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Abstract. One of  our  results: Let P denote a finite projective plane of  order  n. Colour  its vertices by 
)~ colours. If no colour appears  more  than twice on any of  the lines, then Z > n + 1. Explicit 
construct ions show that this bound is sharp when P is desarguesian. 

1. Introduction and Notations 

A finite incidence structure (also known as finite linear space, finite geometry, 
general 2-design, etc:) is an ordered pa i r  (P, ,]_) where P is a finite set, JPJ _> 2, and 

is a collection of subsets, called lines, of  P satisfying the following condition: 
Each line has at  least two points,  and each pair  of  two distinct points  belongs to 
precisely one line. Classical examples  of  finite geometr ies  are finite projective and 
affine planes. 

In a projective plane of order n there are n z + n + 1 points,  n 2 + n + I lines, 
with n + 1 points  on each line. The  (desarguesian) project ive plane over  the finite 
field Fq is denoted by PG(2, q). The points  of. this p lane  are the equivalence classes 
in F~ - {(0,0,0)} of the relation " ~ "  defined by (x ,y , z )~  {x' ,y ' ,z ')i f  there exists 
c 4 :0  in Fq such that  (x', y' ,  z ' )  = (cx, cy, cz). The  lines of PG(2, q) have equat ions of 
the form ax + by + cz = 0 in F. with (a,b,c) v~ (0,0,0). 

For  an integer n the set L c {0, 1 ,2 , . . . ,  n 2 + n} is called a difference set modulo 
M, M = n a + n + 1, if ILJ = n + 1 and for all distinct pairs {x, y}, {u, v} c L we have 
x - y ~ u - v (mod M). Singer proved  [11] that  PG(2, q)is cyclic for all q, that  is, 
BG(2, q) has an a u t o m o r p h i s m  of order  q2 + q + 1. Tha t  is, P6(2, q) can be repre- 
sented,as (P, ~_) with P = {0, 1 . . . . .  q2 + q} and D_ = {L + i: 0 _< i < M - 1} where 
M = q2 + q + 1, L is a difference set (mod M), and  L + i = {1 + i (mod M): leL}. 

An arc in a project ive plane P is a set of  points,  no three of  which are collinear. 
It is wel l -known {Bose [1])  that  the n u m b e r  of  points  of  an arc in P of  order  n is 
at  mos t  n + 1 or  n + 2 according as n is odd  or even. These bounds  are at tained in 
desuarguesian project ive planes. 

If  f : F ~ - + F q  is homogeneous  We define the zero set of f as Z( f )=:  
{(x, y, z): f{x, y, z) = 0} c PG(2, q). The zero set Z( f ) i s  called a conic provided that  
f is quadrat ic ,  IZ ( f ) [  = q + I, and Z( f )  is not  a line. 

In an affine plane of order  n there are n 2 + n lines o fn  points  each and n 2 points. 
The  desarguesian affine plane is denoted by AG(2, q). 
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2. The Basic Colouring Lemma 

A ;z-colourin 9 of the incidence structure I = (P, L) is a map from P to { 1,2, . . . ,  ;Z} 
which may also be viewed as a ;z-partition (P1, P2 . . . .  , Px) of P. The multiplicity of 
colour i on line L is IL N Pil, that is, the number of occurrences of colour i on L. We 
let m denote the'maximum multiplicity: 

m = max{[LNPil: 1 <_ i <_ ;Z, LeL} .  

The deficiency, d(L), of a line is the difference between the length of L and the 
number of colours appearing on L, that is, 

We have 

d(L) = ILl - I { i :  LNPi  ~ ~}l. 

d (L)=  E ( [ L N P i ] -  1). 
i 

LnPi ~ f~ 

We let d and d, resp., denote the average deficiency and maximum deficiency. So 
we have 

and 

The inequalities 

d(;z) = E d(L)/I LI, 
L 

d(;z) = max d(L). 
L 

m < _ d + l ,  

m - I  
d(L) <_ - -  ILl, 

m 

are easy consequences of the definitions. 

