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Let ~" be a family of k-subsets on an n-set Xand c be a real number 0 < c < l .  Suppose 
that any t m~.mbers of,.~ have a common element (t~_2) and every element of X is contained in 
at most c],.~'j members o f ~ .  One of the results in this paper is (Theorem 2.9): If 

c = (qt'X+...+q+l)/(qt+...+q+l) 

where q is a prime power and n is sufficiently large, (n>n (k, c)) then 

f n - q ' - ' "  ~ q q l _ l  )(q'+... +q+ l ). max l~Z'l = I,k - q t -  x _ . 

The corresponding lower bound is given by the following construction. Let Y be a (qt+ ... + q+ l)- 
subset of X and hr,, H~ .. . . .  Hj~.~ the hyperplanes of the t-dimensional projective space of order 

Y. Let .~" consist of those k-subsets which intersect Yinahyperplane, i .e. ,~=(FE[Xl:there qon 

exists an i, l~_i~_[Y[, such that YNF=HI}. 

I .  I n t r o d u c t i o n ,  n o t a t i o n s  

Let n, k, t=>2 be positive integers, X an n-element set. Let  2 x denote the 

power set of  X, ( ~ )  the family o f  all k-element subsets of  X. A family of  sets is 

t-wise intersecting if any t members  o f  it have a c o m m o n  element. The  2-wise inter- 
secting families are briefly called intersecting. The signs [ ], [ ] mean upper  and 
lower integer part ,  respectively. 

Erd6s, K o  and R a d o  [6] proved that  if 5 c l ~  / is an intersecting family 

and IXl=n>=2k then r ~ 1 =  k -  1 • Equali ty holds in the case n > 2 k  only if the 

members  o f  ~" have a c o m m o n  element. Hil ton and Milner [23] proved that  if we 
exclude this family, i.e., if we make the addit ional  assumption N ~ = 0  then we 

]~ ' [<- [~ . - -~ l [ - [n~-_ .x l - l ]+ l . "  "" " - " Here equality holds for  k>=4 if and only have 
~.,*  - -  j k r , ,  - -  d 

AMS subject classification (1980): 05 B 25, 05 C 35 
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f [I,'~ / 
if for some x~X, DcX,  [Dl=k, x¢ D we have ~ = | F E [ ) ~ |  : xE F, DMF¢O[U {D}. 

(In the case of k = 3  there exists another extremal family, see Theorem 2.2.) 
Let e be a real number, 0 < c ~ l .  The degree of an element x in the set- 

system. ~ is denoted, by d~(x) or simply by. d(x)'=l(FE,.. ~ ' ' .  . . xEF}[. Erd6s, Roth- 
schild and Szemer6dl [9] raised the following questlon: How large can an inter- 

secting set-system o ~ c [ ~ ]  be if each point has degree at most c]~-l. The class o f  

these systems is denoted by ~ ( n ,  k, c); f(n, k, c) is the maximum size of such an 
oj. Generally, 

~'(n,k,c)  := I , ~ ' c [ ~ / :  o~ is t-wise intersecting and d,(x)~=c,~I holds 

for all xEX}, 
I .  % - - J  

r ( n ,  k, c) = max { l : l :  : E  - : ' ( , ,  k, c)}. 

The above mentioned theorems imply 

(1) [6] f(n,k, 1)=(nk-l} if ,>no(k). 

(2) [23] f(n, k, < 1) = k k - 2  +O(nk-")" 

For a family o ~ c 2  x we define ~(Nt°)=:  FE k : there exists an HEo~Cg 

such that H c F } ,  with the notation Y= Uo'~ we set ,~0(J4:):={F((~'): Ff'lYEo~t°}. 
Obviously, -F0(J{ ' )~ ' (o~ °) and o~(~) ,  ~ ( ~ )  are t-wise intersecting families 
whenever ~ is t-wise intersecting. 

Erd6s, Rothschild and Szemer6di [9] solved the case c=2/3,  by proving 

(3) f(n, k, 2/3) = 3 k - 2  if n > no(k). 

This result was extended by Frankl [11] 

(4) f ( n , k , c ) = 3  k - 2  + - 3  ' if 1 > c > 2 / 3 ,  n > n 0 ( k , c ) .  

Moreover the only extremal family if ~(K~),  where K~ denotes the complete 
I l r  r~.  

v-hypergraph on u element (u>-v), i.e., ' ~ I V /  r o r , o m o . ,  I " 1 = "  

In [5] it was conjectured and Frankl ([11] for r<-3) and Fiiredi [15] proved 
the following 

(5) If  r-> 1 
on an r2 - r+l  
then 

and there exists an r-uniform finite projective plane N(2, r - 1 )  
element set Y (YcX)  and 1/(r-1)>c>r/(r2-r + l), n>no(k, c) 

f(n, k, c) = (r~-r + I) (kn_r) + O(nk-'-l). 

Here the extremal family is o~(~(2,  r -1 ) ) .  
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The only remaining case which is solved is I/2<c<2/3, see [11] or [17]. 
(In the case 3/5<c<2/3 there are 6 non-isomorphic extremal families.) Finally, 
[15] contains the following general result. 

(6) There exists an infinite sequence l=cl>cz>...>cr>...>O tending to 0, 
and a positive function f (c )  such that 

f(n, k, c) = f(c)(kn_r)+O(n k-'-l) 

holds for c,<=e<c,_a. Moreover the function f is piecewise either constant or 
a rectangular hyperbola arc. "me aim of this paper is to extend these results for 
t-wise intersecting families. 

We note that there is a strong connection between intersecting hypergraphs 
and graphs of diameter 2. See Pach and Sur~inyi [26]. 

2. Results 

The earlier known cases 

, ( n - l )  , 
Theorem 2.1 (Frankl [10]). f (n, k, 1)= k -  I whenever n>=kt/(t-1). In the ease 
n >kt/(t-1) the only extremalfamily is ,~({x}). II 

a o a . .  for fo ,ow  rom ,    eorem , says 
that this holds for 2k>n>-kt/(t-1) as well. For n<kt/( t-1)  obviously we have 

f ' (n ,  k, 1)= k • 
Let k~-t>-2, define ~'D~,D, as follows: IDl l= t -1 ,  [D21=k-t+2, Dxn 

ND2=", D1UD~cX and ..~.~,o,:={F((k): DIcF, D2NF~OIU{D1UD~-{x}: 
xE D1}. 

