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We consider a m x n (0, 1)-matrix A, no repeated columns, which has no k x l submatrix F. 
We may deduce bounds on n, polynomial in m, depending on F. The best general bound is 
O(m2k-1). We improve this and provide best possible bounds for k x 1 F's and certain k x 2 
F's.  In the case that all column.~ of F are the same, good bounds are obtained which are best 
possible for l = 2 and some other cases. Good bounds for 1 x I F 's  are provided, namely 
n ~ (l - 1)m + 1, which are shown to be best possible for F = [1010 . . .  10]. The paper finishes 
with a study of the 14 different 3 x 2 possibilities for F, solving all but 3. 

1. Introduction 

Our results concern the following general situation. Let a matrix be simple if it 
is a (0, 1)-matrix with no repeated columns. Let A be a simple m x n matrix and 
let F be a k x I (0, 1)-matrix. Assume A does not have a submatrix F (i.e., F is a 
'forbidden' submatrix). A number of questions can be posed. In this paper, we 
consider how n is bounded in terms of m. The bound will be a polynomial in m, 
depending on F. Sauer's bound is the starting point [8, 9]. Let Pk be a k x 2 k 
(0, 1)-matrix consisting of all possible columns on k rows. 

Theorem 1.1 ([8, 9]). Let A be an m x n simple matrix with no submatrix being a 
row (and column) permutation of  Pk. Then 

m m 

+'" + ( o )  
One can obtain a polynomial bound (in m) on n in the case of forbidden 

submatrices using Sauer's bound [1]. It was noted in [3] that the pigeonhole 
principle and Sauer's bound yield the following, our best general bound. 
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T h e o r e m  1.2. Let A be an m x n simple matrix and F a k x I (0, 1)-matr/x. 
Assume A does not have a submatrix F. Then 

n<-((  l -  1 ) ( 7 ) +  a ) ( ( k m  1) + ( k i n 2 )  

i.e., n is O(m~-l). 

. . . +  (o), 0 
(1.2) 

Proof. If n exceeds the bound of (1.2), then A contains (l - 1)(7) + 1 copies of 
Pk, each successive one entirely to the right of its predecessors. But then, by the 
pigeonhole principle, there are at least l such copies of Pk in the same set of 1 
rows. From the ith copy, we can select the ith column of F and so produce the 
forbidden submatrix. [] 

We conjecture, on the basis of our experience, that for each k x I matrix F, 
there is a constant CF SO that (1.2) may be replaced by 

n <~ cFm k. (1.3) 

This paper endeavors to improve on the bound (1.2) as well as finding some 
best possible bounds for some F. In particular, Section 2 provides best possible 
bound for a k x I matrix F, namely the Saner bound for Pk. For a large class of 
k x 2 matrices F, we show that the Saner bound for Pk+l is best possible. The 
constructions are the critical contribution. 

Section 3 studies the case of F being a k x I matrix [t~t~... ~] (l i> 2), i.e., all 
columns of F are identical. If a~ is all l 's ,  then 

m 1 - 2  m 
n < ~ ( k _ l ) + ( k m 2 ) + . . . + ( O ) + ( 7 ) + ~ - . ~ ( k ) ,  (1.4) 

and this is shown to be asymptotically best possible, for l <~ k + 2, using a result of 
R6dl. In the case of arbitrary o~, we need to determine t, the number of blocks of 
size 2 when a~ T is decomposed into a minimum number of blocks chosen from 
{0, 1, 01, 10}. Then the bound is 

m m -  
n ~ < ( k - 1 )  + ( k m 2 ) + ' ' "  + ( 0 ) + ( I  _ l ) ( k  ; ) .  (1.5) 

