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Abstract. One of our results: Let P denote a finite projective plane of order n. Colour its vertices by
x colours. If no colour appears more than twice on any of the lines, then y > n + 1. Explicit
constructions show that this bound is sharp when P is desarguesian.

1. Introduction and Notations

A finite incidence structure (also known as finite linear space, finite geometry,
general 2-design, etc.) is an ordered pair (P, 1) where P is a finite set, |P| > 2, and
L is a collection of subsets, called lines, of P satisfying the following condition:
Each line has at least two points, and each pair of two distinct points belongs to
precisely one line. Classical examples of finite geometries are finite projective and
affine planes.

In a projective plane of order n there are n* + n + 1 points, n> + n + 1 lines,
with n + 1 points on each line. The (desarguesian) projective plane over the finite
field K, is denoted by PG(2, ). The points of this plane are the equivalence classes
in F — {(0,0,0)} of the relation “~" defined by (x, y,z) ~ (x',y’,z’) if there exists
¢ # 0in F, such that (x', ', z') = (cx, ¢y, cz). The lines of PG(2, g) have equations of
the form ax + by + cz = 0 in F, with (a, b, ¢) # (0,0, 0).

For an integer n the set L < {0,1,2,...,n* + n} is called a difference set modulo
M,M =n? +n+ Lif|[L| = n + 1 and for all distinct pairs {x, y}, {10} < L we have
x — y # u — v (mod M). Singer proved [11] that PG(2,q) is cyclic for all g, that is,
PG(2,q) has an automorphism of order ¢> + g + 1. That is, PG(2, q) can be repre-
sented as (P, L) with P = {0,1,...,q° + q} and L = {L +i: 0 <i < M — 1} where
M =gq* + q + 1, L is a difference set (mod M), and L + i = {I + i(lmod M): e L}.

An arc in a projective plane P is a set of points, no three of which are collinear.
It is well-known (Bose [1]) that the number of points of an arc in P of order n is
atmost n + 1 or n + 2 according as n is odd or even. These bounds are attained in
desuarguesian projective planes.

If f:F] —F, is homogeneous we define the zero set of f as Z(f)=:
{(x.y,2): f(x.y,2) = O} = PG(2,q). The zero set Z(f) is called a conic provided that
fis quadratic, |Z(f)l = q + 1, and Z(f) is not a line.

In an affine plane of order n there are n* + n lines of n points each and n? points.
The desarguesian affine plane is denoted by AG(2, g).
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2. The Basic Colouring Lemma

A y-colouring of the incidence structure I = (P, L) is a map from P to {1,2,...,x}
which may also be viewed as a y-partition (P, P,,..., P,) of P. The multiplicity of
colour i on line L is |[L N P, that is, the number of occurrences of colour i on L. We
let m denote the maximum multiplicity:

m=max{|LNPl:1 <i<yLel}.

The deficiency, d(L), of a line is the difference between the length of L and the
number of colours appearing on L, that is,

d(L) = (L] — |{i: LN P, # &}|.
We have
d(L) = 2 (ILNFP| - 1).
LNP,# 5
We let d and d, resp., denote the average deficiency and maximum deficiency. So
we have

d(y) = ;d(L)/IfLL

and
d(x) = maxd(L).
L
The inequalities
m<d+ 1, (1)
m—1
L
d(L) < ——|L|, (2)

are easy consequences of the definitions.

2.1 Lemma. For every y-colouring of the incidence structure (P, )
<L

|P] < (1 + md—|.

g 1P|

Our lemma supplies lower bounds for the number of colours needed in the applica-
tions that follow. These lower bounds are surprisingly good and are best possible in
a variety of cases.

Proof of the Lemma. As the lines cover each pair of points exactly once,

(5)-5)

for every i. By Jensen’s inequality

%wmm—n=x%%§L4)sgmmm—n- 4)
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On the other hand (3) yields
SIRI(RI = 1) = ESILARIILNRI - 1)

<y }: m(|LO P — 1) 5

i
LﬂP 9

=m}) Y (LNPI-1)=m}d(L)

LﬂP #2

Combining (4) and (5) we obtain

—IPI(IPI—x my d(L),

L

and this completes the proof. O

3. Colourings with Small Deficiency

In this section we consider y-colourings of projective planes of order »n such that
the maximum deficiency is 1.