Theorem 2.2. For n>no(k) we have 

{l~o,.o,[ if k > 2 t - l ,  and in the case k = 3 ,  t = 2 ,  
f ' ( n , k , < l ) =  I~(KI+I) 1 if t~_k<-2 t -1 .  

Moreover the only maximal families are the above mentioned two families. | 

Hence in all cases we have one extremum except k=3,  t=2. This theorem 

is an easy consequence of a theorem of Frankl [11] about set-systems . ,~C(~) 

satisfying ]FNF'I~t--1 for all F, F ' (~- .  Indeed, if ~- is t-wise intersecting, 
and N ~ = 0  then [FNF'I>-_t-I holds. However, our method yields a compara- 
tively good estimation for no(k), no(k)<h(t)k (see Theorem 8.1). For t>k there 

is no , ~ c [ ~ l ,  n ~ = 0  which is t-wise intersecting. From now on we always sup- 

pose, to avoid trivialities, that k>t. 
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Theorem 2.3. (Gronau [20]). Suppose t/(t + l ) < c < l .  Then for n>n'(k, e) 

11) f f ( n , k , c ) = ( t + l )  n 1 + k - t -  ' 

and the only extremal family is ~'(K/+I). Moreover for n>nt(k) we have 

f ' (n ,  k, tl(t + 1))= (t + 1)(nkLt' - ' -  1j' 
and the extremal family is ~:o(K/+l). 1 

This is also implied by a theorem of Frankl [11] on ( t -  1)-intersecting families. 
The present paper is selfcontained, Tiaeorem 2.2 and 2.3 come as byproducts of 
the main lemma (Theorems 6.6--7). Moreover our new proof 8ives linear upper 
bound for nt(k, c) (i.e., nr(k, c)<kht(c) where ht(c) depends only on t ar, d c) 

The main results 

Theorem 2.4. Let n > k > t > l  be integers and c a real, 0 < c < l .  There exists an 
infinite sequence l=c[>=c[>:...>-c~...>O, tending to 0 and a positive ~alued 
function if(c): (0, 1)-*R with the following properties: I f  d, <-c<d,_l then 

f f  (n, k, c) = ft(c) (knr)+O(nk-r-1) .  

Let us remark, that the calculation of i f (c)  (and r) is a finite problem in the 
following sence: Let ,~E~' (n ,  k, c) be maximal. Then there exists a family of 
_<-r-sets ,¢t ° over the ~4" elements set Y such that l°.gr--3r(Aa)l=O(nk-'-l), i.e., 
the main part of ~- belongs to °~(o~). About the computation of .if(c) and the 
determination of such 3¢t ° we know much more. See Chapter 3. Roughly speaking 
it is enough to consider finitely many linear programming problems. 

We have c[=c~=...=c~_x=l, and c~=t/(t+l) by Theorem 2.3 and the 
following theorem: 

Theorem 2.5. Let t <r<-(3/2)t-1, and l - 2 / ( 3 t - r  + 2)~_c < l - 2 / ( 3 t - r  + 3). Then 
for n >n'(k, c) we have 

I 1 ( n - r - l ~  I 
f l ( n , k , c )  = [ - - f ~ t  k - r  )J" 

One of the extremal families is given by Example 2.7 (see later). This is the 
only maximum in the first part of the interval [c, t,c,t_~) (whenever c, t =  
= l - 2 / ( 3 t - r + 2 ) ~ _ c < l - 2 / ( 3 t - r + 2 . 5 ) ) .  Another extremal families can be ob- 
tained (in the interval [ l - 2 / ( 3 t - r + 8 / 3 ) ,  l - 2 / ( 3 t - r + 3 ) ) )  from the nucleus ~ '  
(see Figure 2) or ,,~t °" (Figure 3). 

Denote by ~ t  the hypergraph over 3i vertices whose edges are the comple- 
ments of the edges of i disjoint triangles. 
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Theorem 2.6. Let t be an odd integer (t~_3) and denote (3t-1)/2 by r. Suppose 
(3 t -  1)/(3t + 3) < c < (3t + 3)/(3t + 7) then for n ># (k, c) we have 

n- - r -1  n - - r -2  
f l ( n , k , c )=( r+2) (  k - r  ) + ( k - r - 2 ) '  

and one of the extremal families is #r (,~(, + z)/2). Moreover 

f l  (n, " 3 t -  1 

and the only extremum is ~(;/C(t+ a)/2). 

Example2.7. Let Y=DoUDIU...UD,_, be an (r+l)-set, ID01=3t-2r+l  (_~3) 
and I Dx[ =. . .  = I D,- t[ = 3 are pairwise disjoint. Define the set-system .Of as follows: 
~=#6xUYfz where . #~={HcY:  [HI=r, DoC-H}, #?~={HcY: I H l = r - 1 ,  3/ 
(l~_i~_r-t) such that ID~AHI=I} (see Fig. 1). Let ~2={Hx,H2 .... ,H3(,-o} 
and choose the family of k-sets 3~ such a way that all F ~  contain Hi, l~] < 

n - r -  Lf,-,-I} <( k - r  I),  at least 2 ,  k - r  of them intersect Y in Hi precisely, finally 

[U ~ [ = [ - ~ - e  ( n k r r  1)] - [X~'°l (nkr--r 1). (Remark that the difference between 

3 ( t _ r ) + l  and greater the twoa coefficients of the binomial factor is less than 

than -~(t-r) .)  The parts of the members of ~ outside Ycan be located arbitra- 

rily. Finally, let . ~ =  U ~ U { F E ~ :  FAY~,,~ffz} (i.e., ~ ' c~ ' (# t0 ) .  
1 - ~ i ~ 3 ( r - 0  

The above results cover the cases when c is close to 1. The next chapter sheds 
light on the asymptotic behavior of c, ~. 

