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COVERING ALL SECANTS OF A SQUARE

| . BARANY*- z. FURED!*

Suppose that n points are given in the unit square.
Then there exists an intersecting line whose L_-distance
is at least 2/3(n+l) from each point. This is a slight
improvement on the trivial lower bound 1/2n but it is
still far from the best possible value 1/(n+1) conjectured
by L. Fejes Toth.

1. INTRODUCTION

Let S be a square on the plane with side Tength
n (=1), and let #= {31,82,...,St} be a collection of
unit squares whose sides are parallel to those of S. We
say that & covers the lines intersecting S if for every
line L (on the plane) which intersects S intersects some
of the S.%s (i.e., LNS#P implies LNS, #P for some 1) .
Let t(n) =1(n,S) denote the minimum cardinality of a
cover, and let Tin(n) denote the minimum cardinality of
a covering system whose members are located inside S.
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L. Fejes Toth [3,7] conjectured that for an odd integer n

Tin (n) = 2n-1

_Figure 1 Figure 2

(see Figure 1.). Clearly, t(n) STin(n) <2ln1 where [Mx71
denotes the upper integer part of the real x. The aim of
this note is to improve on the trivial lower bound
t(n)=n7l. Namely, we will prove t(n)>(13n-1)/12
(Theorem 2.1) and Tin(n)> (4n-1)/3 (Theorem 2.3).

The exact results are stated in Section 2. That
section also contains examples showing the limit of our
methods. Section 3 is devoted to the proof of the lower
bounds. These proofs use weight functions, actually we
calculate the fractional covering number of a hypergraph.
In Section 4 we mention related problems and results.

2. INTERSECTING LINES PARALLEL TO THE SIDES OR THE
DIAGONALS

THEOREM 2.1. Let S be a square with side length
n (n 21, real) and let = {Sl,...,St} be a collection
of unit squares in S whose stides are parallel to those
of S. If t<(4n-1)/3 then there exists a line parallel to
either a side or a diagonal of S, which intersects S and
avoids every Si'

The Example 2.2 shows that for t= (3n+1)/2, Theorem

2.1 does not remain true.
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EXAMPLE 2.2. Let k be a positive integer, n=4k-1.
Suppose that the four vertices of S are given by their
coordinates: (0,0), (O,n), (n,0) and (n,n). We will
denote by S(i,j) the unit square {(x,): i<x<i+l,
j<ysj+l}. Then the following set of squares, & covers
every intersecting line of S with slope 0, 450, 90° or
135°,

¥ ={S(1,J): where i,j20 integers such that i =0,
j=2t, 0st<k-1or j=0, i=2(k+t), 0<t<k-1 or
i=2k-2, j=2(k+t), 0<t<k-1 or j=2k-2, i=2t,
0<t<k-1 or finally i=3=2t+1, 0<t<?2k-2}. See
Figure 2.

If n is not an integer of the form 4k-1, then a
minor modification of the above example (e.g., let
k=L(n-1)/41) demands Tess than (3n+9)/2 unit squares.
Denote by tin(n) the minimum value of th for which 2.1
does not hold. Similarly, let t(n) denote the mininum t
such that there exists a cover consisting of t unit
squares (located arbitrarily, not only inside S) which
meets every intersecting line with slope O, 450, 90° or
1359,

THEOREM 2.3 1y - %§< t(n)<:%n+—0(1).

The upper bound follows from the following example.

EXAMPLE 2.4. Suppose n=6k+3, where k is an integer.
Let #={S(i,j): where i,j are integers and either i =33,
0<j=<3k+l or j=3i-2, 1<1<3k+l or (i,j) = (3k+2, 6k+2)
or j=1-2, i=3k+3+t, 0<t<3k-1, t#2(mod 3)}. Then
|#| = 8k+4. See Figure 3.

These examples show that our method, i.e., to
consider only 4 directions, can not lead to the proof
of Fejes Toth’s conjecture.
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Figure 3

3. PROOFS

Suppose that 51,82,...,St meet every line inter-
secting S with angle 0, 450, 90°% or 135°. We will show
that t> (4n-1)/3. Consider a coordinate-system whose
axes are parallel to the sides of S. Choose the unit and
the origin of this system in such a way that the vertices
of S have the coordinates (+1,+1). Then the side Tength
of a square Si is 2/n denoted by 2e. We define a weight
function w(L) on the set of intersecting lines L with
slopes 0, 450, 90° or 135° as follows. Actually, this
weight-function is a measure on the set of these lines.
If the equation of the line L is y=c¢ or x=c then

2

P =

w(l) = 3 -

and, if the form of the line L is y = x+h or y = =x+h then

1

w(L) = ghz.



