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The following problem was answered by a theorem of Kruskal, Katona, and Lindstr6m 
about 20 years ago: Given a family of k-elemmt se ts~ ' ,  I ~ ' l = m ,  at least how mmy (k--d)-ele- 
m.-nt subsets are contained in the m.-mbers of .~?  This paper deals with the extremal families, e.g., 
they are completely described for infinitely many values of m, 

1. Introduction 

Let X b e  a finiteset, k>=g positiveintegers. Denote by (~') thefamily of 

all k-subsets of X, and 2 x is the power-set. For a family o ~ we denote by ds~(x) the 
degree of the element x, i.e., d~(x)=I{FE~: xE F}I. Let ~ ( x )  and ~(-?x)  denote 
the subfamilies of o~ as follows: ~ ' (x )={F:  xEF{~}, ~ ( q x ) = o ~ - ~ ' ( x ) .  For 

t \ 

integers u and v, [u I,~ denotes the binomial coefficient, where I'll=0,) except if u=  > 
/ x 

>=v~=O. Theg-shadow Ao~" ofthe family ~- is defined as Agog= :{G: {GZ =g, 3 F E : :  
GcF}. 

Kruskal [4], Katona [3], and Lindstr6m [5], solved in the middle of the sixties 
the following problem: For a given family of k-element sets o ~ ,  I : ' l=m,  at least 
how many (k-d)-element subsets are contained in the members of o~? Denote by 
K(m, k, g)=min {[do~[: [o~l=m, . :  is a family of k-subsets}. They proved that 

/ __~ .  / __  X / __~ ,  

m=i~<~l+ i~c~; l+ . . .+ las ]  where ak>ak_z>...>a~>=s>-_l are integers (the if 

representation ofm in this so called k-cascade form is unique), then K(m, k, k-d)= 
=(k~d)+ (k a_kl-~_.d) +...+(s~d). Call the family of k-subsets .~ (k,g)-extremal 
if [A¢.~ I is minimal. 

Define the antilexicographical order of all k-subsets of positive integers as 
follows: A <B if considering the symmetric difference A/xB we have max (A AB)EB. 
(E.g., {1, 2}< {1, 3}< {2, 3}< {1, 4}<...). Consider the first m members of this 
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ordering of k-sets. We obtain a family ~ r = ~ ( m ,  k) with 

~_k i d "  

1 a 
(Th,s can ea .. be seon because 
+ {a k + 1 }) where a~/g + {x} denotes the family of sets of the form HU {x}, H(,X:.) 
Hence, by the Kruskal--Katona--Lindstr6m theorem, ,~(m, k) is a (k, g)-extre- 
mal family for all g<k.  

The aim of this paper is to investigate the extremal families. Especially, we 
prove that up to isomorphisms ~'(m, k) is the only (k, g)-extremal family for infini- 
tely many values of m. Later we will see other extremal families. 

We have to mention a not so strong but much more applicable form of 
Kruskal--Katona--Lindstr6m theorem due to Lovfisz [6] (Problem 13.31). Write 

) m in theform , where x>-k is a real number = x ( x - 1 ) . . . ( x - k + l ) / k !  . 

[)i} Recently, Frankl [2] gave a short, common proof Then K(m, k, g)>= , . for the 

original Kruskal--Katona--Lindstr6m theorem and for the Lov~isz version. 

2. Results 

Theorem 2.1. Let .~  be a famUy of  k-sets such that its g-shadow is minimal. Then 
its (g,- l )-shadow is minimal as well. 

An obvious consequence of this theorem is that a (k, g)-extremal family is 
(k, 1)-extremal: 

Corollary2.2. Let ~ be a(k,g)-extremalfamily, ]°:l-<_(~ }. Then lU°:l==n. 1 

() This implies that for m= /. the only (k, g)-extremal families are the comp- 

lete hypergraphs. Moreover the extremal hypergraph is unique in the cases m-<_k + 1 f') and m= /, -1 .  The function K(m, k, g) is monotone increasing in m for fixed 

k and g. Call m a jumping number (more exavtly a (k, g)-jumping number) if 

K ( m + l , k , g ) > K ( m , k , g ) .  E.g.,the value m=t)~l is a jumping number. 
f ~ 

Proposition 2.3. Write m in k-cascade form, m= k + +. . .+ 2 .  Then 

m is (k,g)-jumping iff s > k - g .  

Example 2.4. Let m, k, g (k >g) be given and let m' be the largest integer satisfying 
K(m', k, g)= K(m, k, g). (This m" >=m is always a jumping number.) Delete ( m ' - m )  
edges from o~(m ", k) arbitrarily. We obtain a (k, g)-extremal family ~ ,  because 
K(m, k, g) ~ 1~.~1___ [A,~ (m', k)l= K(m', k, g)= K(m, k, g). 
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Proposition2.5. Let m > k + l ,  k->_2, m g [ ( / - 1 .  I f  m is not a jumping number 

then Example 2.4 gives more than one non-isomorphic extremal families. 