(0 

(2) 

2.1 Lemma. For every Z-colouring of the incidence structure (P, L) 

IPI-< ;z 1 + mai~ ) 

Our lemma supplies lower bounds for the number of colours needed in the applica- 
tions that follow. These lower bounds are surprisingly good and are best possible in 
a variety of cases. 

Proof of  the Lemma. As the lines cover each pair of points exactly once, 

L \  2 ] (3) 

for every i. By Jensen's inequality 

_l 
) T ,v  z lP l ( IP I -  ;z)= - 1 _< .  E]PiI(IPi[- 1). (4) 
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On the other hand (3) yields 

~ IPd ( IP~I -  1 )=  ~ , I L N P ~ I ( I L N P ~ I -  1) 
i i L 

< Z  Z rn ( ILNP/ ] - I )  
i L 

LN Pi ~ 

= m E  Z ( [ L N P i t -  1 ) = m ~ d ( L ) .  
L i L 

LAPin=63 

Combining (4) and (5) we obtain 

1 
- [ P [ ( I P [ -  Z) -< reEd(L), 

t 

and this completes the proof. 
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(5) 

[] 

3. Colourings with Small Deficiency 

In this section we consider Z-colourings of projective planes of order n such that 
the maximum deficiency is 1. 

Theorem 3.1. Suppose that P is a projective plane of order n and Z < ( n2 -b n -b 1)/3. 
Then any Z-colouring of ~ results in at least one line having n - 1 or fewer colours. 

Proof. Assume that d = 1. Then, from (1) we get m _< 2, and the lemma yields 
tP[ -< 3Z, a contradiction. []  

The above Theorem is a significant improvement over Kabell's result [8] which 
says Z -< n implies d > 1. 

Construction 3.2. Suppose that n -= 1 (rood 3) and ~z is a cyclic projective plane of 
order n. Then ~ has an (n 2 + n + 1)/3-colourin 9 with d = 1. 

Proof. Let M = n2-b n-+ 1. We may assume that P = (P,~_) where P = 
{0, 1 , . . . , n 2 +  n} and the lines are difference sets (mod M). Consider the M/3- 

colouring (P~, P2 . . . .  , PM/3) where Pi = i, i + ~-,  i + ~ -  . Now ifL ~ ~_ then Pi ~; L. 

Indeed P~ c L would imply that M/3 has at least two representations as a difference 
of elements of L, contradicting the fact that L is a difference set. So we must have 
[L N P~I _ 2. 

To complete the proof  it suffices to show that equality holds for at most one i. 
Suppose now that IL n Pil = IL N Pjl = 2. Then 34/3 ==- x i - x~ (mod M) and M/3 =- 
x j -  xj (modM) with xi, x ~ L n P i  and x s, x j~LNPj .  Since x,, x;, xj, x; are all 
elements of the difference set L, they cannot be all distinct and we must have 
i = j .  [ ]  

The first theorem of this section easily generalizes to. 

Theorem 3.3. Suppose that a Z-colouring of • of order n has deficiency d. Then 
Z->( n z + n +  1)/(d z + d +  I). []  
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It will be shown in Theorem 4.2 that this inequality is sharp, even for d as high 
as N/~. 

4. Colourful Colourings 

In this section P denotes a finite projective plane of order n. A colourful colouring 
of P is a colouring such that all colours are present on each line. The maximum 
number of colours in a colourful colouring is denoted by c(P). Erd6s and T. S6s 
[6] proved that 

Clearly, 

c(P) > n/2 log n. 

c(P) ~ n + 1. 

The following theorem gives a better upper bound. 

Theorem 4.1. c(P) <_ n - ~ + I. 

Proof. In a colourfut Z-cotouring we must have d(L) _< n + 1 - X, so Theorem 3.3 
implies 

n 2 + n + l < Z ( d  2 + d +  1)_<(n+ 1 - d ) ( d  2 + d +  1). 

