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Let # be a family of k-subsets on an r-set X and ¢ be a real number O<c=<1. Suppose
that any ¢ m:mbars of & have a common element (r=2) and every element of X is contained in
at most ¢|# | members of . One of the results in this paper is (Theorem 2.9): If

e = (g +...+g+ D¢+ ... +q+1)

where g is a prime power and # is sufficiently large, (n=n (k,¢)) then

— :— —_— —
max |F| = [Z_Z‘_l.: ...q-—ql— 1](‘1:4, g1

The corresponding lower bound is given by the following construction. Let Y be a (¢*+...+¢g+1)-
subset of X and H,, H,, ..., H y, the hyperplanes of the f-dimensional projective space of order

gon Y, Let & consist of those k-subsets which intersect Y in a hyperplane, i.e., = {F € [;‘:] there

exists an {, 1=i=|Y|, such that YNF=H;}.

1. Introduction, notations

Let n, k,t=2 be positive integers, X an n-element set. Let 2% denote the

power set of X, ({] the family of all k-element subsets of X. A family of sets is

t-wise intersecting if any t members of it have a common element. The 2-wise inter-
secting families are briefly called intersecting. The signs [ ], | ] mean upper and
lower integer part, respectively.

Erdds, Ko and Rado [6] proved that if # C(IA:] is an intersecting family

and |X|=n=2k then |F 15[2:1]]. Equality holds in the case n>2k only if the

members of # have a common element. Hilton and Milner [23] proved that if we
exclude this family, i.e., if we make the additional assumption NF =0 then we

have |f[§[2111]—[”;f]1]+1. Here equality holds for k=4 if and only
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if for some x€ X, DC X, |D|=k, x¢ D we have .97={FE[£]:x€F,DﬁF;é0}U{D}.

(In the case of k=3 there exists another extremal family, see Theorem 2.2.)

Let ¢ be a real number, O<c¢=1. The degree of an element x in the set-
system Z is denoted by dx(x) or simply by d(x):=|{F¢Z: xEF}l. Erdé&s, Roth-
schild and Szemerédi [9] raised the following question: How large can an inter-

secting set-system & C[z] be if each point has degree at most ¢|&|. The class of

these systems is denoted by & (n, k, ¢); f(n, k, ¢) is the maximum size of such an
Z . Generally,

F(n,k,c) = {97 C({J F is t-wise intersecting and ds(x) = ¢|#| holds
for all x€ X},
fi(nk, ¢y =max {|F|: FcF'(nk, o)}

The above mentioned theorems imply
n—1) .
W 6] k)= (321) it n= .

@ 3] fimk, <1 = k(3 Z3) +00-.
For a family # c2X we define F(#)=: {FE({J: there exists an H¢#

such that HC F}, with the notation Y= U# we set .%(#)::{F( (z) FﬂYEJf}.

Obviously, F(#)VS F (#) and F(#), %(H#) are r-wise intersecting families
whenever J is t-wise intersecting.
Erd8s, Rothschild and Szemerédi [9] solved the case ¢=2/3, by proving

©) fouk 2 =3(3 23] i n =m0,
This result was extended by Frankl [11]
-3 -3 .
(@) fln, k) =3 (Z_z]+ [Z_3], if 1>c=2/3, n>nyk,c).

Moreover the only extremal family if & (K?), where K* denotes the complete

v=\v
In [5] it was conjectured and Frankl ([11] for #=3) and Fiiredi [15] proved
the following

v-hypergraph on u element (u=v), ie., K¥= [UJ for some U, |U|=u.

(5) If r=1 and there exists an r-uniform finite projective plane £(2,r—1)
onan rf—r+1 elementset Y (YCX) and 1/(r—1)=c=>r/f(r2—r+1), n>ny(k, c)
then

fla ko) = (P=r+1) (kf,.] +O (1Y),

Here the extremal family is & (2(2,r—1)).
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The only remaining case which is solved is 1/2<c=<2/3, see [11] or [17].
(In the case 3/5<c<2/3 there are 6 non-isomorphic extremal families.) Finally,
[15] contains the following general result.

(6) There exists an infinite sequence l=¢;>c¢y>...>¢,>...>0 tending to 0,
and a positive function f(c) such that

fin k0 = 1@ (", +o0r-r-

holds for ¢,=c<c,_,. Moreover the function f is piecewise either constant or
a rectangular hyperbola arc. Tae aim of this paper is to extend these results for
t-wise intersecting families.

We note that there is a strong connection between intersecting hypergraphs
and graphs of diameter 2. See Pach and Surinyi [26].

2. Results

The earlier known cases

Theorem 2.1 (Frankl [10]). f'(n, k, 1):(2:]]] whenever nzkt/(t—1). In the case
n=>ktf(t—1) the only extremal family is F({x}). 1

Clearly, f'(n, k, 1)=(Z:]]) for n=2k follows from (1). Theorem 2.1 says
that this holds for 2k>n=ki/(1—1) as well. For n<ki/(t—1) obviously we have
fin, &, 1)=[2).

Let k=t=2, define F, p, as follows: |Dy|=t—1, |Dy|=k—1+2, DN
ND,=0, D,UD,cX and .Z*'DDDZ:={F€(:]:D1CF, D20F¢0}U{D1UD2—{J:}:
x€D,}.