This is shown to be best possible for l = 2 and for all I when ¢1¢T • (10). Section 
4 studies the case that F is a i x I matrix. Then 

n<-( l -1 )m+ 1, (1.6) 

and this bound is shown to be best possible (or within 1) for F = [1010. . . ] .  
Section 5 applies our methods to 3 x 2 forbidden submatrices. A result of Frankl, 
Fiiredi and Pach [3], is used for two cases. 
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We have only concentrated on one question in looking at matrices with 
forbidden submatrices. We wish to point out  a tantalizing direction for further 
research. Let A be a simple m × n matrix with no k x I submatrix F. Let A be the 
constraint matrix of a linear programme (LP). Then the ellipsoid algorthm would 
solve the LP in polynomial time in m and the number of bits of the objective 
function and the right hand side. The question is how to use the forbidden 
submatrix F directly to derive a polynomial  algorithm. The case for 

(17, 

has been solved by Farber  [2], Hoffman, Kolen and Sakarovitch [6]. 
We will use a bar to denote (0, 1)-complementation,  i.e., 0 = 1, i = 0. 

2. Some best possible constructions 

The following construction technique proves useful. Let (Ai: i = 1, 2 , . . . )  be a 
family of simple matrices where Ai has i rows (for i = 1, 2, . . . .  ). We construct a 
new family of matrices ( f(A)i:i  = 1, 2 , . . . )  as follows. Let f ( A ) l  = [0, 1] and 
m > 1 let 

f(A)m = 

- 0  0 

0 0 

0 0 1 1  

. 0  1 A1 

0 

1 1 . . . 1  
A2 

1 1 . . . 1  

Am-1 (2.1) 

Lamina 2.1. The matrix f (A )m is simple. 

The construction can now be repeated on the new family of matrices. There are 
two easy ways to introduce forbidden matrices into the construction. 

I~mma 2.2. Let (Ai: i = 1, 2 , . . . )  be a family o f  simple matrices where A i has i 
rows and has no submatrix [o] where o~ is a k × 1 (0, 1)-column. Then f(A)m has 

1° 1 [!] 
Bi3 = [ . f l  ' y =  , (2.2) 

where fl is any (0, 1)-column of  k rows. 

no submatrices 
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Proof. Let m be the smallest index for which f(A)m has Bz as a submatrix. We 
note that B~ cannot be chosen using the first row in (2.1) since that row has no 
submatrix [10]. Also, by hypothesis, Am_ 1 has no submatrix [o] and so B e does 
not use the final columns of (2.1) containing Am-1. But then Bz is contained in 
f(A)m-1, the submatrix of f (A)m consisting of all but the first row and the final 
columns containing Am-1. This contradicts our choice of m, so f(A)m does not 
have B e as a submatrix. 

Let m be the smallest index for which f(A)m has 3' as a submatrix. Certainly 3' 
does not appear using the first row or final columns containing Am-1. As above, y 
is then contained in f (A)m-1,  in contradiction to our choice of m. Thus f(A)m 
does not have 3, as a submatrix. [] 

Lemma 2.3. Let (Ai: i = 1, 2 , . . . )  be a family of  simple (0, 1)-matrices, where Ai 
has i rows and no submatrix [Ca~] or [~] where tr is a k x 1 (0, 1)-column and C is 
a (0, 1)-matrix of  k rows. Then f(A)m has no submatrices 

Proof. Let m be the smallest index for which f (A)m has B as a submatrix. Then 
since Am-x has no submatrix [Ca'] (all but the first row of B) we deduce that B 
does not use the first row or final columns containing A,,,-1 in (2.1). Thus B 
appears in f(A)m-~, contradicting our choice of m, and so f(A)m does not have a 
submatrix B. 

Let  m be the smallest index for which f (A)m has ~5 as a submatrix. Since A,,,_I 
has no submatrix [~] (all but the first row of ~5) we deduce that ~5 does not use the 
final columns containing Am-~ in (2.1). Since ~5 starts with a 1, it does not use the 
first row. Thus 6 appears in f(A)m-1, contradicting our choice of m, and so f(A)m 
does not have a submatrix 6. [] 

We may apply these constructions to certain forbidden submatrices. 