As for an intersecting line [c| <1, |h| <2 hold we have
%Zw(L)ZO. The total weight of the lines in these four

directions is:

+1 2
1 1.2 1.2 8
(1) 2_f1(§—?c )dc+2_f2 —gh dh = 3

Now consider a square Q=0Q(a,b) with center (a,b)
(la], |b] =1-€e) and side length 2¢.

We will show that the weight of the lines inter-
secting Q is

(2) Vpehidr,

wlro

E

Hence (1) and (2) yield that for n>1

4 4n-1
on + (3/n2) 3

proving Theorem 2.1. The proof of (2) is simple because
the weight of the lines intersecting Q and parallel to
the axis x=0 is

a+e
() f (3 - 3¢?) de = e-a%c -z

a-g

See Figure 4. Similarly the weights of the lines inter-
secting Q and parallel to the lines y=0, y=Xx, y=-Xx are

b+e
(4) I (g-3¢%) dc = e-bPe-3e’,



=4

Figure 4
b-a+2¢
(5) ;- EhZdh = ze(b-a)? + 57,
b-a-2¢
a+b+2¢
(6) Fy %hzdh - %-s(a+b)2+-§-s3,
a+b-2¢

Summing up (3) - (6) we get (2).

The proof of 2.3 is analogous to the above. We
modify the weight functions of the lines, because in the
previous case a small square outside S, e.g., Q(0,2)

could get too much weight.

(

'%J-écz for: Jel=l
If y=c or x=c then w(L) = {

LU otherwise

g%hz for |h| <2,
and if y =+x+h then w(L) =
0 otherwise.
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Then the total weight of the lines is 13/6 and every
small square covers lines with weight at most 25-b%e3.

Hence t<13/(12c+¢€%) = Tan - 1/12(12n° + 1),

4. RELATED PROBLEMS AND RESULTS

We have the following conjectures:

t(n) = 3n+0(1),

tin(n) = %n-+0(1).

We could not even prove that 11mn+mt(n)fn exists
(or 1im tin(n)/n, or Tim t(n)/n or Tim rin(n)fn.) The
only result we have is if we consider 8 directions of
the lines, and define a more sophisticated weight-func-
tion, then we obtain

THEOREM 4.1. Tin(ﬂ) >1.43n-0(1).

Paul Endos asked what is the minimum number of covering
unit squares outside S? It is very likely 3n+0(1).

Our problem is a particular case of a problem of
Fejes Toth [2] . Assume K is a convex body on the plane
and A >0. Consider a set & of A-homothetic copies of K
having the property that each line intersecting K inter-
sects at least one member of &. What is the minimum
cardinality of such a set? Fejes Toth [ 3] points out
further that this question is closely related to the
dual of Tarski’s plank problem (see Bang [1] or Fenchel
[4]).

Another related problem is the following, considered
by Makai and Pach [6]. Let # be a class of functions

Fi R+Rd. A set of points {(xi,yi)EIQxIRd, L I Te—
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is said to be #-controlling system if for each f&€7
there is an i with Hf(xi) —yiﬂ slf Sodan F -controlling
system is a set of points P in IR™ x IR™ with the property
that for each f€* one can find a point in P sufficiently
close to the graph of f. The problem is to find an
#-controlling system with "few" points (or with small
density if P must be inifinite). Makai and Pach [6], and
Groemer [ 5] prove several results concerning this problem.
In their case the norm is always the Euclidean norm.

When we take in the above formulation d=1, # to be
the class of all linear functions whose graphs intersect
the square S, and | I to be the L_ norm, then what we
arrive to is exactly our problem about t(n,S).

We end this paper by mentioning a question of Fejes
Toth [2] which we find very appealing and which belongs
to the sort of questions considered here. A zone of widht
w is defined as the parallel domain of a great circle (of
the sphere) with angular distance w/2. Prove (or disprove)
that the total width of any set of zones covering the
sphere is at least m.
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