D •  * . ,  D r .  t 

)O " 
O o 

o< 

3t-2rol 3{r-t) 

r ;1  

Oo o~ °~...Or.t -2 
300 
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3t-2r,3 4 3 ( r - t -2 )  

Fig. 1 Fig,. 2 

Families with strong constraints on the maximal degree 

Let ~r( t ,  q) denote the family of hyperplanes of a projective geometry of 
order q and dimension t with point set Y. If it causes no confusion, we simply write 
~ .  Recall that l~l=[Yl=(qt+l-1)/(q-l) .  Note that for t_~3, q must be a prime 
power while for t=2 it is a famous open problem whether planes of non-prime 
power order exist. 
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Theorem 2.8. Suppose q>=2 is a prime power and (q,-1 +... +q+ 1)/(qt +... +q+ 1)< 
< c < ( q f - X + , . .  + q +  1)/(qt + ... + q +  I )+  l/q 2t. Then 

holds. Moreover i f  ~ E  ~t(n,  k, c) is maximal dwn for n>nt(k, c) dzere is a ~ ( t ,  q) 
(~- qt- ld,  wilh ¥ c X  such dTat ~ , ~ , ~ ( ~ ) .  Finally, I ~ - : ( ~ ) l - - o ( l ~ ( ~ ) l / n  ). 

Theorem 2.9. I f  q is a prime power then for n>nt(k, c) 

( q-='l f ' . ,  k, q , . ~ _ l  = l : o (~ ) l  

and °,°Jo(~ ) is the only extremal family. 

Corollary 2.10. Let d, be as in Theorem 2.4. 77wn for fixed t 
t - 1  

lim c~/fr = 1. 

Do D~ 
° ° °  

° ° ° ° ° °  • • • o~, 

• eoo °I°  "°" 
ee~o • 

3t -  2r.  3 7 3(r-t  -3) 

Fig. 3. 1-2/(3t +r+2.75)~c< 1-2(3 t - r+3)  

More on the case t = 3  

Theorems 2.3 and 2.6 state that 
n - 4  

for 0 . 7 5 < c < 1 ,  

f3(n, k, 0.75) -- I ~ ( ~ ( 1 ) ) J  = 4 k - 3  ' 

( ~ n - 6  k - 5 f3(n, k,  c) = 1~ ' (~ (2 ' )1  = 6 | k_4 /+O(n  ) 
for 2/3<c<0.75 and 

f3(n,  k, 2/3)  = I ~ ( ~ c 2 ) ) 1  - -  6 k - 4  ' 

holds for n>n3(k, c). Moreover the extremal families are obtained from ,,~,m 
and ~(2) (see Fig 4). We can solve the following cases as well. 
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Theorem 2.11. Suppose 5/8<c<2/3 and let .Yf(z) be the hypergraph on 8 points 
given by Fig. 4. Then 

f~(n, k, c) = [.~(,Y~c~))I = 8 k - 5  q-O(n~-9 

holds for n>n*(k, c). The only extremal family is ~(.¢f(~)). 

• . . . .  
~ • • • o 

• o o • 

. ' . ."  - .  

• o qn • • 

o • 9 • • 

• a • • o 

o • • • ql 

• • it 

6 3 
0~C3) 

Fig. 4. t=3, 5/8_~c<1 

• - - .  . .  

dt O¢t O • 
OQ OO e 

• e O O O  

. ,  - . - .  
• • o o o  

Fig. 5. t=3, c= 5/8. 

Theorem 2.12. Let ;/f(o be the h)Tergraph on 8 elements given by Fig. 5. Then 

= I ~ ( ~  )I = 8 . 

The only extremal families are ~'o(~Yf ~ )  and ~'0(.;¢f~4)). Morcm'er for c < 5 / 8  
we have f~(n,  k, c)= 00l~-0), i.e., '~ "~ cz = c~ = 1, c] = 3/4, c] = 2/3, c~ = 5/8. 

3. Further generalizations 

We call the family ~" t-wise s-intersecting if IF~fqF2~...fqF, l>=s holds 
whenever  Fz . . . . .  FtEo,~. Assume that  n>=k>s, t>=l, t~=2, 0 < c ~ l  is a real and 

define ~'t 'S(n, k, e ) =  ~ c  : IXl=n, ~ is t-wise s-intersecting, ds~(x)~-c[o~'1 

for  all x ( X } .  Set f"~(n,  k, c ) = m a x  {1~1" ~o~"s(n, k, c)}. Clearly, 
f t ' l (n ,  k, c)=f'(n, k, c). The  results of  Chapter  2 can be extended to t-wise s-in- 
tersecting families. 

Theorem 3.1. There exists a sequence 1 =cI.~-c~,~= ... ~ ... >0 and a positive t'alued 
function f"'~(c): (0, I)---R with the following properties: I f  c~'~<-c<4~ then 

t s  n f t 'S(n,k ,c)  f ' ( c ) (k_r l+O(nk- ' - l ) .  
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Theorem 3.2. Suppose s > ( t -  1)l(I-  1) and (It + s-l)/(lt + s)<c <((h + s-l)/(lt W s)) + 
+(l/(l+s)(h +s)). Then 

f'.S(n, k, c) = I~(g/lgL,)l . 

The only extremal family is #r (K][gff_z). 

The above theorem was proved in [1 I] for t=2.  The following is an exten- 
sion of Theorem 2.8. Define [q~] = q~ + q ~- 1 +. . .  + q + 1. 

Theorem 3.3. Let q be aprimepower, t~_2, l>=Ointegers. Suppose [qt+t-1]/[qt+~]< 
<c<[q'+~-l]/[qt+l]+ l/q ~+zt+=. Then for n>n(k, c) 

f"tq'](n, k, c) = [q'+'] i,k_[q,+,-z]j(n-[q'+'] ~ .(l +O(1/n)). 

The lower bound is given by ~ ( ~ ( t + l ,  q)). Moreover 

Theorem 3.4. f'.tqq(n, k, [q'+'-~]/[q'+'])=[gro(~(t+l, q))] hoMs for n>n(k).  

The main theorem (Theorem 6.6) gives further results. E.g. : define the biplane 

~ ,  as follows. Let X={(i, j ) :  l~_i, j~4}, ~6c 6 ' VB, B'EN, wehave IBAB'I= 

=2, ]~,1=16. (~6 is representable as the set {B(L j ) :  1 =<L jN4} where B(Lj )=  
={(u,v): l~u,v<=4, (u,v)~(i, j )  and either i=u or j=v}. See Fig. 6.) See [21]. 