Theorem 2.2. For n>ny(k) we have
(% b..p.l if k=>=2t—1, and in the case k=3, 1=2,
» ka 1 ={ P . ? ’
ke <D=V 1zkey) if r=k=2-1.
Moreover the only maximal families are the above mentioned two families. [}
Hence in all cases we have one extremum except k=3, r=2. This theorem

is an easy consequence of a theorem of Frankl [11] about set-systems % c[f]
satisfying |[FO\F'|=t-1 for all F, F'¢#. Indeed, if & is t-wise intersecting,
and NF =0 then |[FNF'|=zt—1 holds. However, our method yields a compara-
tively good estimation for ny(k), ny(k)<h(1)k (see Theorem 8.1). For 1>k there
. X - . .

isno Fc ( « }» NF =0 which is t-wise intersecting. From now on we always sup-

pose, to avoid trivialities, that k>r.
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Theorem 2.3. (Gronau [20]). Suppose tf(t+1)<c<]1. Then for n=>n'(k, c)
rnko=a+n (" T+ (i 2101),

and the only extremal family is F (K{*'). Moreover for n=>n'(k) we have

71(n k, 1+ 1) = (1+1) (" P 1]

and the extremal family is F,(K:*1). |}

This is also implied by a theorem of Frankl [11] on (¢t —1)-intersecting families.
The present paper is selfcontained, Tneorem 2.2 and 2.3 come as byproducts of
the main lemma (Theorems 6.6—7). Moreover our new proof gives linear upper
bound for n'(k, ¢) (i.e., n'(k, c)<kh'(c) where h'(c) depends only on 7 ard c)

The main results

Theorem 2.4, Let n>k=>t=>1 be integers and ¢ a real, 0<c<1. There exists an
infinite sequence l=clz=ci=...=cl...>0, tending to O and a positive valued
Junction f*(c): (0, 1)~R with the following properties: If ¢t =c<cl_; then

£k =@ (") o=y,

Let us remark, that the calculation of f*(¢) (and r) is a finite problem in the
following sence: Let F€F'(n, k, ¢) be maximal. Then there exists a family of
=r-sets # over the =4" elements set Y such that |F —F (#)|=0(n*"""?), ie.,
the main part of & belongs to & (s#). About the computation of f'(c) and the
determination of such 3 we know much more. See Chapter 3. Roughly speaking
it is enough to consider finitely many linear programming problems.

We have cl=c{=...=c{_;=1, and c¢/=t/(t+1) by Theorem 2.3 and the
following theorem:

Theorem 2.5. Let t<r=(3/2)¢t—1, and 1-2/(3t—r+2)=c<1-2/(3t—r+3). Then
Jor n>n'(k, c) we have
n-r—1\

ﬂ””‘””lﬁ( k—r )

One of the extremal families is given by Example 2.7 (see later). This is the
only maximum in the first part of the interval [cf,c!_,) (whenever cf=
=1-2/(3t—r+2)=c<1-2/(3t—r+2.5)). Another extremal families can be ob-
tained (in the interval [1—2/(3r—r+83), 1-2/(3t—r+3))) from the nucleus #’
(see Figure 2) or 5" (Figure 3).

Denote by s#' the hypergraph over 3/ vertices whose edges are the comple-
ments of the edges of / disjoint triangles.
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Theorem 2.6. Let t be an odd integer (t=3) and denote (3t—1)/2 by r. Suppose
(3t—1)/(3t+3)<c<Bt+3)/(3t+7) then for n=>n'(k, c) we have

roko=e+2("e )+ (520 73).

and one of the extremal families is F (#¢+V/2). Moreover

2 - )

and the only extremum is Fo(HC+V2),

Example 2.7, Let Y=D,UD,U...UD,_, be an (r+1)-set, |Dy|=3t-2r+1 (=3)
and |D,|=...=|D,_,|=3 are pairwise disjoint. Define the set-system J# as follows:
H=H,Ux, where H\={HCY:|H|=r, Dy¢cH}, #Hy={HCY:|H|=r-1, 3i
(1=isr—t) such that |D,NH|=1} (see Fig. 1). Let #o={H,, H,, ..., Hy,_p}
and choose the family of k-sets &, such a way that all FE# contain H;, |F|<

n—r—1 1 (n—r—1 . . .
<( ker ) at least 5( k—r ) of them intersect Y in H; precisely, finally

lU.%[:ll% "—i— ])I — | (" _:_ 1]. (Remark that the difference between

the two coefficients of the binomial factor is less than -i(t r)+l- and greater
than —(t r).) The parts of the members of & outside Ycan be located arbitra-
rily. Fmally, let F= J FU{FeF: FNYeH) (ie, FCF(X)).

The above results clzii/f:?t_l;; cases when c¢ is close to 1. The next chapter sheds
light on the asymptotic behavior of c}.

Ooo »
[+ o, 1

..
.'o aez
.

S e —

3t-2ra1 3-8

——eet e g
re1 3t-2r+3 4 3I(r-t-2)

Fig. 1 Fig. 2

Families with strong constraints on the maximal degree

Let #y(1, g) denote the family of hyperplanes of a projective geometry of
order g and dimension ¢ with point set Y. If it causes no confusion, we simply write
2. Recall that |2|=|Y|=(¢"*'-1)/(g—1). Note that for r=3, g must be a prime
power while for =2 it is a famous open problem whether planes of non-prime
power order exist.
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Theorem 2.8. Suppose g=2 is a prime power and ("1 +... +q+ D¢’ +... g+ 1)<
<c<(g'" '+ +qg+ DG +...+q+ 1)+ 1/q%. Then

rno S5 ) o)

holds. Moreover if F€F(n, k, ¢} is maximal then for n>n'(k, ¢} thereisa Py(t, q)
with YCX such that % >F (P). Finally, |F —F (P)|=0(|F (P)|/ns""").