Theorem 2.6. Let m be a (k, g)-jumping number. Then the only (k, g)-extremal 
family is ~ (m, k). 

3. Proof of Theorem 2.1 

Let m be a positive integer and write 

m =  ~ (a.. i] where a~>ak_x>. . .>a~=s>=O.  
s~i<=k 

We call this a near-k-cascade form of m. The following simple Lemma says that 
instead of cascades we can use near-cascades for characterizing the (k, g)-extremal 
families (although the near-cascade form is not unique). 

Lemma 3.1. Let m= _ i be a near-k-cascade form of  in. Then K(m, k, k - d ) =  

Let o~fc [~t"/ where X = { I , 2  . . . . .  n}. We recall the definition of the left- 

shifting operation Su.: 2v~2 x, where 1 ~-i<j<-n, which was introduced by Erdgs, 
Ko and Rado [1]: For H~o~ set 

Sij(H)=IH-{j}U{i}IH if i ~ X ,  j E H  and H - { j } O { i } ¢ M ' ,  
otherwise. 

Finally, let S~j(a~/~')= {Szj(H): HE,Jt~}. This is well-known (cf., e.g., [3]): 

Proposition 3.2. IS~(~)l=l~e[, and AgSij(Yf)cSi~(,da~¢~ ) (i.e., l,J~s,;(~)l--- 
~ IA~(~)IJ. I 

Call the family ~ 1-shifted if S~j(~f)=~/f for all 2<-j<=n. In other words 

(1) HEYt', ICH, jE H implies H-{ j }U{I}E~/ f .  

The idea of the following Proposition comes from the short proof of Frankl [2]. 

Proposition3.3. Let ~ bea (k,g)-extremal, 1-shifted family, I~ l=m=t 'k .~J+ . . .  

(2) 

(3) 

(4) 

(S) 

(cascade form, s>- l ). Define ~/t°~={H-{I}: IEHE~,°}. Then 

Ih,~l = I~ ,~1+[~ , -1~1  for 1 <= t < k, 

(at-l} (as-l), 
i;e~i -~ t k - t  +'"+ts-1) 

- ( k  - g ) ) ,  

( a  k - -  l ~ ( a s - I "~ 

!Ag-l~I = I , g - l J + "  - ~ b - @ - g + 0 j "  
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Proof. For any family ~ ' ,  element x, and GEAg5 ~r we have either xEG or not, 
hence 

(6) IA, I = 

Now consider the 1-shifted family .,~', and let .¢E'o= ~'(-11), ..~1= ~¢g (1) - {1}. Then 
(1) implies o.~xDA~-l.~'o, hence 

(7) A,~Cg~ D A,~o 

holds for t<-k - 1. Using (6) we obtain (2). 

To prove (3) suppose t ~ i  < ~ I. i -  1 )" Then 

Here, although the right-hand side of (8) is not in cascade form, it implies 

o 

Because lYr~l--> [zlk-~e01, by (7), it is a contradiction. 

Now, Proposition 3.1 and (3) implies that 

id,.~xl >_ 2 (  a , -  I 
~_, U - ( k - t ) )  

holds for t<=k-1. To prove equality here for t=g, g - I  use the Kruska l~  
Katona--Lindstr6m theorem, (2), and the (k, g)-extremality of.¢~': 

( al I = IAa..~¢~ ,a' = lA..~l,-t-14,_1.~.~P~, K(m, k, g) = ~a~ "~' s , i - ( k - g )  
I 

~,  ( a , -  1 ) a, 

We need one more Proposition. 

Proposition3.4. Let ~ c / ~  ] ,  lc,3]>l, 

and denote ~¢=f#(Tx),  ~ ' = f # ( x ) -  {x}. 

ProoL Clearly, 

IS[= s. Suppose x6 S has minimum degree, 

Then IA~-J[~I~I.  Equality holds only 

i . ~ o ,  

(9) 
and 
(10) 

1 Z k [g[ = mind~(y) ~_ d~(y) -- s If~[' 
Y $ y~S 

[~1 -<- (k/s)I~1, 

1~¢1 -~ ( (s-k) ls)I~1.  
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Count the pairs (A', A), where AE~, A'cA, I A ' l = k - 1 .  We get 

k 1~¢1 = ~ CA', A) _<- ( ( s -  1 ) - ( k -  I ) ) lAk_~l .  