Theorem 3.1. Suppose that P is a projective plane of order nand y < (n* + n + 1)/3.
Then any y-colouring of P results in at least one line having n — 1 or fewer colours.

Proof. Assume that d = 1. Then, from (1) we get m < 2, and the lemma yields
|P| < 3y, a contradiction. ]

The above Theorem is a significant improvement over Kabell’s result [ 8] which
says ¥ < nimplies d > 1.

Construction 3.2. Suppose that n = 1 (mod 3) and P is a cyclic projective plane of
order n. Then P has an (n* + n + 1)/3-colouring with d = 1.

Proof. Let M =n*+n+ 1. We may assume that P =(P,Ll) where P =
{0,1,...,n* + n} and the lines are difference sets (mod M). Consider the M/3-

M 2M
colouring (Py, P,,..., Py3) where P, = {i,i + ?,i + T}.NowifLe[LthenPi ¢ L.

Indeed P, = L would imply that M/3 has at least two representations as a difference
of elements of L, contradicting the fact that L is a difference set. So we must have
ILNP| < 2. t

To complete the proof it suffices to show that equality holds for at most one i.
Suppose now that|L N P| = |[LN P| = 2. Then M/3 = x; — x{(mod M) and M/3 =
x; — x; (mod M) with x;, x;e LN P, and x;, xje LN P,. Since x;, x{, x;, x; are all
elements of the difference set L, they cannot be all distinct and we must have
i=7j O

The first theorem of this section easily generalizes to.

Theorem 3.3. Suppose that a x-colouring of P of order n has deficiency d. Then
= +n+ 1))d* +d+ 1) m
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;_will be shown in Theorem 4.2 that this inequality is sharp, even for d as high
as \/n.

4. Colourful Colourings

In this section PP denotes a finite projective plane of order n. A colourful colouring
of P is a colouring such that all colours are present on each line. The maximum
number of colours in a colourful colouring is denoted by ¢(P). Erdés and T. S6s
[6] proved that

¢(P) = n/2logn.
Clearly,
eP)<n+ 1

The following theorem gives a better upper bound.

Theorem 4.1. ¢(P) < n — \/n + 1.

Proof. In a colourful y-colouring we must have d(L) < n + 1 — g, so Theorem 3.3
implies

n+n+l1<yd*+d+1)<(n+1—d)d*+d+1)
Thend > ﬁ O

Theorem 4.2. Suppose that n is a square of a primpower. Then there exists an
(n — /n + )-colouring of P = PG(2,n) such that on each line n — /n colours ap-
pear exactly once and one colour appears \/n + 1 times.

Corollary 4.3. If P is as in Theorem 42 then ¢(P) = n — /n + 1.

Proof of Theorem 4.2. Bruck [3] showed that PP decomposes inton — ﬁ + 1 Baer
subplanes. Using this decomposition one obtains the following coloring. Let P =
(0,1,....n* +n,M=n*+n+1,N=n—/n+ 1.Then P, = {i + «N (mod M):
0 <a< M/N =n+ ./n+ 1} is the desired colouring (1 < i < N). d

Further properties of this Baer-plane decomposition can be found in [4].

5. No Three Monochromatic Points on a Line 1. (Projective Planes)

Theorem 5.1. Let PP be a projective plane of order n. If no colour appears more than
twice on any of the lines in a y-colouring of P, then y > n + 1.

Proof. The case when n is odd was proved in [5]. It follows from the fact that if we
n-colour the n? + n + 1 points of P, then some n + 2 points must have the same
colour. It is well-known [1] that of these points three must be collinear, because
no (n + 2)-arc exists in P.

If n is even, substituting m =2 in (2) we get d < |(n + 1)/2] = n/2 and our
Lemma 2.1 yields n”> + n+ 1 < y(n + 1) implying y > n + 1. 0
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We define a good-colouring as one in which no three monochromatic points are
collinear, and let w(P) denote the smallest number w such that P has a good
w-colouring.

Theorem 5.2. If P = PG(2, q), then P can be partitioned into q nondegenerate conics
and a singleton.