Theorem 2.9. If q is a prime power then for n=n'(k, c)

7wk L) = i@
3 vy q t+1_ l )
and F(P) is the only extremal family.
Corollary 2.10. Let ¢} be as in Theorem 2.4. Then for fixed t

-1

3t-27+3 7 3(r-t+3)
Fig. 3. 1-2/3t+r+2.75)sc<1-23t—r+3)

More on the case =3

—4 n—4
-3)t k-4

)
F3(n, k, 0.75) = | F (#V)| = 4[ )
2

Theorems 2.3 and 2.6 state that

Pk = |7 ) = 4
for 0.75<c=<1,

Fio k) = 1F )] = 6 (4 Z§)+00-9)
for 2/3<c-<0.75 and
£k 2 = 17060 = 6 (5 Z5).

holds for n=>n3(k, ). Moreover the extremal families are obtained from o#®
and #® (see Fig 4). We can solve the following cases as well.
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Theorem 2.11. Suppose 5/8<c<2/3 and let #® be the hypergraph on 8 points
given by Fig. 4. Then

fHn K, ©) = |F (D)) = 8 (Z:i] +O (=9

holds for n=>n3(k, c). The only extremal family is F(H#®).

eo9le L ] *
L] . [ [ ]
L] e o0 L LK L ]
[ ce e ole of eole
o e e IK ] [ s ol
L] L ) *s ole L [ L
L 2 [ ] LN L L4 . oo o
[ B .0 & - L 3 LRd L J
3 2 3 3cc<l
4ic<l 3SC<I. 5\c<3
8‘?(]) 5€(2) 38(3)

Fig. 4. 1=3, 5[8=c=<1

LI Y Y
L I 1 *
L ) L
X X L]
sje s e
o |esse
* L X N ]
L LN K]

Fig. 5. 1=3, ¢=5/8.

Theorem 2.12. Let #® be the hypergraph on 8 elements given by Fig. 5. Then

n—38

£k 3) = 1m0rey = 1Zere =5 (1 75).

The only extremal families are Fo(#'®) and F(H#'P). Morcover for ¢<5/8
we have f3(n, k,c)= O(*~%), ie, i=ci=1, 3=3/4, }=2/3, c}=5/8.

3. Further generalizations
We call the family & t-wise s-intersecting if |F\NF,N...NF|=s holds
whenever Fy, ..., F,€#. Assume that n=k=>s, 1=1, 122, 0<c=1 is a real and
define F*3(n, k, c)={5°'c U:] | X]=n, F is t-wise s-intersecting, ds(x)=c|F]

for all  xeX}). Set f“5(m k,c)=max {|F|: FcF" " (n k,c)}. Clearly,
SN, k, ©)=f"(n, k, ). Tae results of Chapter 2 can be extended to r-wise s-in-
tersecting families.

Theorem 3.1. There exists a sequence 1=ct*=cys=...=...>0 and a positive valued
Junciion  f°(c): (0, 1)=R with the following properiies: If ehs=c<cl?; then

ook = 1+2@ ")+,



342 P. FRANKL, Z. FUREDI

Theorem 3.2. Suppose s>(t—1)I(I—1) and (It +s—D/(It +5)<c<((t+s =D/t +5)) +
+(1/(+5)(t+5)). Then
fo5(n, ky ©) = |F (K-

The only extremal family is F (K}1}3_)).

The above theorem was proved in [11] for #=2. The following is an exten-
sion of Tneorem 2.8. Define [¢']=¢'+¢'~*+...+g+1.

Theorem 3.3. Let q be a prime power, t=2, 1=0 integers. Suppose [¢'*'~']/[qg**']<
<c<[g"HNlg ]+ 1/g¥+¥+2. Then for n>n(k, c)
¢, Tq? t+1 ”—[CI‘“]
£k, ¢) = 1+ Z [l 1 +OU).

The lower bound is given by % (2(t+1, q)). Moreover
Theorem 3.4. f*5(n, k, [¢+'=")/[q" ') =|F,(P(t+1, 9))| holds for n=>n(k).

The main theorem (Theorem 6.6) gives further results. E.g.: define the biplane
By as follows. Let X={(/, j): 1=i, j=4}, gsc[g], VB, B'€%#; wehave |BNB'|=

=2, |Bs|=16. (&, is representable as the set {B(, j): 1=/, j=4} where B(,))=
={(u, v): 1=u,v=4, (4,v)(}, j) and either i=u or j=v}. See Fig. 6.) See [21].

-

Fig. 6.

Theorem 3.5. Let F C({) be a family of finite sets with property |FNF'|=2
Jor F, F'¢F, n=k=>6. Suppose dz(x)=(3/8)|F| holds for xcX. Then for n=>ny(k)

171 = 7@l = 16 ()
where B is the biplane of order 6.

Finally we remark that our n*(k, ¢) (n"*(k, ¢)) is polynomial (in the cases of
Theorems 2.2, 2.3, 2.5, 2.6, 2.9, 2.11, 2.12, 3.2, 3.4, 3.5 actually linear) in k. Cf.
Taeorem 8.1.