J 

Fig. 5. 

Theorem 3.5. Let ~ ' c | ~ J  be afamily of finite sets with property IFOF']>-2 
for F, F '£~ ,  n>=k>6. Suppose da,(x)<-(3/8)l~:l holds for xEX. Then for n>no(k) 

[~'l ~ 1°30(,6)1 = 16 (~--1661 

where &8 is the biplane of order 6. 

Finally we remark that our nt(k, c) (nt.'(k, c)) is polynomial (in the cases of 
Theorems 2.2, 2.3, 2.5, 2.6, 2.9, 2.11, 2.12, 3.2, 3.4, 3.5 actually linear) in k. Cf. 
Taeorem 8.1. 

4. Finding the kernel of the extremal families I. critical hypergraphs 

Define an edge-contractlon as the following operation on a family ale: we 
substitute an edge EEA a by a smaller, non-empty E ' ~  E, and thus we get the set- 
system. (,,ug,_ {E}) LI {E'}. A set-system having property P is P-critical. if it has no 
multiple edges and the hypergraph obtained by contracting any of ~ts edges does 
not have property P. We can get a P-critical family from any ~ having property 
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P by contracting its edges as far as possible and deleting all but one copy of the 
appearing multiple edges, qhe obtained (smaller) family, off is called the P-kernel 
of J/f. (Of course, f- is not necessarily unique, but this is not important for us.) 

We are interested in t-wise s-intersecting famiIies, t->__2, s =  > I. Call a hyper- 
graph (t, s)-critical if it is critical t-wise s-intersecting. The rank of a family J/f is 
max lHl. One more definition: The family F~,F2, Ft is called a t-star 
H E . ~  . . . s  

with kernel N if, for every 1<" "< =t<j=t,  we have F~f3Fj=N. The well-known 
Erd6s--Rado theorem [8] says: If the set-system J/~' of rank r does not contain a 
t-star, then [~l=<_(t-1)'r! 

Lemma 4.1. I f  ovf is (t, s)-eritical of rank r then [.¢fl <-r~'. 

Proof. It is clear, that a (t, s)-critical ~ does not contain an (r+l)-star .  Hence 
]j/fl<=r'r!<-r ~ by the Erd6s--Rado theorem. 1 

Remark 4.2. Denote by Et'~(r) and Vt'~(r) the maximum number of ed[es (verti- 
ces) of a (t, s)-critical hyper.araph of rank r. V ~' 1 ( r ) < ~  was proved by Calczynska~ 
Karlowicz [4]. His bounds were improved by Erd6s and Lov~.sz [7] who showed 

1 (2 . )<V~ ,l(r)<__~r (2r) [rl(e-1)j<=E~'~(r)~-r',-ff . The current best result is due 

~ < 1 t'2r~ 
to Tuza [29], V ,  ( r ) = ~ - [ r ) .  Lovasz conjectures E~'a(r)=[r!(e-1)]. (It was 

proved for r=<4 by Hanson and Toft [22].) The best bounds in the general case are 
due to Alon [1]: 

3(k-O/3t < Vt, S(r) < t(k-s)/t. 

Considering the complete hypergraph rea+~ ~,~+~_~ one can see that E','(r) is exponen- 
tial in r for all fixed t and s. 

Looking for an extremai hypergraph 9-Eg-t.~O, k, c) we use the following 
operation 

Definition 4.3. (Erd6s, Ko and Rado [6]). Suppose 9 - c 2  x, X= {1, 2 . . . .  , n}, i<j. 
Define the (left)shifting Sij on 9- as follows: 

otherwise, 

Then 
Is, j(9-)t = 19-1 and S~j(9-) is also t-wise s-intersecting. 

Now let 9-Eg-t,~(n, k, c). Apply repeatedly the operation Sij to 9" until 
we obtain either a family ~ such that d~(x )>c lYf  ] (=clg-])  or a family f# which 
is stable, i.e., S~i(f~)=fg holds for all 1 <=i<j<=n. 

To avoid the first p3ssibility we apply Sii only for those pairs where d,~(1), 
d~,(j)<-(c/2)lgfl. Consider the family finally obtained ff~9-"~(n, k, c), and sup- 
pose d~(l)=>d~(2)= > . . ,  ~_d~(n). 
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Proposition 4.5. Suppose Y={1, 2 . . . . .  [(2/c)kJ+2k}. Then the family f¢[Y:= 
:= {GN Y: GE~;} is t-wise s-intersecting. 

Proof. We use the obvious fact that ff contains at most (2/c)k points with degree 
at least (c/2)[ff]. Hence the family f¢ is stable on the points {[(2/c)k]+l . . . . .  n}. 
The following argument is similar to the proof of Lemma 2.2 in [14]. Suppose on the 
contrary that G1, G~ . . . .  , G,E~, IGtN.. .NGrNY]<s, and [GtN...NGt] is mi- 
nimal subject to this constraint. Then there exists a point jEGtN.. .NGt,  j > l Y I  
and a point iE Y, i>[(2/c)k] which is not covered by at least two G,'s, say (71 and 
G2. Then G'~=G,-{j}U{i}Efg as well, and IG~G~O.. .NG,  I<]GJ].. .NG, I, 
a contradiction. 1 

Summarizing the results of this chapter we obtain 

Lemma 4.6. There exists an ,~E~t'~(n, k, c) with maximum cardinality (]~z-[ = 
=f"~(n, k, c)) such that it has a (t, s)-critical kernel X with [U.~l<-(2/c)k + 2k. 
Moreover ~ is partially stable, i.e., l<-i<j<-n, F E ~ , i ~ F ,  jEF, d~(i), d~,(j) <- 
~_Cc/2)]~" i imply F - { j } U { i } E ~ ' .  1 

5. Finding the kernel of the extremal families IL 
fractional matchings of hypergraphs 

Definitions 

Let ~ denote a family of  sets on a ground-set X. Let v ( ~ )  or briefly v denote 
the matching number of W, i.e., the maximum number of  pairwise disjoint edges 
in ~ ,  i.e., v ( J { ) = m a x  {w: SEI, E2 . . . . .  E ,  EAP, EiOEs=O}. Let z(A ~) or briefly 
z denote the covering number of ~f~, i.e., the minimum cardinality of a transversal, 
i.e., r ( ~ ) = m i n  {ITI: TNE~O for all EE.~}. Clearly, z<-vr, where r denotes 
the rank of •g. 

