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The following problem was answered by a theorem of Kruskal, Katona, and Lindstrom
about 20 years ago: Given a family of k-clem:nt sets #, |F [=m, at least how miny (k—d)-ele-
mznt subssts are contained in the m:mbars of & ? This paper deals with the extremal families, e.g.,
they are completely describzd for infinitely many values of m.

1. Introduction

Let X be a finite set, k=g positive integers. Denote by (f) the family of

all k-subsets of X, and 2% is the power-set. For a family & we denote by dg (x) the
degree of the element x, i.e., dz(x)=/{FeF: x¢ F}|. Let #(x) and ./' (1x) denote
the subfamilies of & as follows: & (x) {F: x¢FeF}), F(x)=F —F (x). For

integers v and v, ( ] denotes the binomial coefficient, where (f))=0 except if u=

=v=0. The g-shadow 4,% of the family F is definedas 4,% =:{G: |G|=g, IFcF:
GCF}.

Kruskal [4], Katona [3], and Lindstrom [5], solved in the middle of the sixties
the following problem: For a given family of k-element sets &, |#|=m, at least
how many (k—d)- element subsets are contained in the members of & ? Denote by
K(m, k, gy=min {IA F|: |F|l=m, F is a family of k-subsets}. They proved that

if m= [k] + k 1 +...+ ] where a,>a,_;>...>a,=s=1 are integers (the
representation of m in this so called k-cascade form is unique), then K(m, k, k—d)=
(kak d] (k fkl-_l_ d] + ...+ [S‘is d)‘ Call the family of k-subsets & (k, g)-extremal

if |4,%] is minimal.
Define the antilexicographical order of all k-subsets of positive integers as

follows: A< B if considering the symmetric difference 4 A B we have max (4 A B)¢B.
(Eg., {1,2}<{1,3}<{2,3}<{l,4)<...). Consider the first m members of this
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ordering of k-sets. We obtain a family & =% (m, k) with

[8i-aF| = Z[iigd].

i=k

1
(This can easily be seen because F(m, k)= ({l’ 2’;&"’ a’”] U (.97 (m— ((;(‘] k- l) +

+{a,+1}) where o +{x} denotes the family of sets of the form HU {x}, He#.)
Hence, by the Kruskal-——Katona—Lindstrém theorem, & (m, k) is a (k, g)-extre-
mal family for all g<k.

The aim of this paper is to investigate the extremal families. Especially, we
prove that up to isomorphisms & (m, k) is the only (k, g)-extremal family for infini-
tely many values of m. Later we will see other extremal families.

We have to mention a not so strong but much more applicable form of
Kruskal—Katona—Lindstrom theorem due to Lovasz [6] (Problem 13.31). Write

m in the form (/:] where x=k is a real number [['J\\,)=x(x—1)...(x——k+l)/k!).

AY

Then K(m,k, g)= [g . Recently, Frankl [2] gave a short, common proof for the

original Kruskal—Katona—Lindstrém theorem and for the Lovész version.

2. Results

Theorem 2.1. Let F be a family of k-sets such that its g-shadow is minimal. Then
its (g—1)-shadow is minimal as well.

An obvious consequence of this theorem is that a (%, g)-extremal family is
(k, 1)-extremal:

Corollary 2.2, Let & be a (k, g)-extremal family, |F ]é(Z] Then |UF|=n.

This implies that for m= (’3] the only (k, g)-extremal families are the comp-

lete hypergraphs. Moreover the extremal hypergraph is unique in the cases m=k+1
and m= [,’J —1. The function K(m, k, g) is monotone increasing in m for fixed
k and g. Call m a jumping number (more exavtly a (k, g)-jumping number) if
K(m+1,k, g)=K(m, k, g). E.g., the value m= [Z] is a jumping number.

Proposition 2.3. Write m in k-cascade form, m= (‘Z‘] + [Z":i) +...4+ [(: ) . Then
m is (k, g)-jumping iff s>k—g.

Example 2.4. Let m, k, g (k>g) be given and let m’ be the largest integer satisfying
K(m', k,g)=K(m, k, g). (This m’=zm is always a jumping number.) Delete (m’—m)

edges from % (m’, k) arbitrarily. We obtain a (k, g)-extremal family &, because
K(n, k,g)=|4,F|=|4,F (m', k)| =K(n', k, g)=K(m, k, g).