"l~eorem 2.4. Let A be a simple m x n matrix with no k x I submatrix tr. Then 

(m) (m) (0) 
n<~ k - 1  + k - 2  + ' " +  ' (2.4) 

and there are matrices for which equality in (2.4) holds. 

Proof. Note that a row permutation of Pk (defined in the introduction) is merely 
a column permutation. Thus a~ is a submatrix of any row and column permutation 
of Pk and so A has no submatrix which is a row and column permutation of Pk. 
ThUS Sauer's bound yields (2.4). 

To construct a matrix with equality holding in (2.4), let l(A)m denote f (Am) 
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and let O(A)m denote the matrix derived from (2.1) by interchanging the roles of 0 
and 1 (leaving the Ai's fixed). Let a T = ( a l a 2 . . .  ak). Let  Ai be the i x 1 matrix of 
all tik'S. Then A/has  no submatrix [ak]. We deduce, using Lemma 2.3, that the 
matrix 

al(a2(a3(. . . ak-l(A).  . .)))m (2.5) 

is a simple m x n matrix with no submatrix tr. Equality holds in (2.4) as desired 
using the formulas (2.10) and (2.11). [] 

A matrix, for which equality holds in (2.4), is seen to consist of all columns 
with no submatrix cr and so is unique up to a column permutation. 

Certain k x 2 matrices are covered by our constructions. Define B(p, q, [3) as 

1 1  p 

1 1 

B(p,q ,  [3)= 1 0 , (2.6) 

0 1 

where [3 is a r x I (0, 1)-column (possibly r = 0), p + q + r - k, and we require 
q>O.  

Theorem 2.5. Let a be a simple m x n matrix with no k x 2 submatrix B(p,  q, [3) 
for given p, q, [3. Then 

( 7 )  ( m ) (O)  (2.7) n~< + k - 1  + ' " +  ' 

and there are matrices for  which equality in (2.7) holds. 

Proof. Consider the (k + 1) x 2 matrix C obtained from B(p, q, [3) by inserting a 
row [01] after the first p rows. Any column permutation of C contains B(p, q, [3) 
as a submatrix and so any row or column permutation of Pk+l contains B(p, q, [3) 
as a submatrix. Thus Sauer's bound yields (2.7). 

Let tr be the (k - p  - 1) x I submatrix of B(p, q,/3) consisting of the second 
column and all but the first p + 1 rows. By Theorem 2.4, we know there is a 
family of simple matrices (Ai: i = 1, 2 , . . . )  where Ai is of size i by 

i 1) tk i 2)  28, 
k - p  - - p  - 
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and does not have [o] as a submatrix. Then by Lemma 2.2, f (A )m  does not have 

B(O, q, fl) or 

as submatrices. The number  of columns of f(A)m is 

i i 

( m ) ( m )  = + + . . . +  
k - p  k - p  - 1  

using the identity 

. . . +  

(2.9) 

m 

i=] 

(o) ( 10, 

(2.11) 

We now apply Lemma 2.3 repeatedly to deduce that  fl'+l(A)m has no submatrix 
B(p, q, fl) and computations similar to (2.10) verify that ff+~(A)m is a simple 
m x n matrix with equality holding in (2.7). [] 

Taking (0, 1)-complements, reversing the row or column order, and/or  
specializing the values of p, q, fl yield a host of forbidden submatrix theorems. 
Note that we require q > 0. The case q = 0 is handled in the next section in 
Theorem 3.5. 

3. Forbidden snbmatrix of  repeated columns 

Let tr be a k x 1 (0, 1)-column with o~ nr = ( a l a 2 .  • • ak). Let A be a simple m x n 
matrix with no k x I submatrix 

F = [ t r t r . . .  tr]. (3.1) 

Note that  any column permutat ion of A will not have a submatrix F, so column 
order is unimportant .  