Then d >_ x/~. [] 

Theorem 4.2. Suppose that n is a square o f  a primpower. Then there exists an 
(n - x / ~  + 1)-colouring of  P = PG(2,n) such that on each line n - ~ /n  colours ap- 
pear exactly  once and one colour appears x / ~  + 1 times. 

Corollary 4.3. I f  P is as in Theorem 4.2 then c(P) = n - x ~  + 1. 

Proof  o f  Theorem 4.2. Bruck [3] showed that P decomposes into n - x/~ + 1 Baer 
subplanes. Using this decomposition one obtains the following coloring. Let P = 
{0,1 . . . . .  n z + n } , M = n  2 + n +  1, N = n - v / ~ +  1. Then P, = {i + aN (mod M): 
0 <_ ct < M / N  = n + V/-£ + 1} is the desired colouring (1 < i _< N). [] 

Further properties of this Baer-plane decomposition can be found in [4]. 

5. N o  Three Monochromatic Points on a Line 1. (Projective Planes) 

Theorem 5.1. Let  P be a projective plane of  order n. I f  no colour appears more than 
twice on any o f  the lines in a Z-colouring o f  P, then Z >-- n + 1. 

Proof. The case when n is odd was proved in [5]. It follows from the fact that if we 
n-colour the n 2 d- n -t- 1 points of P, then some n + 2 points must have the same 
colour. It is well-known [1] that of these points three must be collinear, because 
no (n + 2)-arc exists in P. 

• If n is even, substituting m = 2 in (2) we get d _< [(n + 1)/2J = n/2 and our 
Lemma 2.1 yields n 2 + n + 1 < z(n + 1) implying)~ >_ n + I. []  
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We define a good-colouring as one in which no three m o n o c h r o m a t i c  points  are 
collinear, and  let w(P) denote  the smallest  n u m b e r  w such that  P has a good  
w-colouring. 

Theorem 5.2. I f  P = PG(2, q), then P can be partitioned into q nondegenerate conics 
and a singleton. 

Corollary 5.3. I f  P is as above then w(P) = q + 1. 

This corol la ry  shows that  the inequal i ty  in Theo rem 5.1 is sharp. Before we 
proceed with the p roof  of 5.2 we need the following. 

L e m m a  5.4. Let f ( x ,  y, z) and g(x, y, z) be homogeneous quadratic polynomials over 
Fq such that f(O,O, 1) :~ 0 and 9(x ,y ,z)  = 0 if and only if x = y = O. Then the family 
of zero sets { Z ( I  + cg): c ~ Fq} is a partition o f  PG(2, q) - {(0, 0, 1)}. 

Observe  that  the l emma  does not  immedia te ly  imply  the theorem,  as a degener-  
ate conic m a y  result i f f  and g are not  choosen  carefully. 

Proof of  5.4. Trivially, (x, y, z) ~ Z ( I  + cg) if and only if (x, y, z) ~ (0, 0, 1) and  c = 
- f ( x ,  y,z)/g(x, y,z). [] 

Proof of  5.2. We distinguish between three cases. 
(i) q is odd  and - 1 is a square  in Fq, 
(ii) q is odd  and - 1 is not  a square, 
(iii) q is even. 
In the first two cases (q odd) we can use the wel l -known fact (see, e.g., in [9])  that  
if h(x, y, z) = Ax  z + By e + Cz z + 2Dxy + 2Eyz + 2Fxz then 

Z(h) is nondegenera te  if and only if 

det(h) = det B -¢ 0. 

E 

We now proceed to prove  each of the three cases separately.  

Case (i) .  (q odd, - 1 a square). Choose  b E Fq such that  b is not  a square. Then - b 
is not  a square  either. Let 

f (x ,  y, z) = 2xy + z 2, 

g(x, y, z) = x 2 + by 2. 

