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Abstract. Let C d be the set of vertices of a d-dimensional cube, C a= 
{(xt . . . . .  Xd): Xi = +1}. Let us choose a random n-element subset A(n) of C a. Here 
we prove that Prob(the origin belongs to the cony A(2d + xv~-d))= dp(x)+ o(1) if 
x is fixed and d ~ oo. That is, for an arbitrary e > 0 the convex hull of more than 
(2+ e)d vertices almost always contains 0 while the convex hull of less than ( 2 -  e)d 
points almost always avoids it. 

1. Convex Hull of Subsets of Vertices 

Let C d denote the set of  vertices o f  a d-dimensional  cube, Ca c•d, Ca= 
{(X~ . . . .  , Xd): Xi = +1}. Let A(n) be a r andom n-element subset o f  C d. We have 

( 2 )  possibilities for  a(n , ,  hence P r o b ( a ( n ) h a s  property I t ) =  (4~ of  n-tuples 

with property ~ ) / / ~ / °  The threshold function of the property I~ is n d of  C a 

if for every e > 0 we have 

and 

Prob(A((1 + e)nd) has property ~r)--> 1 whenever d 400  

Prob(A((1-e)nd)  has property w) -~0 whenever d~,oo. 

J. Mycielski posed the following problem: How large should we choose n so that 
cony A(n),  the convex hull o f  A(n),  contains almost surely the origin 0 [2]? P. 
Erd/is conjectured that  the threshold funct ion o f  this property is O(d) [2]. This 
was proved by Koml6s  [5] in 1980. 
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Theorem 1.1 [5]. 

and 

1.3d < na < 4.4d, i.e., 

lim Prob(0E conv A(1.3d)) = 0 
d~oo 

Z. Fiiredi 

lim Prob(0 ~ cony A(4 .4d) )  = 1. 
d~oo 

Here we improve this result. Denote 1/2v~'~S¢_~o e-X~/2dx by ~(c) ,  as usual. 

Theorem 1.2. Let  c be a real number. Then 

lim Prob(0 e conv A(  2d  + c./-ffd) ) = O( c ). 
d-~oo 

Corollary 1.3. na = 2d. 

Our results are strongly related to an old theorem of  Wendel [7] (see Theorem 
4.1). More results and an extensive literature about random polytopes can be 
found in a recent paper of  Buchta and Miiller [1]. See also Mycielski [6]. 

2. Lemmas 

P. Erd6s conjectured that a random + 1 matrix is almost always regular. This was 
proved by Koml6s [4] in 1967: 

Lemma 2.1 [4]. Let  M be a d x d random +1 matrix (i.e., every entry a o is 
chosen independently and with probabilities Prob ( a o = 1 ) = Prob(ao = - 1 ) = ½). Then 

Prob(M is regular)> 1 - O(l/~J-d). (1) 

Koml6s conjectures that one can replace O(1/4-d) by O(1/(1 + e )  d) for some 
positive e. The following lemma is a simple generalization of  a result due to 
Harding [3]. Let P = {Pt, P2, • • . ,  p , } c  R d be a point-set (Pi =Pj is possible). The 
partition P = U u V is induced by a hyperplane if there exists a hyperplane H c R d 
such that P n H = O  and H splits every segment [u, v] for u e  U, v e  V. Denote 
by h ( P )  the number of  such partitions of 1:', h(d,  n) = max{h(P): P c R d, [p] = n}. 
Harding proved that 

Denote by a(k, P)  the number of  afline dependent k-tuples of P. The lower 
bound in the following lemma is an easy consequence of a theorem of Winder 
[8] (see also Zaslavsky [9]).  
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Lemma 2.2. For every P c R d, Ip[ = n we have 

( . , )  h(d, n) - Y. a(lq P) <~ h(P)  ~ h(d, n) = Y. (2) 
2--<k~d+l k ~ d  k " 

This lower bound is not the best possible, but it is sufficient for our purposes. 

3. Proof of Theorem 1.2 

The first observation is that we can neglect those A(n) 's  which contain a pair of 
opposite vertices because the probability of  this event tends to 0 when d ~ oo. In 
fact, we have 

2a ( n  ~ob(A(n)n(-a(n))¢O)<- (2n~) o(1) if n = O ( d ) a n d d ~ o o .  

(3) 
The main idea in our argument is that we obtain a random n-set A in two steps. 
First we choose n pairs from the 2 d-~ pairs of  the form {x, - x } ,  x ~ C a. Then we 
choose an element from each pair. Let H be a hyperplane of  R a in general 
position with respect to C a, 0~ H. For x E C a we denote the point H n (0, x) by 
~'(x). 
Lemma3.1. L e t x ~ , . . . , x , ~ C a ,  H = { 1 r ( x ~ ) : l ~ i ~ n }  and 

Y = {{Yl,. • . ,  Y.}: Y~ = xi or -x,}. 

Then ~ (members of  Y whose convex hull avoids 0) = 2h(H). 

Proof. If the convex hull of { y ~ , . . . , y , }  avoids 0 then there exists a 
hyperplane Ho through 0 such that it separates {y~ . . . . .  y,} from {-Yl, • • •, -Y,}. 
Hence Ho n H induces a partition of H. Moreover, the converse is also true, 
every induced partition yields two members of Y. [] 

Using Lemma 2.2 for n = 2d + cq~'d we get 

1 h(d, n) Prob(O,convA(n))-2.(n_) y 2 h ( I I ) "  2 " - - - - - V - 2  1 

.......... 
2 n-1 t < n / 2 - ( c # n ) / 2  \ i / 

(Actually we have calculated Prob(0~ cony A ( n ) l A n  ( - A ) =  0 )  and used (3).) 
Moreover, (3) implies 

Prob(O~convA(n))>h(d,n_____~) 1 E ~. a(k, II). (4) 
2 "-1 2,_, ( 2 n - ' )  n ,,k.~a 
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Here Koml6s' theorem (i.e., Lemma 2.1) implies 

(2dl-,) ~ a(lgl-I)<~ O(-~d)(nd)" 

Similarly 

1 
a(/~ II) 2d-1 

= ( n ~  Prob(k random ~:1 sequences of  length d are linearly dependent) 
\ K /  

Hence (4) gives 

Prob(0~ conv A(n)) >: - -  2n-1 2n-I o, 

4. Final Remarks 

If  Koml6s' conjecture is true, then the method given above yields, for n = O(d),  

Prob(0 ~ conv A(n)) = ~ +  O( d2/(1 + e)d). 

Of course, this method can be used in all cases when the underlying set of the 
points T is symmetric, and P r o b ( x l , . . . ,  Xa, T are linearly dependent) = 1 - o(1), 
for example, 

Theorem 4.1 (Wendel [7]). L e t  B a denote the d.dimensionai ball. Let us choose 
an n-element set P randomly. Then 

Prob(O ~ conv P) = h(d, n)/2 "-I. 

Actually, Wendel used a similar inductional method (but he did not need our 
lemmas except the equality h(P) = h(d, n) for afline independent n-sets p c  Rd). 
Finally, it is easy to see that in our case (n ~2d ,  d ~ o o )  we have 

Prob(0 ~ int cony P) - Prob(0 ¢ conv P)-> 0. 
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