A fractional matching of  , ~  is a function w: at{'~R satisfying w(E)>=O 
for every edge EE gg and 

~ '  {w(E): xEEEa~} ---< 1 for every xEX. 

The value of the fractional matching w is [wl = Z w(E). The maximum of [w] 

when w ranges over all fractional matchings is called thefi'actional matching number 
and is denoted by 

v* (W)=max  {[w]: w is a fractional matching of ~¢t~}. 

Similarly, the fractional covering number is the minimum value of  fractional covers 
of Jt ~, i.e., 

z*(A~') = rain{ ~ '  t(x): t: X -- R, t(x) ~_ O, VEE,~  we have Z t(x) >= 1}. 
x E X  x E E  

Clearly, to determine the fractional matching and covering number is a linear prog- 
ramming problem. This is a dual pair, so by the Duality Principle of  linear prog- 
ramming we have z*(af)=v*(aff)  for every hypergraph ,,'~'. 
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In view of the fact that w(E)=I/D (where D=maxd~e(x)), and t(x) = 

- 1/min IEI are fractional matching, covering resp., we have 

IX'l <__ v*(a~) ~ lXl 
(7") D(,~-"~ - min{IEl: £ ~ } "  

This implies, e.g., v*(~(t ,  q))=[qt]/[qt-a]. (Recall that [qi] stands for q~+qi-l+. . .  
. . .+1.) 

Hypergraphs with maximum fractional matchings 

A family ~" is called v*-critical if v*(.,~")<v*(9 z') holds for each subfamily 
~ " ~  9 r ,  We are going to use the following results of the second author. 

Lemma 5.1 [16]). I f  the family g¢ is v*-crttical then I~'l___IUzrl. 1 

Lemma 5.2 [19]. I f  the family ~ of  rank r ts v*-critical then I~'l-<_rv *. 1 
Define v*(r, t, s )=sup  {v*(gf): ~ is t-wise s-intersecting of rank r}. (t=>2). 

In this section gt ° will always denote a t-wise s-intersecting hypergraph of  rank r. 

Proposition 5.3. There exists a t-wise s-intersecting hypergraph Jr" of  rank r such 
that v* (Jr') = v* (r, t, s), 

Proof. To determine v*(r, t, s) it is enough to consider the C-critical hypergraphs 
g/ .  By Lemma 5.2 its cardinality is at most rv*(r, t, s)<-r 2, hence we have finitely 
many possibilities. 1 

Theorem 5.4. Let $; be a (2-wise) s-intersecting family of  rank r. Then either 

(a) v*(~*') = (r -1) /s+(l /r )  and Sr is an (r, s)-design, or 

(b) v* (.~) ~_ ( r -  1)/s + ( l / r ) - ( r - s ) / r ( r -  1)s. 

We recall that an (r, s)-design is a pair (X, &) where Xis  aset  o f r ( r - 1 ) / s + l  
elements, ~' is a family of  r-sets of X, ]&I= IX[ and any two members of ~ inter- 
sect in exactly s elements. (Hence any pair {x, y } c X  is contained in exactly s mem- 
bers of  8 . )  The best-known example is t~(a, q), it is a ([qO-1], [qa-~]).design. 

Proof. The case s =  1 was conjectured by Lov~sz [25] and proved in [16]. The proof  
given here is simpler. We invoke a lemma. 

I.emma 5.5 (see [28]). An (r, s)-design g~ is a maximal s-intersecting family o f  
rankr. I.e., i f  T is an r-set and ITfql~l~_s for all 1 ~  then TEg~. 1 

First consider an s-intersecting family 9 r of rank r. By Lemma 5.1 one can 
choose a subfamily f fc .~-  such that v*(~)=v*(~-)  and ]ffl_-<lU~]. Denote 
U f~ by X. Then 

1 Z d ~ ( x ) =  1 l~[ 
(8) IXl ~ x  - ~  ~,2' IGI <- rT2- T ~_ r. 
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Hence min d~(x )=  d _  -<r. Let x be a vertex with minimum decree d and 
x ~ X  

G1, G2 . . . .  , Gd be the edres o f ~  through x. Let w: f # - R  be a fractional matching, 
w(G~)=q. (q_<-l), Then the following holds for all fixed i 

l ~ i ~ d  

(9)  q+r-1 >= Z ( Z w(E))= Z w(E)IENG, I 
x ( G  t x ~ E E ~  E ~  

=> s Z w(E)+( r - s )w(C~) .  
E E ~  

Summing up (9) for all i we get dq+d(r-l)>=sdlw[+(r-s)q which yields 

(10) ( r -  1)/s+(d-r+s)q/sd >= Iwl. 

The see3nd term of the left hand side is at most (1 /r ) - (r -s ) , ' ( r - l ) rs  if d<r. 
Hence we have obtained that ( t )  holds in this case. 

Next consider the case d=r. (8) implies that ~ is r-regular and r-uniform 
(i.e., Vxd~(x)=r, VGE~ [GI=r.) Then by (7) we have 

(11) v*Cff) = [~l/r = IXl/r. 

Consider an arbitrary edge GoE~q. We have 

(12) rZ = Z a.(x) = Z IGnGol => r - s+s l~ .e l  
xEG o G E ~  

i.e., lfgl<=(rZ-r+s)/s. If  ]~9]<-(r2-r+s-l)/s, then (b) holds by (11). If [f¢l= 
=(r~-r+s)/s  then equality ho!ds in (12). Hence ~ is an (r, s) design. 