4. Finding the kernel of the extremal families 1. critical hypergraphs

Define an edge-contraction as the following operation on a family #: we
substitute an edge E€3# by a smaller, non-empty E’& E, and thus we get the set-
system (A —{E})U{E’}). A set-system having property P is P-critical if it has no
multiple edges and the hypsrgraph obtained by contracting any of its edges does
not have property P. We can get a P-critical family from any s having property



INTERSECTING HYPERGRAPHS 343

P by contracting its edges as far as possible and deleting all but one copy of the
appzaring multiple edges. The obtained (smaller) family, X is called the P-kernel
of . (Of course, ¢ is not necessarily unique, but this is not important for us.)

We are interested in ¢-wise s-intersecting families, r=2, s=1. Call a hyper-
graph (1, s)-critical if it is critical ¢-wise s-intersecting. The rank of a family # is
max |H|. One more definition: The family Fy, Fs, ..., F, is called a t-siar
with kernel N if, for every 1=/<j=t¢, we have F,NF;=N. Tae well-known
Erd6s—Rado theorem [8] says: If the set-system # of rank r does not contain a
t-star, then | |=(r—1)r!

Lemma 4.1. If o is (¢, s)-critical of rank r then |H#|=r%.

Proof. It is clear, that a (¢, s)-critical # does not contain an (r+1)-star. Hence
[##|=r"rt=r* by the Erd6s—Rado theorem. ||

Remark 4.2. Denote by E**(r) and V*$(r) the maximum number of edges (verti-
ces) of a (¢, s)-critical hypergraph of rank r. V*1(r)<e was proved by Calczynska—
Karlowicz [4]. His bounds were improved by Erd@s and Lovész [7] who showed
[rte—-D=E>(r)= r’,% (2 J < V“(r)é% (Zr ) Tae current best result is due

,
to Tuza [27), V“(r)é% [er] Lovdsz conjectures E>(r)=|rl(e—1)). (It was

proved for r=4 by Hanson and Toft [22).) Tae best bounds in the general case are
due to Alon {1]:

3(k—s)/3t - V"’(i‘) - t(k-s)/r.

Considering the complete hypergraph K!/}$_, one can see that E**(r) is exponen-
tial in r for all fixed ¢ and s.

Looking for an extremal hypergraph FeF*5(n, k, ¢) we use the following
operation

Definition 4.3. (ErdSs, Ko and Rado [6]). Suppose F 2%, X={1,2,...,n}, i<j.
Define the (left) shifiing Si; on F as follows:

_[F-{jyU{i} if jeF,i4F, F—-{JU{i}Z,
Sis(F) = {F otherwise,

S(F)=(S,,(F): FeF).

Lemma 4.4, (Frankl [13]). Suppose Fc (;‘Y) Is a t-wise s-intersecting family. Then
|S;;(PN=\F| and S,;(F) is also t-wise s-intersecting.

Now let F€F"*(n, k,c). Apply repeatedly the operation S;; to & until
we obtain either a family # such that dy(x)>c|#| (=¢|F]|) or a family ¢ which
is stable, i.e., S$;;(9)=¢ holds forall 1=i<j=n.

To avoid the first possibility we apply S;; only for those pairs where due(¥),
dw(/)=(c/2)|#|. Consider the family finally obtained ¥€F"*(n, k, ¢), and sup-
pose dg(1)=dy(2)= ... = ds(n).
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Proposition 4.5. Suppose Y={1,2,...,1(2/0)k]+2k}. Then the fomily 4|Y:=
={GNY: GG} is t-wise s-intersecting.

Proof. We use the obvious fact that ¢ contains at most (2/c)k points with degree
at least (¢/2)|%]. Hence the family ¢ is stable on the points {|(2/c)k]+1, ..., n}.
The following argument is similar to the proof of Lemma 2.2 in [14]. Suppose on the
contrary that Gy, G,, ..., G,€%, |G,\N...NG,NY|<s, and |G,N...NG,] is mi-
nimal subject to this constraint. Then there exists a point jeG,N...NG,, j=|Y]|
and a point i¢ Y, i>|(2/c)k| which is not covered by at least two G,’s, say G, and
G;. Tnen G{=G,—{j}U{}€% as well, and |GING,N...NG|<|GN..NG,,
a contradiction. J]

Summarizing the results of this chapter we obtain

Lemma 4.6. There exists an FEF"*(n, k,c) with maximum cardinality (|F|=
=f"(n, k, ¢)) such that it has a (¢, s)-critical kernel A" with |UX"|=(2/c)k +2k.
Moreover & is partially stable, ie., 1=i<j=n, FEF,i¢F, jeF, ds(i), ds(j)=
=(/2)F| imply F-{j}U{i}cZ. 1

5. Finding the kernel of the extremal families II.
fractional matchings of hypergraphs

Definitions

Let 5 denote a family of sets on a ground-set X. Let v(#°) or briefly v denote
the matching number of 3, i.e., the maximum number of pairwise disjoint edges
in #, ie., v(H)=max {w:3JE|, E,, ..., E,€#, ENE;=0}. Let 1(#) or briefly
7 denote the covering number of #, i.e., the minimum cardinality of a transversal,
ie., t(#)=min {|T|: TNE=P for all Ecs#}. Clearly, t=vr, where r denotes
the rank of #7.