Then  

c 1 0 

d e t ( f + c g ) =  1 cb 0 = c2b - l ~ O, 

0 0 1 

so Z ( f  + cg) is a nondegenera te  conic for all c ~ F~. By L e m m a  5.4 these conics 
par t i t ion  PG(2, q) - {(0, 0, 1)}. [ ]  

Case (ii). (q odd, - 1 is not  a square). First  we observe that  in this case there exists 
r ~ Fq such that  r is a square and r + 1 is a non-square .  If  this were not  the case 
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the set of  (q - 1)/2 non-zero  squares would decompose into orbits of  the form 
{r + k: 0 < k < p} where p is the characteristic of Fq. This would then lead to the 

q - I  
contradict ion p 

Having choosen r = (2a) z such that r + 1 is a non-square  we define 

f ( x , y , z )  = 2 a x y  + 2xz  + z 2, 

and 

g(x ,  y ,  z) = x 2 + y2. 

The conditions of the part i t ion lemma (Lemma 5.4) are readily fulfilled. Moreover  

c a 1 

d e t ( f + c g ) =  a c 0 = c 2 - c - a z. 

I 0 1 

This determinant  is never zero. For  c 2 - c = a a would imply (2c - 1) 2 = 4a 2 + 1 = 
r + 1, a contradict ion.  So { Z ( f +  cg): c~Fq} is a conicpart i t ion of  P G ( 2 , q ) -  
((0,0,1)}. [] 

Case ( i i i ) i  (q is a power of  2). In this case x 2 = a has a unique solution, x/~, for 
every a ~ Fq. It is well-known for every finite field F that 

for every A, B ~ F, (A va 0, B -¢ 0) there exists a C e F 

such that  A x  2 + B x  + C 4= 0 for all x ~ F. 

Indeed, p(x)  = x ( A x  + B) vanishes twice so p cannot  be a permuta t ion  polynomial .  
For  a given A and B we can then choose a C such that - C is not  in the range of  p. 

N o w  we proceed with the p roof  of  case (iii). First we choose  a such that 
x 2 -b x -t-- a 2 n e v e r  vanishes. Then we fix a and choose b such that  x 2 + a x  + b never 
vanishes. Defining f and 9 as 

f ( x , y , z )  = x z + yz  + z 2, 

9(x,  y, z) = x 2 + a x y  + by z 

guarantees that the condit ions in the part i t ion lemma are fullfilled. All that  is left 
is to show that Z ( f  + c9) is a nondegenerate  conic for all c. Each of  the three 

points (l,O,x/c + I), (x/~,x/l +c +c2a2,acx/~), and (x//~,x/l +c +c2a 2, 
~/1 + c + c2a 2 + a c x / ~  ) belongs to Z ( f  + co). These three points  are noncol-  
linear as their determinant  

det x / 1  + c + a2c 2 a c w / ~  

, /1+c +a2c2 , /1+c +a2 2 +ac 
= 1 + c + a Z c 2 # O .  

Since Z ( f  + c9) has at least 3 points it must  have at least q + 1. But 

q2 + q = IPG(2,q)- {(0,0,1)}1 = 2 [ Z ( f  + cg)l >_ q(q + 1). 
c 



Colouring Finite Incidence Structures 345 

Equali ty is forced and hence every zero-set has exactly q + 1 points. With three 
non-col l inear  points each they must  all be non-degenera te  conics. [ ]  

6. N o  Three Monochromatic Points on a Line 2. (Affine Planes) 

Theorem 6.1. Let A be an affine plane of  order n. I f  no colour appears more than 
twice on any of the lines in a Z-colourin9 ([1 . . . . .  Pz) of  A, then 

{~ if n is odd, 

Z > -- 1 i fn iseven.  

Proof. For  all i ei ther JPit -< n + 1 or  IPi[ < n + 2 according as n is odd or even by 
Bose's theorem. Consequently,  when n is odd, Z > n2/( n + 1) = n - 1 + 1/(n + 1), 
implying Z > n as shown in [5], while 7. > [n2/(n + 2)] = n - 1 when n is even. [ ]  

The next two construct ions illustrate that  Theorem 6.1 is best possible for affine 
coordinate  planes. 