Finally, by Lemma 5.5, we have that in the latter case f#= .°3. I 

Theorem 5.6. Suppose ,Yt a is a t-wise [q~]-hTtersecting family of  rank [qt+t-~]. 
Then either 
(a) ~ is isomorphic to ga(t+l, q) and then v*(Y:)=[q~+l]/[qt+t-1], or 
(b) v*(d/:)<[q'+']/[q'+~-'] - l/q 0"+2~ 

Proof. We are going to use Theorem 5.4. I f  ~ is [qf+Z-~]-intersecting then we are 
done. Suppose that there exist H, ,  HeE~'  with ]HtAH~l<[q'+t-~]. Let a be 
maximal such that ~F~,F2 . . . . .  FoEa'Y with ]F~f~Fz~...NFoI<[qt+~-~]. We 
have a~_2. On the other hand a<t  as g'g' is t-wise [qq-inlersecling. Hence every 
H~gf'  intersects Y= F~ O... OF,, in at least [qt+l-,-~] elements. Thus the function 
t :  Y - R ,  t ( y ) -  l/[q t+ l - ' - l ]  is a fractional cover of .~.  This means 

v*(~)  -< IYI/[q '+t-*-~] <= (q,+t-,+ ... + q~ + q)/(q,+~-~-x + ... + q+ 1) = q 

< [q,+t]/[q,+t-~]_l/q~,+~, I 

Lemma 5.7. Suppose ~ is t-wise s-intersecting of rank l t + s - I  where t~_2, l>=I. 
Suppose s > ( t -  1)1(/- 1), then either 
(a) .9 ~ is (It+s-2l)-httersecting (e.g., ~,a~r"u+~,,u+,_t~, ~ or 
(b) v*(ar)<-(s+l-l) 's (<(It+~),(lt+s-l)).  

Proof. The case t = 2  was proved in [11]. We proceed as in the proof of Theorem 
5.6. Suppose on the contrary that there exist H~, H~E~,  ]HtOH,_l<lt+s-21. 
"let a be maximal such that there exist Fl . . . . .  F~E~ with IYI=IH~O...MHoi< 
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<l t+s-a l ,  wehave 2<-a<t. Then for each HE~r wehave IHM Y[~_lt+s-(a+l)l  
yielding v*(~)~(lt  + s - a l - l ) / ( l t  + s - a l - a ) ~ ( s + l - l ) / s .  1 

We need the following lemmas to prove Theorems 2.5--2.6. From now on 
W will denote t-wise intersecting hypergraph of rank r. 

Lemma 5.8118]. Suppose 2<=t<-r~_3t/2-1. Then v*(r,t, 1)=l +2/(3t-r). 
(a) Suppose v*( ,~)>v*(r- l , t ,  1)= (=l  +2/ (3 t -r+l)  or 1) then there exists 
an element x with die(x)= IWI-  1, and the only edge E not containing x has • 
elements. 
(b) Suppose v*(W)>l+2/(3t-r+0.5) then W is isomorphic to Example 2.7. 
(Hence I W I = I U W I = r + I ) .  I 

Lemma 5.9 [18]. Suppose r=(3t- l ) /2 .  Then v*(r, t, 1)=1+2/r. 
(a) Suppose v*(W)>v*(r -1 ,  t, 1) (=1 +2/(r+2)). Then there exists an element 
x with d~.(x)_>-lW[-2, and the edge(s)avoiding x has (have) r elements. 
(b) Suppose v*(W)>l +2/(r + l) then W is isomorphic to .~ff~t+a)/2 (see Theo- 
rem 2.6.). I 

The following lemma exhibits how v* can be used to derive lower bounds 
for the maximum degree: 

Lemma 5.10. Let a: ,~--,R be any non-negative real-valued function on the edges 
of  ~ ,  ~ c 2 x. Then 

1 ]al 
max(~x ~,cr'~* ~ '  a(r)) >= v*(,~) (F ~  a(F))= v*(~'------7" 

([al denotes the sum Za(F) ) .  This lemma is an extension of the well-known ine- 
quality max d~(x) >- l~-I/v*(~-) (see (7)). 

x E X  

Proof. Let M = m a x  ,~ a(F). Then the function a/M is a fractional mat, 
x E X  x E F E J ;  

ching o f ~ ,  thus [a/Ml=la[/M<=v*(~). 1 

6. Finding the kernel of the extremal families HI. 
The main theorem, linear programming and intersecting hypergraphs 

The determination of the order the magaitude of ft'S(n, k, c) 

Lemma 6.1. Suppose ttutt c>=l/v*(r, t, s). Then 

Proof. This was proved in [15] for t=2,  s = l .  Now we can do it in the same way. 
Let W be a t-wise s-intersecting hypergraph of rank r on a Yc  X such that v* (W)= 
=v*(r, t, s) (such an W exists by Proposition 5.3), and let w: W ~ R  be an optimal 
fractional matching. We can suppose that w(H) is rational, e.g., w(H)N is an integer 
for some integer N, for all HEW. Moreover we can suppose that W is r-uniform 
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,othorwis0wooddnewver,,ce , LetY   1/m I >I, k - r  ) -~ ' j "  

for 
l I E 3  ~ k o ~  - - j  

-v*C~)N. I 
Lemma 6.2. Suppose that 1/C (r, t, s) <=c < I /v * ( r - 1 ,  t, s). Then 

f"*(n, k, c) ~ rZ" ( n ) ÷O(nk_,_l)" 
- l - c v * ( r - l , t , s )  k - r  

Corollary 6.3. The value o f  c~, • (defined in Theorem 2.4 and 3.1) is I/v* (r, t, s). I 

Proof of 6.2. Let 3r6,qrt'~(n, k, c) be maximal. By Lemma 6.1 we can suppose 
# 

[3z'[ > ( I - o ( I ) :  [knrJ"  Let Y c X  be a subset having at most (2/c)k+2k elements 

defined by Lemma 4.6, and o ~ i = { H c Y :  H = Y A F  for some F ~ 5 ,  ]Hl=i } . 
Let .~(~¢>,)= {FC,,~': [FA Y] >r}. Clearly 

(13) IS~(Ye>,)I _<- L"÷ l) ( k - r - l ) "  
Let ~ be a (t, s).critical kernel of.¢~'_<,, i.e., (one of) the (t, s)-critical hyper- 

graph obtained from ~fP=<, contracting its edges as long as it is possible. Then by 
Lemma 4.1 we have 1~1 ~r  ~'. 

Definition 6.4. Call & as above, a (t, s)-critical kernel o f  rank r of ,~-. 