A fractional matching of 3 is a function w: ¥ —~R satisfying w(E)=0
for every edge £€ 5 and

> {w(E): x€Ee€#} =1 for every xcX.
The value of the fractional matching w is |w|= > w(E). The maximum of [w]|
EcH#

when w ranges over all fractional matchings is called the fractional matching number
and is denoted by

v*(#)=max {{w|: w is a fractional matching of #}.

Similarly, the fractional covering number is the minimum value of fractional covers
of #, ie.,

() =min{ 3 1(x): £: X >R, {(x) =0, VEC# wehave 3 t(x)= 1}.
xeX x¢cE
Clearly, to determine the fractional matching and covering number is a linear prog-

ramming problem. This is a dual pair, so by the Duality Principle of linear prog-
ramming we have t*(#)=v*(s¢) for every hypergraph .
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In view of the fact that w(E)=1/D (where D=max de(x)), and 1(x)=
=1/min |E| are fractional matching, covering resp., we have

||
@ DA

[X]
min (|E|: EEA}

=v*(¥) =

This implies, e.g., v*(2(t, 9))=I¢/[¢*~*]. (Recall that [¢7] stands for ¢'+g'~1+...
..+1)

Hypergraphs with maximum fractional matchings
A family & is called v*-critical if v*(F’)<v*(#) holds for each subfamily
F'EF, We are going to use the following results of the second author.
Lemma 5.1 [16]). If the family F is v*-critical then |F|=|UF|. |
Lemma 5.2 [19]. If the family & of rank r Is v*-critical then |F|=rv*. |

Define v*(r, t, s)=sup {y*(5F): 5 is t-wise s-intersecting of rank r}. (r=2).
In this section # will always denote a t-wise s-intersecting hypergraph of rank r.

Proposition 5.3. There exists a t-wise s-intersecting hypergraph 3 of rankr such
that v*(H#)=v*(r, t, 5).

Proof. To determine v*(r, t, 5) it is enough to consider the v*-critical hypergraphs
2. By Lemma 5.2 its cardinality is at most rv*(r, ¢, s)=r? hence we have finitely
many possibilities. [

Theorem 5.4, Let F be a (2-wise) s-intersecting family of rank r. Then cither
(a) VI(F)=@-D[s+(Q/r) and F is an (r, s)-design, or
(b) V(F) s (-Ds+1/n—=(r—s)/r(r—1)s.

We recall that an (r, 5)-design is a pair (X, #) where X is aset of r(r—1)/s+1
elements, # is a family of r-sets of X, |#|=|X| and any two members of # inter-
sect in exactly s elements. (Hence any pair {x, y}< X is contained in exactly s mem-
bers of 4.) The best-known example is 2(a, g), it is a ([g°~ )], [g°~*])-design.

Proof. The case s=1 was conjectured by Lovasz [25] and proved in [16]. The proof
given here is simpler. We invoke a lemma.

Lemma 5.5 (see [28)). An (r, s)-design B is a maximal s-intersecting family of
rankr. Le., if T isanr-set and \TN\B|z=s for all BB then Tc%. |}

First consider an s-intersecting family & of rank r. By Lemma 5.1 one can
choose a subfamily ¥c# such that v*(¥)=v*(¥) and |¥|=|U¥%|. Denote
U¥ by X. Then

® m%dg(ﬂ:TX—I'ZIGlérmér.
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Hence méxg dy(xy=d=r. Let x be a vertex with minimum degree 4 and
X

G,, G, ..., G; be the edses of ¥ through x. Let w: ¥—R be a fractional matching,
2 w(G)=gq. (¢=1). Then the following holds for all fixed §
d

1sis

) g+r—-1= 3 ( ZQW(E))= 2 w(E)[ENG|

x€G, x¢E¢ EcY

=5 > w(E)+(r—s5)w(Gy).
Ecy

Summing up (9) for all i we get dg+d(r—1)=sd|w|+(r—s5)g which yields
(10) (r=1/s+(d—r+s)q/sd = |w|.

The second term of the left hand side is at most (1/r)—(r—s),(r—Drs if d=<r.
Hence we have obtained that (t) holds in this case.

Next consider the case d=r. (8) implies that ¢ is r-regular and r-uniform
(ie., Vxdg(x)=r, yGEF |G|=r.) Then by (7) we have

(1n vi(G) = [|[r = |X|Ir.

Consider an arbitrary edge G,€%. We have

(12) rr= 3 dy(x) = 3 |GNG,| = r—s+s|¥%|
x€ Gy Ge¥

ie., |9[=(@2—r+s)s. If |9=(r2*—r+s—1)/s, then (b) hoids by (11). If |¥|=
=(r?—r+s)/s then equality holds in (12). Hence ¥ is an (r, 5) design.
Finally, by Lemma 5.5, we have that in the latter case 4=%. |}

Theorem 5.6. Suppose # is a t-wise [q')-intersecting family of rank [gq*+'~'].
Then either