This implies (using (10) and (9)): 

> k __s-k I~¢1 = T I l l - ~  I~l. Idk-l~¢l -> ~1 = } - k  s 

Finally, the equality IA~-1~¢1=1~1 implies kI~l=(s-k)lAk_~dl from which 

..~' = (S-k{X~)easily follows. II 

Now we are ready to prove Theorem 2.1. We use induction on m and k. 
The case m =  I is trMal. Let o ~ be a (k, g)-exlremal family, m, g=>2. Let S =  U-~-, 
and .~¢ and ~8 defined by Proposition 3.4. (CIearly ,~¢,.~#0). Replace .~¢ with a 
copy of .~(I .~ I, k) and P3 with ~( [~1 .  k -  1). More exactly let o ~ be a family of 
k-subsets of  positive interers . ~ = ~ ¢ U ( ~ + { z } ) ,  where ~ = . ~ ( l ~ ¢ l , k ) ,  ~ =  
-- -~(1~1, k -  I), and z =  [~¢ U~[ + 1. By the definition of the antilexicographical 
ordering Ag.~(m, k)=,~(IAg.~(m, k)[, g). Hence 

(11) Aa~ ~ Ao~ 

because [Ak_~,.q'[_-->[.~'l (by Proposition 3.4) and bolh A k - ~ ¢  and .~ are initial 
segments of the antilexic~raphical ordering of (k - l ) -e lement  sels of positive num- 
bers. Now apply the Kruskal~Katona~Linds~r6m theorem, (1 I), (6), the K r u s k a l ~  
Katona--Lindstr6m theorem, and (6) again. We get 

(12) 

I z ~ j l +  I A o - ~ l  --> x ' ( l~l ,  k, g ) + g ( l ~ l ,  k - L  g - l )  -- I z~ j I  + 1~o-~1 -- 

= I - 4 j U Z , ~ l  + l-4o-x~l = I Z ~ l - ~  g(I.~l ,  k, g ) =  IA~' I  = 

Hence equality holds throughout in (12), which yields: 

(13) 
i.e., ~¢ is (k, g)-extremal, 

IA~dl = g ( t ~ l ,  k, g), 

(14) 

i.e., ~ is 
(15) 

I A o - ~ l  = K(I~I, k -  I, g -  1), 

(k - 1, g -  1)-extremal, 
Ag~ D Aa~, 

( 1 0  IAg-'~l = I~.~1,  
i.e., ,~  is (k, g)-extremal. 

Use the induction hypothesis for d and .~. We get that d is (k, g -  I)- and 
is (k-l,g-2)-extremal. Equality in (12)yields that Ag,~DAg~,  so that 
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Ag_z..~DAg-xg#. Hence by (6) we have 

= I ~ , , _ . , . ~ I + I A , , _ ~ I  = I A , , - 1 , . ~ U ~ - , . ~ I + I ~ , , - ~ , ~ I  = 

--lzlg_.,..~b 

Thus we are done if we prove that o~ is (k, g -  l)-extremal. Note that ~- is 1-shifted. 

Denote ~ = ° ~ ( q l ) ,  ~ = o ~ ( 1 ) - { l } .  Let [o~l=m= ~'  ~ in k-cascade form. 

Then by (4) and (5) we get that the family A g ~  is (g, g -  1)-extremal. Use the in- 
duction hypothesis for .4~- z (g<k). We obtain that it is (g, g-2)-extremal, i.e., 
A ~ ~ ( ai--1 ] g_o x1=i~_~22 [i-(k-g4.2))" Now applying (2) we have 

l a , , - l~ l  = I~-,...~,.I + I ~ o - ~ l  

( ai - 1  )4- S '  ( a i - 1  
~ '  ( i - ( k - g +  1) ~k t i - ( k - g + 2 ) )  

as 

= K(ra, k, g-1).  

Hence ~" is a (k, g -  1)-extremal family. II 

4. Proofs of Propositions 2.3 and 2.5 

Proof of 2.3. Trivial. II 

Proof of 2.5. Consider the hypergraphs ~- (m 4-1, k ) -  {E} where E varies over all 
EC~(m+ 1, k). We claim that there exist some two of them which are non-iso- 
morphic. 

Lemma4.1. Suppose o~f'={Ex ..... Era}, EicS,  [Eil=k for all I<-i<=m and let 
oYg~={EjEo~: l<-j<=k, j#i} .  Suppose that ~ i ~ g j  for all i#j. Then there 
exists a partition k=nx+n~+...+nt (for all ni>=l), S=S1US2U...US; such 
that IENSiI=n~ for all i and EEoW, and dje(x)=dle(y) for all x, yESl. 