Define ,~<,:={BE~: IBI<r}.  Now we are ready to define a weight func- 
tion on the ed[es ofg~. Choose a BFcF ,  BvC& for every F C ~ -  ,~(.~>,), and 
let ~arz= {FE#-: B c F ,  B=Be}  ( B ~ ) ,  Now let 

/f n-lvI). 
(14) w(B)= I~11~, k - r  
Obviously, 
(15) w(B) ~_ 1 if B ~ ,  [BI = r. 

We are going to use Lemma 5.10 for &<, and w: ~ < , ~ R .  By this lemma we ob- 
tain a point yE Y such that 

I 1 
(]0 Z w ( ~ ) ~ - -  Z w(~)-> Z w(~). 

Now (16), (14) and (13) yield 

1 [ (nk- ]Y I) ) (17) c l~ l -~a~(y) ->  v* (r - ~, t, s) 1~1-(  Z w(w)) - I~ (~> , )1  
B k  ZO r 

[ - - -  i ( ) 1  Irl_ 
- -  I , k - r  J l , r + l J  k - r - I  " 

Rearranging we get Lemma 6.2. 1 
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The asymptotic determination of ff'~(n, k, c) 

Let • be a family of rank r on the set Y, 0-~e<l ,  ~ , =  {BE~: ]B[=r}~0.  
The optimum value of the linear programming problem (*) is called the capacity 
of ~ belonging to c. 

w: ~ - ~ R ,  
]w(B)>=O for all BE&, 

(*) [ w(B) ~_ 1 for all BE.~,, 
I, Z w(B)  <- c ( s Z  - = clwl for yEY. 

Y ~ B E ~  

Cap~(c):=max {[w[: w satisfies (*)}. It may of course occur that Cap~(c)=0 
or Cap~(c)=oo. 

Lemma 6.5. I f  ~ is a t-wise s-intersecting family of rank r and 

1/v*(r, t, s) <= 1]v*(&) -< c < 1]v*(r-1, t, s) 
then 

v*(~) =< Caps(c) = l~l/(l-cv*(~<,)) .  | 

The proof is similar to the proof of 6.2, see [15]. 

Theorem 6.6. If ~E~"'(n, k, c) and N is its (t, s)-critical kernel of rank r then 

(") ( " )  (18) Io~l < Caps(c) k - r  +K(r,  c) k - r -  1 " 

On the other hand if g$ is an arbitrary t-wise s-intersecting family of rank r, then 
there exists an ~"E °~t,S(n, k, c) such that 

( n )_K(r ,c )  ( n ) (19) I,~'] > Caps(c) k - r  k - r - 1  " 

(In the case Caps(c)=o% (19)means supl~'l/(kn___r)=O~ whenever n --.. . o  . ) 

Proof. (Sketch, a detailed proof can be found in [15] for the case t=2 ,  s = l . )  

Upper bound. Suppose ~ ( ~ " ' ( n , k , c )  with I l>[k"_J ( 1 - o ( 0 )  (by 

Lemma 6.1). Consider the weight fur.ction w: t~---R defined in the proof of 6.2 
We have using (13) that for yE Y 

B 

We can see that w satisfies (*) with (c+~) for n Iarge enough. Now by definition 

(21) ~ w(B) <- Cap~(c+e). 
11 
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It is easy to see that the function Cap~: R---R is continuous from the right hand 
side even more, it has Lipschitz-property from ~ e  right hand side, hence (21) implies 
that 
(22) ~ w(B) <= Cape~(c)+o(1). 

B 

Now rearranging (20) and using (22) we obtain (18). 

Lgwer bound. If c is rational, we can proceed exactly in the same way as we 
did in the proof of Lemma 6.1. Asain using the continuity of the function Cap~ 
the assertion follows. I 

Corollary 6.7. I f  1/v*(r, t, s)<=c< 1/v*(r-I ,  t, s) then f~.~(c)=max {Capa(c): 
has rank r, ~ is t-wise s-intersecting}. 1 

7. P r o o f s  

Each proof consists of four parts. Suppose ~'o~E~rt'~(n, k, c), ]~'[ is maximal. 
Then we first determine the value of r for which 1/v*(r, t ,s)<-c<l/v*(r-1, t,s) 
holds. As a second step we investigate the (t, s)-critical kernel of ~', denoted by 
(see Definition 6.4) and determine its possible maximal capacity (Cap~(c)). Then 
we determine ~__<,c2 r, (Yis defined by Lemma 4.5 and 4.4), ar.d finally max [~-I- 

We illustrate our method in some examples. Here we prove that the theorems 
holds for n large enough; n >nt(k, c). In the next chapter we will improve the bounds 
for n'(k, c). 

Proof of Theorem 2.3. Suppose ~rC~'t(n, k, c), t / ( t+l )<c<l .  By Lemma 5.8 we 
have v*(r,t, 1)=1 for r<t and v*(t, t, l )=(t+l)/ t .  Moreover the only t-wise 
intersecting hypersraph ~ of rank t with v*(.~)> 1 is K~ +1. This implies that the 
(t, l)-critieal kernel of ~ is K , ' + a ~  : .  Set Uocg'=Y. Then for each F E ~  we  
have ]FN Yl>=t, i.e., ~c~ (K~+~) .  The case c=t/(t+ 1) is left to the reader. 1 

Proof of Theorem 3.3. Suppose ~6:T~'t~q(n,k,c) where [qt+~-x]/[qt+~]<c< 
<[qt+t-a]/[qt+~] + 1/q~+Z,+a. Suppose 1~-[ is maximal, 

I l q))] = [q'+'] (n-[q'+'] = t k - [ q ' + ' - l ] ) "  

Consider the (t, [qt])-critical kernel ~3 of ~z- (defined by 6.4). By Lemma 6.5 v*(,~)> 
>l/c>[q'+']/[q'+l-1] - l/q 2'+2t. ~ is t-wise [ql]-intersecting of rank [qt+t-1], hence 
Theorem 5.6 yields ~ ( t + l , q ) .  Now Cap~(c)=[q'+l]. Theorem 6.6 completes 
the proof. II 

Proof of Theorem 3.4. Suppose .°~'C~-~'tq'l(n, k, [q, +l-1]/[qt +t]) I~1 is maximal. 
Then (see the proof of Theorem 3.3) the t-wise [q~]-intersecting kernel of ~" is 
~( t+l ,q) .  Set Y= U~( t  +l, q). For each edse FE~" and hyperplanes Ha . . . .  
..., Ht-aC~(t+l, q) we have 

(23) IrN/-Zl n . . .  nH,_al = [qq. 
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Now use the following theorem of Beutelspacher [2] which is a generalization of  an 
earlier theorem of Pelik~in [27] and Bruen [3]. 