FAMILIES WITH MINIMUM SHADOW 357

Proposition 2.5, Let m>k+1, k=2, m¥ (,:) —1. If m is not a jumping number
then Example 2.4 gives more than one non-isomorphic extremal families.
Theorem 2.6. Let m be a (k, g)-jumping number. Then the only (k, g)-extremal
family is F (m, k).

3. Proof of Theorem 2.1

Let m be a positive integer and write

s=i=sk

m= 2 [af'] where a,>aq,_;>...>a;, =5 =0.

We call this a near-k-cascade form of m. The following simple Lemma says that
instead of cascades we can use near-cascades for characterizing the (k, g)-extremal
families (although the near-cascade form is not unique).

Lemma 3.1. Let m= 3 (‘Z’) be a near-k-cascade form of m. Then K(m, k, k—d)=
isk
a;
=2 [i—d] - 1

Let #c [f) where X={1,2, ..., n}. We recall the definition of the left-

shifting operation S;;: 2¥—~2%, where 1=i<j=n, which was introduced by Erdds,
Ko and Rado (1]: For Hz# set

H-{j}U{} if i, jeH and H-{j}U{i}4H,
S (H) = ;
! H otherwise.
Finally, let S;;(#)={S,;(H): Hc#). This is well-known (cf., e.g., [3]):

Proposition 3.2. |S,,(#)|=||, and 4,5,;(#)CS,(4,5) (ie., |4,5,;0)|=
=4, 1

Call the family o 1-shifted if Sy;(s#)=s# for all 2=j=n. In other words
(M Hest, 1¢H, jeH implies H—{j}U{1}c2.
The idea of the following Proposition comes from the short proof of Frankl [2].
Proposition 3.3, Let # be a (k, g)-extremal, 1-shifted family, |# }=m=((;\f]+

.+ (‘;] (cascade form, s=1). Define #,={H—{1}: 1¢ H#}). Then

) |4, = |4, 30|+ |4, 4] for 1=t<k,
) oel = (22 )+ (22)),
@ a0 = (7))

) 14,-154] =(‘;"__11)+---+(S_(L;1::g1+1)]-
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Proof. For any family &, element x, and G€A,# we have either x€G or not,
hence

(©6) 14,7 | = |4,F (1)U A(F () — {0+ ] 4-1(F ) — {x)]-

Now consider the 1-shifted family 5, and let 3£,= # (1), #,= 5 (1)— {1}. Then
(1) implies s#; D4, _15%,, hence

@) 4,9, 0 A,
holds for ¢t=k—1. Using (6) we obtain (2).

To prove (3) suppose |#,]< Z (‘:‘ ] Then
®) bl =1el-al = > (- 2 (42)) = 2 ()

Here, although the right-hand side of (8) is not in cascade form, it implies

el = (7).

i=k
Because || =(4,-,54,|, by (7), it is a contradiction.
Now, Proposition 3.1 and (3) implies that
= a; - I
4= 2 (%0 L,)

holds for t=k—1. To prove equality here for t=g, g—1 use the Kruskal—
Katona—Lindstrom theorem, (2), and the (k, g)-extremality of 5#:

Kem kg = 3 (,_ &)= 14,21= 14,51 +4,,56]

= 2 (Slo) 2liod o) = Eli-dg)

We need one more Proposition.

Proposition 3.4. Le: ?C[f], |%|=1, |S|=s. Suppose x€S has minimum degree,
and denote oA =9(\x), B#=%(x)—{x}. Then |4,_,|=|B|. Equality holds only
7o)

Proof. Clearly,

1 k
8] = minds () = < 3 ds() =19,
S S
ie.,
® [B] = (k[9)|%],
and

10) |] = ((s—k)/s) (9]
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Count the pairs (4’, A), where Acsf, A'C A, |A'|=k—1. We get
Klet| = (4", 4) = (5= D)= (k= D) | de_1 1.