Corollary 5.3. If P is as above then w(P) = g + 1.

This corollary shows that the inequality in Theorem 5.1 is sharp. Before we
proceed with the proof of 5.2 we need the following.

Lemma 5.4. Let f(x, y,z) and g(x, y, z) be homogeneous quadratic polynomials over
F, such that £(0,0,1) # 0 and g(x,y,z) = 0if and only if x = y = 0. Then the family
of zero sets {Z(f + cg): ce F,} is a partition of PG(2,q) — {(0,0,1)}.

Observe that the lemma does not immediately imply the theorem, as a degener-
ate conic may result if f and g are not choosen carefully.

Proof of 5.4. Trivially, (x,y,z)e Z(f + cg) if and only if (x,y,z) # (0,0,1) and ¢ =
—f(X, Vs Z)/g(x’ ¥, Z)- D

Proof of 5.2. We distinguish between three cases.

(i) gisoddand —1is asquarein F,,

(i) gis odd and —1 is not a square,

(iii) ¢ is even.

In the first two cases (g odd) we can use the well-known fact (see, e.g., in [9]) that
if h(x,y,z) = Ax* + By? + Cz* + 2Dxy + 2Eyz + 2Fxz then

Z(h) is nondegenerate if and only if

A D F
det(h) =det{D B E|#0.
F E C

We now proceed to prove each of the three cases separately.

Case (i). (q odd, —1 a square). Choose b€ F, such that b is not a square. Then —b
1s not a square either. Let

fx,y,2) = 2xy + 2%,
g(x,y,2) = x* + by*.

Then
c 1 0
det(f +ecg)=|1 cb 0|=c?h—1#0,
0 0 1

so Z(f + cg) is a nondegenerate conic for all ceF,. By Lemma 5.4 these conics
partition PG(2,q) — {(0,0,1)}. O

Case (ii).(q odd, —1is not a square). First we observe that in this case there exists
reF, such that r is a square and r + 1 is a non-square. If this were not the case
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the set of (g — 1)/2 non-zero squares would decompose into orbits of the form
{r + k: 0 < k < p} where p is the characteristic of F,. This would then lead to the

contradiction p Z—;—l
Having choosen r = (2a)* such that r + 1 isa non—scjuare we define
fx,y,2) = 2axy + 2xz + 27,
and
g(x,y,2) = x> + y2.

The conditions of the partition lemma (Lemma 5.4) are readily fulfilled. Moreover

det(f + cg) = =c? —¢—ad’

_-R 0
[l S T |
— D e
N
M)

This determinant is never zero. For ¢ — ¢ = a® would imply (2c — 1)* = 4a® + 1 =
r + 1, a contradiction. So {Z(f + cg): ceF,} is a conicpartition of PG(2,g) —

{(0,0, 1)}.

Case (iii). (g is a power of 2). In this case x* = a has a unique solution, ﬁ, for
every ae F,. It is well-known for every finite field F that

for every 4, BeF, (A #0,B # 0) there exists a CeF
such that Ax* + Bx + C # Ofor all xeF.

Indeed, p(x) = x(Ax + B) vanishes twice so p cannot be a permutation polynomial.
For a given 4 and B we can then choose a C such that —C is not in the range of p.

Now we proceed with the proof of case (iii). First we choose a such that
x? + x + a? never vanishes. Then we fix a and choose b such that x> + ax + b never
vanishes. Defining f and g as

O

fxy.2)=x* + yz + 2%,
g{x,y,z) = x* + axy + by?

guarantees that the conditions in the partition lemma are fullfilled. All that is left
is to show that Z(f + cg) is a nondegenerate conic for all c. Each of the three

points (1,0, /c + 1), (\/eb,/1 + ¢ + c?a*,ac /cb), and (\/cb, /1 + ¢ + c2a?,

1+ ¢+ c?a® + ac\/cb) belongs to Z(f + cg). These three points are noncol-

linear as their determinant
i 0 Je+1
det \/c’b \/m ac\/c—b
Jb Sltct+aed Jl+c+a’ +ac/ch
=1+c+a*c?#0.
Since Z(f + cg) has at least 3 points it must have at least g + 1. But
q> + q =|PG(2,9) — {{0,0,1)}| = ;lZ(f +cg)l = qlg + 1)
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Equality is forced and hence every zero-set has exactly g + 1 points. With three
non-collinear points each they must all be non-degenerate conics. 0