Theorem 7.1. [2] Suppose that (23) holds for the set F and every HI . . . .  , I-It-iE 
E#(t+l ,  q). Then either 

(a) F ~  H for some HE~( t+l ,  q), or 

(b) I r l - ~ [ q ' + ' - l ] + I / q q ' + l - ~ .  l 

This implies that every F E ~  intersects Y in at least [qt+~-x] elements. Hence 

[qt+Z-a] 
[~l[q '+'-~] --< IFnr l  = Zd fy)<- [q,+,] l 'lIrt. 

FE.., ~ yEY 

Here the left hand side is equal to the right hand side. Since c=[qt+~-a]/[qt+r], 
[FO Y[ =[qt+t-~] must hold for all F E S .  Thus Theorem 7.1 implies Ffq YE~(t+I,  q), 
i.e., ~ c ~ ( g ~ ( t + l ,  q)). | 

The other proofs are equally easy consequences of  the corresponding iemmas. 
That is, Theorem 2.4 and 3.1 are easy consequences of Corollaries 6.3 and 6.7. 
Theorem 2.5 and 2.6 are implied by Lemma 5.8 and 5.9, Theorem 3.2 is implied 
by Lemma 5.7 and Theorem 2.11 and 2.12 are special cases of  the main results 
(Theorem 6.6 and Corollary 6.7). 

8. Our results are valid for n > 0 (k) 

The aim of this chapter is to improve the main results. We will show that 
nr"(k, c)=O(k). More exactly we have 

Theorem 8.1. There exists a function ht.S(c) such that nt,'(k, c) (definedin Theorems 
2.2, 2.3, 2.5, 2.6, 2.8, 2.9, 2.11, 2.12, 3.2, 3.3, 3.4, 3.5) is less than k .ht"(c). 

Before the proof  we need a lemma. 

Lemma 8.2 [12]. Let n, b, a, r be positive integers a, b~_r and n>-a+b-r.  Let 

~c(Xa),a$C(Xb) be two families of  subsets of  the n-element set X. Suppose that 

[ANBJ>=r holds for all AE~ ,  BEd.  Then either [.ffl= - r  or l~[~= b -  
holds. | 

This lemma is a generalization of  a theorem of Kleitman [24]. He investiga- 
( <fn-li ted the case r =  1 only, but he proved a stronger result either [ d  I = [ a - I )  or 

Proof of Theorem 8.1. Let c, t, s be given, define r as l/v*(r, t, s)~=c< 1/v*(r-- 1, t, s). 
From now on the constants cx, c~ . . . .  denote positive reals depending only on t, s 

5* 
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and c. Lemma 6.1 yields that for n>cxk we have 

fn-c2) 
(25) fl'S(n, k, c) > t k _ r  ) . 

Now we are going to improve Lemma 4.6. Let .~'E~t,~(n, k, c) and suppose 
larl is maximal. Apply repeatedly the left-shifting operation S u for ~- (see Defini- 
tion 4.3) if degs,( i ) ,deg~(j)~-(c/2)[~[ ,  l<=i<j<=n. Finally we obtain a family 
fgE.~'t'~(n, k, c) which is left-stable, i.e., 

(26) if 1 ~ i < j  ~- n, deg~(i), deg~( j )  ~-(c/2)I~1 and 

GEf#, i¢[G, jEG then G-{j}U{i}Ef#. 

We can suppose deg~(1)=>deg~(2)=>..._>deg~(n). Denote by Y={i :deg~( i )>  
>(c/2)If¢l}. Our first aim is to prove 

Proposition 8.3. IYl<-4r/c if n>cak. 

Proof. Let ~Y'= {GEf¢: [Gfq Y[~-IY[c/4}. Then 

(27) 
Indeed, we have 

(c/2)lrl ~- Z deg~(i) 

Now (25) and (27) give that 

(28) 

I ~ l  > (c/4)I~'1.  

Z l a n r l  

n - c 2 )  
I~1 > (c/4) t k - r )  

l ~ - ~ l  c , 1 ~ I  
i<~1 .~-Ir l*-]-~-]-.  l r l .  

holds for n>clk. On the other hand by definition 

f Irl ) f  n ) (29) 
- t l r l (c /4))  t k - l r  I(cl4)j • 

Finally (28) and (29) give the result. I 

Let L--{1,2 ..... [4 t i c ]  . . . . .  [ 4 r l c l + t r + r } .  Let @>,:={aC~: ICNLI>r}. 
Proposition 8.3 gives that 

< . - r  

(30) I~>,I - t r +  1) " ~- r -  T - (k - r )  
In the same way as we did in Proposition 4.5, assumption (26) implies that for GiEff 
we have 

(31) if IGIN...fqG, NLI<s then IG1N...NG, fl(X',,,L)I~_r+I. 
Now let o~f'={Gf')Y:GE(g-q1>,}, and define (~(H)={GEqq:GAY=H} for 

( n - - r - l ~ l  
H ~ f .  Let f¢o = U{~(H) :  [G(H)i~_tk_r - l J J" Clearly, 

- t k - r - i ]  < ~  k - r  " 
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Define 6,' = {GA Y: GE~,,,(c~>,U~0)}. 

Proposition 8.4..9 ° is t-wise s-intersecting family o f  rank r. 

Proof. Suppose on the contrary. Then we have $1 . . . . .  S~E6 a with ISt f'l.., f'l Stl <s. 
Let s ~ = { G - S i : G E f ~ , G A Y = S ~ } .  By ( 3 1 ) w e  have IA~A...AA,[>=r+I for 

<.< .~( n - I L l  
every AiEdi  (I =t_t) .  Using Lemma 8.2 we obtain that rain ls4il=~k_(r+l))  

<= k - r -  . Thiscont rad ic t s to theassumpt ion  I~(s~)l> k - r - 1  " | 

Finally, using (30) and (32) and Proposition 8.4 we can finish the proof on 
the same way as in Theorem 6.6. | 
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