This implies (using (10) and (9)):

k

—k

Finally, the equality |4,_,o/|=|%#| implies k|o|=(s—k)|4;_, | from which

_ 1
.9!:(3 k{x,] easily follows. |]

s—k k
—19l=—19] = |4l

k
ymyst| = — o] = -

Now we are ready to prove Theorem 2.1. We use induction on m and k.
The case m=1 is trivial. Let & be a (k, g)-extremal family, m, g=2. Let S=UZ%,
and &/ and # defined by Proposition 3.4. (Clearly &, ##0). Replace & with a

copy of F (||, k) and # with F (2|, k—-1). More exactly let F bea family_of
k-subsets of positive inreiers_f:dU(ﬁ—l- {z}), where o =F(H| k), B=
=F(|8|,k-1), and z=|o/ UZ|+1. By the definition of the antilexicographical
ordering 4, % (m, k)= (|4,F (m, k)|, g). Hence

(11) 4,94 > A,B

because |4,_,/|=|4B] (by Proposition 3.4) and both 4,_,&f and & are initial
segments of the antilexicographical ordering of (k — !)-element sets of positive num-
bers. Now apply the Kruskal-—Katona—Lindstrém theorem, (11), (6), the Kruskal—
Katona—Lindstr6m theorem, and (6) again. We get

(12)
|4, | +14,-1B| = K(|o£|, k, @)+ K(|B|, k=1, g~1) = |4,54|+|d,-, B| =

=4,/ U4, B|+|4, B = |4,7| = K(F |, k, g) = |4,F =
=4, 8 U4, B|+14,,B| = |4, +4,-1 8.
Hence equality holds throughout in (12), which yields:

ie., o is (k, g)-extremal,

19 |4,-:1%| = K(|8|, k—1,g-1),
ie, #is (k—1, g—1)-extremal,

(15) 4,9 D A, 8,

(16) |4, %) = 4,7,

ie, Zis (k, g)-extremal.

Use the induction hypothesis for & and #. We get that & is (k, g—1)- and
2 is (k—!,g—2)extremal. Equality in (12) yields that 4,4/ D4,%, so that
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A, 1898 D4, 1 B. Hence by (6) we have

(162a) Mg s F| = 4,18 Ay s B|+18,-2B) = |4y A+ |4, B| =
= Ay |+ 8,2 B = |4, 1 AU A, 1 B|+|4,_.B| =
= 4,1 7.

Thus we are done if we prove that # is (k, g—1)-extremal. Note that & is 1-shifted.

Denote Z=% (1), F=F()—{1). Let |F|=m= Z( ) in k-cascade form.

i=k
Then by (4) and (5) we get  that the family Ag.z is (g, g—1)-extremal. Use the in-
duction hypothesis for 4,%; (g<k). We obtain that it is (g, g—2)-extremal, i.e.,

_ a—1 .
[d,-2Z|= (i—(k—g+2))' Now applying (2) we have

i=k—2

lAy~l§] = IAg—l'g_lH"IAg—ng‘l]
_ a;—1
= Z(i-¢- een)t 2 en)

= Z(i—aZg4n)
= K(m, k, g-1).

Hence & is a (k, g—1)-extremal family. |

4. Proofs of Propositions 2.3 and 2.5

Proof of 2,3. Trivial. |

Proof of 2.5. Consider the hypergraphs & (m+1, k)~ {E} where E varies over all
EcF (m+1,k). We claim that there exist some two of them which are non-iso-
morphic.

Lemma 4.1. Suppose H#={E,, ..., E,}, E.CS, |El=k for all 1=i=m and let
H,={E,cH:1=j=k, j=i}. Suppose that H;=3; for all i#j. Then there
exists a partition k=n+ny,+...+n, (Jor all m=1), S=S5,USU...US, such
that |ENSi|=n; for all i and E€3¥, and dx(x)=dx(y) for all x, y€S;.

Proof. Let d,<d,<...<d, be the different values of dx(x), and S;={x¢5: dp(x)=
=d;}. The hypergraphs #; and #; have the same degree-sequence. [§

Now it is easy to see that the conclusions of Lemma 4.1 hold for s# =% (m, k)
only in the cases m=k+1 and m= (Z] . B
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5. Proof of Theorem 2.6

Let % be a family of g-subsets of the n-element set S, and denote by 4*%=

={FcS: |F|=k, 3G€% such that GC F}. Set f(m, n, k, g)=min {[4*¥|: gc[z],

|%|=m, |S|=n}. We call the family ¥ minimal if |4*%|=f(m, n, k, g). Now we
give a reformulation of Corollary 2.2 with this terminology:

Corollary 2.2°, Suppose ¥ C[:Z] , |S|=n, |¥ |=m§(g_—_]1] a minimal family.
Then Ng=0.