(@) o isisomorphic to P(t+1, q) and then v*(#)=[q'*/lg**'-], or

(b) v (#)<lg" Vgt )= 1gH R

Proof. We are going to use Theorem 5.4. If 5 is [g**'~%-intersecting then we are
done. Suppose that there exist H,, H,¢# with |[H,NH,)<[g'*'"%. Let a be
maximal such that 3F,, F, ..., F,63¢ with [F,NEFN..NF]<[g*t9. We
have a=2. On the other hand a<r as 5 is t-wise [¢']-intersecting. Hence every
H:s# intersects Y=F,N...NF, in at least [g"*+!~*~'] elements. Thus the function
t: Y—-R, ((p)=1/qg'*'~21] is a fractional cover of #. This means

Vi) = Y|l T = (gt N T L gt ) = ¢

<l g =g 1

Lemma 5.7. Suppose F is t-wise s-intersecting of rank It+s—1 where t=2, I=1.
Suppose s=>(t—1)I(I—1), then either

@y F is (lt+s-2)-intersecting (e.g., F~KJI}5 ), or

(b) V(F)=(s+I-1)'s (<(t+3) (t+s=1)).

Proof. The case 1=2 was proved in [I1]. We proceed as in the proof of Theorem

5.6. Suppose on the contrary that there exist H,, H,e &, |H,NH,|<lt-+s-2l.
et a be maximal such that there exist Fy, ..., F,6# with |Y|=|H,N...NH,j<
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<lt+s—al, wehave 2=ag<¢. Then for each H¢ # we have |[HNY|z=lt+s—(a+1)!
yielding v*(#F)=(lt+s—al-1)/(lt+s—al—a)=(s+I-1)/s. |}

We need the following lemmas to prove Theorems 2.5—2.6. From now on
# will denote r-wise intersecting hypergraph of rank ».

Lemma 5.8 [18). Suppose 2=t=r=3t/2—1. Then v*(r,t,1)=1+2/(3t-r).

(a) Suppose v*(#)>v*(r—1,t,1)= (=14+2/3t—r+1) or 1) then there exists
an element x with dyp(x)=|#)—1, and the only edge E not containing x has r
elements.

(b) Suppose v*(H#)>1+2/(3t—r+0.5) then ¥ is isomorphic to Example 2.7.
(Hence |#|=|U#|=r+1). |}

Lemma 5.9 [18]. Suppose r=(3t—1)/2. Then v*(r,t, )=1+2/r.

(@) Suppose v*(#)>v*(r—1,1,1) (=1+42/(r+2)). Then there exists an element
x with de(x)z=|#|-2, and ihe edge(s) avoiding x has (have) r elements.

(b) Suppose v*(#)>=1+2/(r+1) then H# is isomorphic to H\'+V/% (see leeo-
rem26). |}

The following lemma exhibits how v* can be used to derive lower bounds
for the maximum degree:

Lemma 5.10. Let a: % —R be any non-negative real-valued function on the edges
of F,FcC2X. Then

x€X

(lal denotes the sum Z’a(F)) This lemma is an extension of the well-known ine-
quality max de (x)=|Z|v*(F) (see (D).

Proof. Let M =max > a(F). Then the function a/M is a fractional mat-
x xEFe¢F

ching of #, thus |a/M|— lal/M=v*(%). 1
6. Finding the kernel of the extremal families ITI,
The main theorem, linear programming and intersecting hypergraphs
The determination of the order the magaitude of f**(n, k, ¢)

Lemma 6.1. Suppose that c=1/v*(r, t,5). Then

Jes(n, k, c)>[ ) o(nF—r-1).

Proof. This was proved in [15] for r=2, s=1. Now we can do it in the same way.
Let 5 be a t-wise s-intersecting hypergraph of rank r ona YC X such that v*(s#)=
=v*(r, t, 5) (such an 3# exists by Proposition 5. 3),and let w: s#~R bean optimal
fractional matching. We can suppose that w(H) is rational, e.g., w(H) N is an integer
for some integer N, for all H¢ . Moreover we can. suppose that  is r-uniform
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(otherwise we add new vertices). Let YC X, m=N IYI / N J "— ! Yl] N] .
Define F(H) as follows: .‘F(H)C{FE [z) FﬂY= }, |7 (H)|=W(H)m Then

for F= U ZF(H) we have FcF"(n,k,c) and l./|>v*(9f)[ ]Y]
A |
Lemma 6.2. Suppose that 1/v*(r, t,s)sc<1/v*(r—1,t,5s). Then

r

5 n k—r-1
ik o) = l—cv*(r—1,14,5) [k—r]+0(n )-
Corollary 6.3. The value of cb* (defined in Theorem 2.4 and 3.1) is 1v*(r, t,5). |
Proof of 6.2, Let FcF"%(n, k,¢) be maximal. By Lemma 6.1 we can suppose

[F1=(1-0(1) (kﬁr)' Let YC X be a subset having at most (2/c)k+2k elements

defined by Lemma 4.6, and ,={HcY: H=YNF for some Fec¢F, |H|=i}.
Let F(H#,,)={FcF: |FNY|>r}. Clearly

13 #6010 (e=r—1).

Let @ be a (t, 5)-critical kernel of #<,, i.e., (one of) the (¢, s)-critical hyper-
graph obtained from ., comractmg its edges as long as it is possible. Then by
Lemma 4.1 we have |#|=r%.

Decfinition 6.4. Call 8 as above, a (1, s)-critical kernel of rank r of F.

Define #.,:={Bc%:|B|<r}. Now we are ready to define a weight func-
tion on the edges of #. Choose a B,C F, B.¢# for every FEF —F (#,,), and
let Fy={FcF:BCF, B=B;}(Bc%). Now let

2r

(14) we) =177
Obviously,
3as) w(B)=1 if BeB, |B|=r.

