint t-element sets. 

Or for X; = ((1, 3, 5}, {1,4, 6}, (2, 3, 61, {2,4, 5}>. For Xi it is known 
that $<.s(Xi) < $; cf. [F3]. If &? is not k-partite, then obviously 
ex(n, %) > Ln/k _I” = Q(nk) and by an averaging argument of Katona, et al. 
[KNS] there exists 

/l(Z)= lim ex(n, 2) 
n+m I( > 

i . 

Turan’s problem [T2], one of the outstanding open problems in com- 
binatorics is the case when # = (l) for some fixed Y, 1 Yl > k. 

Turin conjectured that /?( ( tl* *j3. “1)) = 2 and /?( ( (‘3 *, :, 4, ‘I)) = 2. Kalai 
[Kal ] proposed an interesting approach to the first one, while some 
positive evidence in support of the second is provided by [F6]. 

Let us mention that the only case of a k-graph X’ with k > 3 for which 
the exact value of ex(n, X’) is known is X0= { { 1,2, 3}, { 1,2,4f, 
{3,4,5}). 

It is proved in [FFl] that ex(n, zO) = Ln/3]L(n + 1)/3jL(n + 2)/3 J for 
n 3 3,000. 

Sometimes it is easier and more natural to exclude a finite set of k- 
graphs and not only one. For example, the determination of s(n, k, d, I) 
falls into this category. 

An other example is the following: 
Determine max{ 191: 9 c ( f), 9 contains no three members F, , F,, F3 

with F,AF2 c F3} =: 6(n, k). 
Solving a problem of Katona [Ka2], Bollobas [Bo2] showed that 

6h 3)=~43_1~(n+ 1)/3~~b+2)/31 and he conjectured that 6(n, k) = 
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Ln/kJL(n+ l/k_].*-L(n+k- l)/kJ in g eneral. The lower bound follows by 
considering the complete k-partite k-graph on n vertices. Recently 
Sidorenko [Si] established the validity of this conjecture for k = 4. 

Now let us list some of the most challenging open problems related to 
simplices. 

First, one should solve Conjecture 1.3 for all n > ((d + 1 )/d) k, k > d, i.e., 
to show that all 9 c (i) with /91> (;I :) contain a d-simplex. 

Similarly, we believe that the following is true. 

Conjecture 16.1 Suppose that 9= c (f), 1x1 = n > 2k, 191 > (;I i). Then 
9 contains a special (k - l)-simplex. 

Let us note that Theorem 3.3 shows the validity of Conjecture 16.1 for 
k = 3 and n > 75. From results in [BF] it follows for k = 3 and n = 6 or 7. 

We should not leave unmentioned the following result of Erdos and 
Milner. 

THEOREM 16.2. [EM]. Suppose that B c 2x, 191 > 2”-’ +n. Then 9 
contains a triangle, i.e., three sets F,, F2, F3 with F, n Fz n F, = @ but 
F,nF,#@ for l<i<j<3. 

Conjecture 16.3. Suppose that 9 c 2x, 181 > ‘&ad ($1:) + Cicd (z). 
Then for n > n,,(d), 9 must contain a d-simplex. 

To see that this conjecture, if true, is best possible, consider 
9 = { Fc X: x E F or I FI < d}, for some fixed element x E X. 

In Theorem 4.8 we showed that for 9’ the 5-uniform special (2, 3)-sim- 
plex exh 9) has no exponent, i.e., ex(n, 9) = o(n”) but 
lim, + m ex(n, Y)/n*-& = co for all E > 0. This solves a problem of Erdiis 
WI. 

Actually, we can show that this is the smallest example in the sense that 
for all 2-3-, and 4-graphs 2 with )%I < 3 there exists a real number 
(actually an integer) r such that cln’<ex(n, 2) 6 cznr holds with c, and c2 
being constants depending only on 2”. 

Using Theorem 4.8 one deduces easily s(n, k, 2, k - 2) = o(nk- ‘) for all 
k > 6 as well. 

PROPOSITION 16.4. Does lim, _ o. s(n, k, 2, k - 2)/nkP ’ e-E + 00 hold for 
all k>6 and e>O? 

Finally, let us call the interested and/or courageous reader’s attention to 
Conjecture 2.6 (ex(n, Z) for 2 a fixed sunflower) and Conjecture 5.5 
(ex(n, X), where P is an intersection-condensed k-graph with p = 0, 
q=k- 1). 
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