6. No Three Monochromatic Points on a Line 2. (Affine Planes)

Theorem 6.1. Let A be an affine plane of order n. If no colour appears more than
twice on any of the lines in a y-colouring (P,,..., P,) of A, then

n if nisodd,
L= .
n—1 if niseven.
Proof. For all i either |P;l < n + 1 or |P| < n + 2 according as n is odd or even by

Bose’s theorem. Consequently, when nisodd, x > n?/(n+ 1) =n— 1 + 1/(n + 1),
implying y = nasshownin [5], while y > [n?/(n + 2)1=n — I whenniseven. [J

The next two constructions illustrate that Theorem 6.1 is best possible for affine
coordinate planes.

Theorem 6.2. If A = AG(2,q) then A can be partitioned into g conics.
Proof. Let P, = {(x,y): y = x* + i}. Then {P,,..., P,} is a satisfactory partition. []

We remark that if we partition PG(2, g) as in the proof of Theorem 5.2, then the
removal of any line incident with (0,0, 1) also induces a good partition of 4G(2, ).

Theorem 6.3. If q is even then the affine plane AG(2, q) decomposes into q — 1 arcs.

Proof. Let C be a (proper) conic of PG(2, g). As g is even, it is well-known [1] that
the tangents of C are concurrent. This common point p of the tangents is called the
nucleus of C. Then CU {p} is an arc with g + 2 points. To prove 6.3 it suffices to
demonstrate the existence of a partition {Py, P,,..., P,_; } of PG(2,q) such that P,

is a conic with its nucleus, P, is a line and P,, ..., P,_, are nondegenerate conics.

We now proceed with the construction in PG(2, g). This is similar to the case of

g even (case (iii)) in 5.3. We again use the decomposition lemma (5.4). Let
flx,y.z)=z2>+xy
and
g(x,y,2) = x* + xy + by?
where beF, is such that
x*+x+b#0

in F,. By Lemma 5.4 {Z(f + cg): c€ F,} is a partition of PG(2,q) — {(0,0,1)}.

We claim that the three points (0,1,./¢cb), (1,0, \/E) and (1,1, /1 + cb) are

noncollinear points of Z(f + cg) except when ¢ = 1. Direct substitution verifies that
these points indeed belong to Z(f + cg). We find that

01 Jeb
detf1 0 Jo |=Je+Seb+JT+cb=c+1
1 1 Jl+chb
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Hence /¢ + 1 # Ounless ¢ = 1. Looking at this case we find f(x, y, z) + g(x,,2) =
22+ xy + x>+ xy + by* = (x + y + /bz)?, s0 that Z(f + g) is a line. As in 5.3
(iii) 1Z(f + cg)l = g + 1 and equality holds. It follows that Z(f + cg) is a non-
degenerate conic whenever ¢ # 1. Finally observe that the lines x = Oand y = O are
tangents to Z(f) at (0,1,0) and (1,0,0), respectively, and intersect at the point
(0,0,1). This point then is the nucleus of the conic Z(f) and we can let P, = Z(f)U
((0,0.1) o

7. Related Results, Open Problems

The following theorem was proved in [7]: Let P = P, U---U P, be a coloration of
the nontrivial (i.e, |L| > 1) incidence structure (P, L), |P,| < |P,| < - - < |P,J. Then
the number of multicolored lines (i.c., the lines having at least two colours) is
at least |Py| + [P + -+ |P,_;|. This is a generalization of the deBruijn-Erdos
theorem (|P;|="-=[P|=1) [2]. The case |P,|=---=|P,| was proved by
Meshulam [10].

Almost all of our results are not known for non-desarguesian planes. Even
more generally, we can introduce the function x(I,m,d) =:max{: there exists a x-
colouring of the incidence structure I with multiplicity < m, and deficiency < d}.

Can we say something non-trivial (more then Lemma 2.1) about x(I, m,d)?
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