We are going to use Lemma 5.10 for #., and w: & .,—~R. By this lemma we ob-
tain a point y€Y such that

1 1

(16) yes‘e}f’a(,W(B) = v (%) BE%, w(B )— -1 ,5) Be%:,W(B)'
Now (16), (14) and (13) yield
a7 A1 =40 = 5y (1#1-( 3 w(B))[ ) erl)

= v*(r——ler) [Iﬁl—ﬁ’[ k——l};l)‘(rlill) (k—:—l)]'

Rearranging we get Lemma 6.2. [}
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The asymptotic determination of f™*(n, k, c)

Let & be a family of rank r on the set ¥, O<c<1, &,={Bc%: |B|=r}=0.
The optimum value of the linear programming problem (*) is called the capacity
of # belonging to c.

w: & -+ R,
w(B)=0 for all B¢4,
(%) w(B)=1 for all B¢4,,
> wB)=c(J wB))=c|w for ye€Y.
a Bea

yEBe

Capglc):=max {|w|: w satisfies (*)}. It may of course occur that Caps(c)=0
or Capg(c)=-os.

Lemma 6.5. If # is a t-wise s-intersecting family of rank r and

1V @r, t,5) = IV (B)=c< 1y (r—1,1¢5)
v (%) = Caps (¢) = |B)/(1—cv* (8.)). 1
The proof is similar to the proof of 6.2, see [15].
Theorem 6.6. If FcF"*(n, k,c) and R isits (1, s)-critical kernel of rank r then
as) 11 < Capa (@) (", )+ K0 (7 1)-

On the other hand if # is an arbitrary t-wise s-intersecting family of rank r, then
there exists an F'€F"5(n, k, ¢) such that

19 171 > Cape@(, ) K 0 ().

then

(In the case Capg(c)=co, (19) means sup |.?"’|/(k’:,)=oo whenever n—c.)

Proof. (Sketch, a detailed proof can be found in [15] for the case t=2, s=1.)
Upper bound. Suppose F<F5(n, k,c) with |.97[>[k_'ir] (1—o(1)) (by

Lemma 6.1). Consider the weight furction w: Z—~R defined in the proof of 6.2
We have using (13) that for y€Y

@0) (3 we) = E:Ejf,y'i = [nil?l) = c[ S w(B)+0 ['lz)]
= (e+o(D)(Z w(B))-

We can see that w satisfies (*) with (c+¢&) for n large enough. Now by definition
(2D > w(B) = Capg(c+e).
B
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It is easy to see that the function Capg: R—R is continuous from the right hand
side even more, it has Lipschitz-property from the right hand side, hence (21) implies
that

(22) 2 w(B) = Capga(c)+o(l).

B

Now rearranging (20) and using (22) we obtain (18).

Lower bound. If ¢ is rational, we can proceed exactly in the same way as we
did in the proof of Lemma 6.1. Again using the continuity of the function Capg
the assertion follows. [

Corollary 6.7. If 1/v*(r,t,5)=c<1p*(r—1,t,5) then f**(c)=max {Capa(c): #
has rank r, B is t-wise s-intersecting}. |

7. Proofs

Each proof consists of four parts. Suppose F€F"%(n, k, c), || is maximal.
Then we first determine the value of r for which 1/v*(r, 1, 8)=c<1p*(r—1,1,5)
holds. As a second step we investigate the (7, s)-critical kernel of &, denoted by #
(see Definition 6.4) and determine its possible maximal capacity (Capa(c)). Then
we determine #c,C2¥, (Y is defined by Lemma 4.5 and 4.4), ard finally max |#|.

We illustrate our method in some examples. Here we prove that the theorems
holds for n large enough; n>n(k, ¢). In the next chapter we will improve the bounds
for n'(k, c).

Proof of Theorem 2.3. Suppose F<cF'(n, k,¢), t/(t+1)<c<1. By Lemma 5.8 we
have v*(r,t, 1)=1 for r<t and v*(s,t, 1)=(t+1)/t&. Moreover the only r-wise
intersecting hypergraph 2 of rank ¢ with v*(a#)=>1 is K;*'. This implies that the
(1, )-critical kernel of & is Ki*1x#. Set Us# =Y. Then for each F€F we
have |FNY|z¢t, ie, FCF (Ki*Y). The case c=1/(t+1) is left to the reader. [

Proof of Theorem 3.3. Suppose FcF"W(n, k,c) where [g'*"/[g't]<c<
<[g" T Y/[g* ")+ 1/g® t¥+2, Suppose |F| is maximal,

__[ot+l
\#| = |Z(2(+1, ¢))| =[a"+1] (,’j_{gmll]].

Consider the (¢, [¢'])-critical kernel # of & (defined by 6.4). By Lemma 6.5 v*(%)>
>1jc=[g"+ g+~ —1/q¥+%. A is t-wise [¢']-intersecting of rank [g*+'~?], hence
Theorem 5.6 yields #X2(t+1, q). Now Capg(c)=[g'*']. Theorem 6.6 completes
the proof. |1

Proof of Theorem 3.4. Suppose FcZF-1n, k, [¢'+'-Y/g'**]) |F| is maximal.
Then (see the proof of Theorem 3.3) the r-wise [¢']-intersecting kernel of # is
P41, q). Set Y=UP(t+1, q). For each edge F¢&F and hyperplanes H,, ...
vy H_1€2(t+1, q) we have

(23) |[FOH,N...0H,_] = [q".
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Now use the following theorem of Beutelspacher [2] which is a generalization of an
earlier theorem of Pelikdn [27]) and Bruen [3].