Proof. Let d~<d2<.. .<dt be the different values of d~e(x), and Si= {x~S: d~e(x)= 
=di}. The hypergraphs YYi and ,Ygj have the same degree-sequence. 1 

Now it is easy to see that the conclusions of Lemma 4.1 hold for 0"¢'= o~-(m, k) (,) only in the cases ra<-k4.1 and m= k " | 
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5. Proof of Theorem 2.6 

Let (~ be a family of g-subsets of the n-element set S, and denote by Akff= 

= { F c S :  IFl=k, 3GEl# such that GcF}. Set f (m, n, k, g)=min {[Akfg[: f#c [S) ,  
[~l=m, ISl=n}. We call the family f# minimal if lak~l=f(m, n, k, g). Now we 
give a reformulation of Corollary 2.2 with this terminology: 

Corollary2.2'. Suppose ~ c ( S ) ,  lS[=n, [fg[=m-<_(g~_ll) a minimal family. 
Then (q f# ~ O. 

Proof of 2.2'. For J/fC(g S) denote by ~,c the family of complements, ~,,c= 
= { S - H :  HE~°}. By definition (A~e)c=A,,_k(~rf~). Hence for the minimal 
family fg, 

(17) f(m, n, k, g) = [ z ~ l  = I(Ak~)c I = IZn_k(~) l  _-> K(m, n-g, n-k). 

Indeed, in (17) equality holds because (¢~ is an (n-g ,  n-k)-extremal family on n 

points, i.e., f f c (S )  is minimaliff (9¢c(nSg)is  (n-g,n-k)-extremal. 

(g_~ll) { n - l )  and ffc is (n-g,n-k)-extremal, hence by Now 1~1~ = n - g  ' 
Corollary 2.2 we have lUfg~l___n-l. This implies fqff¢0. II 

Now we are ready to prove Theorem 2.6. Let m=  Z (a') • Here s > k - g  
s~_i~_k 

by Proposition 2.3. Consider a (k, g)-extremal family ~-. We are going to prove [a) that ~_~$r (m, k). We will use induction on k - s .  If k - s=O then m= k 

~ / / a )  / and Corollary 2.2 implies ]U~-l~a, i.e., ~ ' ~ "  k ' k . From now on we sup- 
pose that k-s~_l.  

By Corollary 2.2 we have IU~ ' [=ak+l .  Define S=U~ - ,  (#=IG((S) :  

G ~ F  for every FE~-}, i.e., (g= (S) - A g ~ .  Clearly A~f#N~ar=O. We claim 

Proposition 5.1. fq is minimal. 

Proof. Suppose on the contrary that there exists an .Yfc/S I, 1-'~1=I~l, l a ~ e l  -~ 

<[Akf#[. Then define ~'=(S)-Aka~f'. We have 

(18) 

(19) 
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Hence 1~"1 > I~'1 and its g-shadow is not lar£er. This is a contradiction, for m is 
a (k,g)-jumping number. I 

Since m is a (k, g)-jumping number, the arEument above yields that Akf~U 

< (a~; I ]_  (g~}= [g~l} = (lgSI-- l l ) .  We obtain that there exists a point xCS, 

~ ( ' )  ( '  / such that xCG for all G~ff. The equality y = k -Ak~ implies that -k {x] c 
c ~ ' .  Split ~- into two parts, ~=~(x)Uo~(qx) ,  let ~=o~(x) -{x} .  Then 

(20) I~l = t k -  l)  + . . .  ÷ 
and 

as  

Hence (20) and (21) imply that ~3 is a (k - l ,g -1 ) -ex t remal  family and I~] is a 
(k -1 ,  g-l)- jumping number. Applying the induction hypothesis for B we get 
~- '~ (1~I ,  k -  1), hence ~ - _ ~ ( m ,  k). 1 

6. Remarks, problems 

It seems that the simplest open problem is to describe those (k, k -  1)-extre- 
mal families which are left-shifted. 

~ (o,) (cascade form) and a4l is a 1-shifted (k, k-1)-  Proposition 6.1. I f  m =  ,~_~_ i 

extremal family, then I~01=X a, I I ~ l l = X / i _ l /  and ~'~f'l is a ( k - l ,  

k -  2)-extremal family. 

Proof. (4) implies this trivially, because in this case AgA"j=A~_I~gg'~=~. 1 

Example 6.2. Let ISl=s+3 (s->4), SocS, lSoI=s. Define ~ =  F( 3 "[SASo[=> 

= ~ + 1. Hence .~ is a (3, 2)-extremal family and it is not given by 
Example 2.4. 

We recently learned that M. M6rs [7] has independently discovered results 
covered here by 2.2, 2.5, and 2.6. These are deduced from more ~eneral results 
so the arguments there are longer and more complicated than ours. Our Theorem 
2.1 here is entirely new. 
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