Proof of 2.2. For .}fc[z,] denote by J#° the family of complements, #°=
={S—H: Hcs#}. By definition (4*#)=4,-,(#°). Hence for the minimal
family 4,

(A7) flm, n,k, g) = [4*F| = [(4°9)| = |4,-+(%°)| = K(m, n—g, n—k).

Indeed, in (17) equality holds because %¢ is an (n—g, n—k)-extremal family on n
points, i.e., gc(g] is minimal iff g‘c(n‘i ] is (n—g, n—k)-extremal.

Now l.@‘]é(;:]])=(2:1), and ¢ is (n—g, n—k)-extremal, hence by

Corollary 2.2 we have [U%¢|=n—1. This implies N¥=0. [
Now we are ready to prove Theorem 2.6. Let m= > (‘:‘) Here s>k—g
s=i=k

by Proposition 2.3. Consider a (&, g)-extremal family &#. We are going to prove
that F =% (m, k). We will use induction on k—s. If k—s=0 then m=(2]

and Corollary 2.2 implies |U#|=aqa, ie., F=F ((Z)’ k]. From now on we sup-
pose that k—s=1.
S
By Corollary 2.2 we have |U%|=a,+1. Define S=UZ, gz{GE[g]:

A)

g)—Agﬁ. Clearly 4*¢NF=0. We claim

Ga¢ F for every Fef}, ie., {9=(
Proposition 5.1. ¥ is minimal.

Proof. Suppose on the contrary that there exists an # C(j], |#]=14|, |4*o#|=<

<|4*%|. Then define f’:(i]—d"#. We have
A
(18) 4,%7| = '( gJ _x’l - ((g]_gl — (4,7,

(19) 17| = [(f]l—u"m - [(f]l—w{ﬂ = ||,
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Hence |#'|=|Z| and its g-shadow is not larger. This is a contradiction, for m is
a (k, g)-jumping number. [

Since m is a (k, g)-jumping number, the argument above yields that A*@U
UgF = (Z] Now we apply Corollary 2.2" to 4. As 4,7 (> (g]’ we have |¥|<

( ]—( ]‘(g‘—’fl] [ISI ]] We obtain that there exists a point x€S,

such that x€G forall G¢%. The equality F= [/S]—A"@ implies that ( k{x’)c
C#. Split # into two parts, F=F(xX)UF (x), let #=F (x)—{x}. Then

(20) 18] = ("‘ l]+...+ [(;)

and
Q) 14,7 = (;] bt (S_(‘,i’_g)] = 4,7 (10)|+14,-1 8] = ("g"]ﬂag_lge].

Hence (20) and (21) imply that # is a (k—1, g—1)-extremal family and || is a
(k—1, g—I)-jumping number. Applying the induction hypothesis for & we get
=% (|%|, k—1), hence F=F(m, k). |

6. Remarks, problems

Tt seems that the simplest open problem is to describe those (k, k—1)-extre-
mal families which are left-shifted.

Proposition 6.1, [f m= Z[ ) (cascade form) and # is a 1-shifted (k,k—1)-
isk

extremal family, then léf’ol— (a' ]] [.%’11—2[(;_—1]) and #, is a (k—1,

k—2)-extremal family.

Proof. (4) implies this trivially, because in this case A4,3,=4,_,,=5. 1

.
Example 6.2. Let |S|=s+3 (s=4), S,CS, |S,/=s. Define 9:{& (3]: 1SN S,|=

=) 1133037 (TP () e i) 5)-

= (s 22) + [512) +1. Hence & is a (3, 2)-extremal family and it is not given by
Example 2.4.

We recently learned that M. Mors [7] has independently discovered results
covered here by 2.2, 2.5, and 2.6. These are deduced from more general results
so the arguments there are longer and more complicated than ours. Our Theorem
2.1 here is entirely new.
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