Theorem 7.1. [2] Suppose that (23} holds for the set F and every H,, ..., H,_;€
€P(t+1, q). Then either

(a) F> H for some HeP(t+1, q), or
(b) [Fl=[g""1+Vg g+~
This implies that every F¢# intersects Y in at least [¢*+'~?] elements. Hence
[g"+~]

(Zllg*' 1= Z |FNY|= 3 ds() = 7= |F]Y].
FeF yey [q**]

Here the left hand side is equal to the right hand side. Since c=[g**'~']/[g**"],
[FN Y|=[g'*'~1] must hold for all F¢ #. Thus Theorem 7.1 implies FNYe P (¢ +1, q),
ie., FcFK(2(+l9) 1

The other proofs are equally easy consequences of the corresponding lemmas.
That is, Theorem 2.4 and 3.1 are easy consequences of Corollaries 6.3 and 6.7.
Theorem 2.5 and 2.6 are implied by Lemma 5.8 and 5.9, Theorem 3.2 is implied
by Lemma 5.7 and Theorem 2.1 and 2.12 are special cases of the main results
(Theorem 6.6 and Corollary 6.7).

8. Our results are valid for n= 0 (k)

The aim of this chapter is to improve the main results. We will show that
n"*(k, c)=0(k). More exactly we have

Theorem 8.1. There exists a function h*5(c) such that n*3(k, ¢) (defined in Theorems
22,23,25,2.6,2.8,2.9,2.11,2.12,3.2, 3.3, 3.4, 3.5) is less than k- h"*(c).

Bzfore the proof we need a lemma.
Lemma 8.2 [12). Let n, b, a,r be positive integers a,bz=r and nza+b—r. Let
& ['Z] , %C[ZJ be two families of subsets of the n-element set X. Suppose that
|ANB|=r holds for all Acsf, BERB. Then either [.gl[é(a'ir] or [é&ig(bir]
holds. |

This lemma is a generalization of a theorem of Kleitman [24]. He investiga-

ted the case r=1 only, but he proved a stronger result [either | ]é[z:]l] or

o=}

Proof of Theorem 8.1. Let ¢, ¢, s be given, define r as 1v*(r, t, s)=c<1/*(r—1,1,5).
From now on the constants ¢y, ¢y, ... denote positive reals depending ouly on ¢, s

hid
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and c¢. Lemma 6.1 yields that for n=c¢;k we have

(25) rerm k0 = (52%).

Now we are going to improve Lemma 4.6. Let FcF4(n, k, ¢) and suppose
|Z | is maximal. Apply repeatedly the left-shifting operation S;; for # (see Defini-
tion 4.3) if degz(¥), degy(J)S(c/Z)[/[ 1=i<j=n. Finally we obtain a family
GcF+5(n, k, c) which is left-stable, i.e.,

(26) if 1si<j=n, degy(i), degy(j)=(c/2)|%| and
G¢eY9,i4G, jeG then G-—{j}U{i}€%.

We can suppose degy(1)=dege(2)=...=degg(n). Denote by ¥Y={i:degs()>
>(c/2)|%|}. Our first aim is to prove

Proposition 8.3, |Y|=4r/c if n>c,k.
Proof. Let A#'={Gc¥:|GNY|=|Y|c/4}. Then

27 || = (c/H|F|.
Indeed, we have

. > |GNY|
- dega (i) _ o - {g—.)ﬂ ¢ A
WP=2"e1 =7 g1 Ay

Now (25) and (27) give that

(28) ot = e/ (2%

holds for n>c, k. On the other hand by definition

7|
(29 %] = [lYl(c/4)] (k—lY"I(c/ct)]-

Finally (28) and (29) give the result. |

Let L={1,2,..,[4r/c), ....[4r/c]+tr+r}. Let ¥%.,={Ge¥%:|GNL|>r}.
Proposition 8.3 gives that

@ o= () (0 =5 (),

In the same way as we did in Proposition 4.5, assumption (26) implies that for G;¢%
we have

3n if |GN...NGNL]<s then |G\N..NGNX\L) =r+1.

Now let #={GNY:Gc%—%.,}, and define ¥(H)={Gec%: GNY=H} for

He#. Let ,= u{g(ﬁ) |G(H)[§(Z - )} Clearly,

@ o= (M) (5) (20 <22 ()
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Define & ={GNY: Ge¥\(¥4.,U%)}.
Proposition 8.4. & is t-wise s-intersecting family of rank r.

Proof. Suppose on the contrary. Then we have S, ..., S;6# with [$;MN...N§,|<s.
Let &;={G—S;: G¢9, GNY=S}. By (31) we have |4,N...NA4|=r+1 for

. —|L
every A €of; (1=i=/). Using Lemma 8.2 we obtain that min l"?{ilé[k’i(rl—fll)) =

—r— —r—1
= ;; _:_]]]. This contradicts to the assumption [@(Si)l>[z_;_l . |

Finally, using (30) and (32) and Proposition 8.4 we can finish the proof on
the same way as in Theorem 6.6. |
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