Theorem 6.2. I f  A = AG(2, q) then A can be partitioned into q conics. 

Proof Let Pi = {(x,y): y = x 2 + i}. Then  {Px . . . .  ,Pq} is a satisfactory partition. I--] 

We remark  that  if we part i t ion PG(2, q) as in the p roof  of Theorem 5.2, then the 
removal of any line incident with (0, 0, 1) also induces a good part i t ion of AG(2, q). 

Theorem 6.3. I f  q is even then the affine plane AG(2, q) decomposes into q - 1 arcs. 

Proof Let C be a (proper) conic of PG(2, q). As q is even, it is well-known [1] that 
the tangents of C are concurrent .  This c o m m o n  point  p of the tangents is called the 
nucleus of C. Then  C U {p} is an arc with q + 2 points. To  prove 6.3 it suffices to 
demonst ra te  the existence of a part i t ion {Po, P1, - . . ,  Po-1 } of PG(2, q) such that P0 
is a conic with its nucleus, P1 is a line and P2 . . . . .  Po-1 are nondegenerate  conics. 

We now proceed with the construct ion in PG(2, q). This is similar to the case of 
q even (case (iii))in 5.3. We again use the decomposi t ion  lemma (5.4). Let 

~x,y,z)=z2+xy 
and 

where b ~ Fq is such that 

9(x, y, z) = x 2 + xy + by 2 

x Z + x + b ¢ O  

in Fq. By Lemma  5.4 { Z ( f  + cg): c~Fq} is a par t i t ion ofPG(2,q) - {(0,0, t)}. 

We claim that  the three points (0, 1 ,x/ /~) ,  (1,0,w/c), and (1, 1,x/1 + cb) are 
noncol l inear  points o f Z ( f  + c9) except when c = 1. Direct  substi tut ion verifies that 
these points indeed belong to Z ( f  + c9). We find that  

det 0 ~ = x /~  + x / ~  + x/1 + cb = x//c- + 1. 

t 
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Hence x /~  + 1 # 0 unless c = 1. Look ing  at this case we find f(x, y, z) + g(x, y, z) = 
z 2 + x y + x  2 + x y + b y  z = ( x + y + x / ~ z )  2 , s o t h a t Z ( f + g )  i s a l i n e . A s i n 5 . 3  
(iii) IZ(f + cg)l >_ q + 1 and equality holds. It follows that Z( f  + cg) is a non-  
degenerate conic whenever c 4: 1. Finally observe that  the lines x = 0 and y = 0 are 
tangents to Z(f) at (0, 1,0) and (1,0,0), respectively, and intersect at the point  
(0, 0, 1). This point  then is the nucleus of  the conic Z(f) and we can let Po = Z(f)  U 
{(0,0,1)}. [] 

7. Related Results, Open Problems 

The following theorem was proved in [7]: Let P = P1 U " "  U Pz be a colorat ion of 
the nontrivial (i.e., II_[ > 1)incidence structure (P, I_), IPx[ < l/'21-< " " <  [P~I. Then 
the number  of  multicolored lines (i.e., the lines having at least two colours) is 
at least IPI[ + [P2I + "'" + IPx-xl. This is a generalization of the deBruijn-Erd6s 
theorem (IP,  I . . . .  = rPx[ = 1) [2]. The case ]PI[ = " =  IPxl was proved by 
Meshulam [10]. 

Almost  all of our  results are not  k n o w n  for non-desarguesian planes. Even 
more  generally, we can introduce the function Z(I, m, d) =:  max{z :  there exists a Z- 
colouring of the incidence structure I with multiplicity < m, and deficiency _< d}. 

Can  we say something non-trivial (more then Lemma 2.1) about  Z(I, m, d)? 

Acknowledgement. The authors are indebted to E. Boros for his valuable comments and to C. 
Riehm for a stimulating discussion. 
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