Let us start with the simplest case that  tr is all l 's .  The problem is a design 
'packing' problem essentially solved by R6dl [7]. The case l = 1 has already been 
solved. We easily deduce, that  for l ~> 2, we may asssume that A has all possible 
columns of column sum at most k if we are trying to maximize n. 

Consider the remaining columns as subsets of an m-set  where the rows index 
the elements of the m-set. 

Lemma 3.1. Let  A be a simple m x n matrix with no k x I submatrix o f  l 's (l >~ 2). 
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Then 

m 1 - 2  
n < ~ ( k m l ) + ( k _ 2 ) + . . . + ( O ) + ( 7 ) + ~ - ~ ( 7 )  (3.2) 

Proof.  The bound follows from a set of size more than k having at least k + 1 
subsets of size k. Thus if there are more than (~)(l  - 2 ) / (k  + 1) such sets, then 
there is at least one k-set contained in l -  1 sets of size more  than k. The k-set 
itself completes the forbidden submatrix. ' [] 

Let l be fixed. Restrict ourselves to l <~ k + 3. Let S(m, k, t) be the maximum 
size of a family F of k + 1 subsets of an m-set  such that any k-subset of the m-set 
is included in at most t members  of F. R6dl 's  theorem guarantees that S(m, k, t) 
will be close to the obvious bound. 

Theorem 3.2 (R6dl  [7]). Let k, b be fixed. Then there exists a family F o f  
b-subsets o f  an m-set X so that each k-subsets of  X is included in at most one 
member of  F and 

(7) 
IFl  (1-  o(1)). (3.3) 

We deduce that  S(m, k, 1) >I (7)(1 - o(1)) / (k  + 1) and we may extend this to 
S ( m , k , t ) .  

Theorem 3.3. Let l, k be fixed. For 2 <<-l <<-k + 3, there exists a simple m x n 
matrix A with no k x I submatrix o f  l's, where 

n ( k - l )  + ( k - 2 )  + + ( O )  + ( 7 )  I - 2  m = m m . . .  + ~ - - ~  ( k ) ( a -  o(1)). (3.4) 

Proof.  An easy consequence of R6dl 's  theorem is that for every fixed k, b and t, 
there exists a family F of b-subsets of an m-set X so that each k-subset of X is 
included in at most I members  of F and 

1(7 ) 
IFI o(1)), 

whenever m ~ ~. (This is not claimed in [7] but follows from R6dl 's  methods. 

Proof. Let F~ be a family of b-subsets of X as defined in (3.3). Let ~11, ~ 1 ~ 2 ,  • • • , ~ l ~ l  
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be random permutations of X and let F = {:tiF~ I 1 ~< i ~< 1} where :tiFx is the set of 
images of the sets of F~ under ~ti. Because IFd < ('~), we have that the mean value 

E(:tiF~ n ,riF ) 

This gives IFI l IFll- ( l ) m k - ~ . )  

We now use F with l replaced by l - 2 and b replaced by k + 1 to form a simple 
matrix A whose columns are the characteristic vectors of the sets of F and all 
columns of at most k l 's .  Thus A satisfies (3.4). [] 

The case of arbitrary tr T = ( a l a 2 .  • • a k )  in (3.1) is less obvious. The sequence 
of O's and l ' s  in t~ is impor tan t .  Let b i b  2 . . . b k - t  be the decomposition of o~ if it 
is determined by the following recursive algorithm which will output the blocks bi 
where bie {0, 1, 01, 10} and b i b 2 . . ,  b k - t - - t r  T. The algorithm is a greedy 
approach to obtain the most number of blocks of size 2. Our bound, improving 
on (1.2), will involve t, the number of blocks of size 2. 

Algorithm Decompose (tY T, k) 

Input off = a l a 2  . • • a k .  

If k = 1, then output 'al', STOP. 
If k > 1 and al = a2, then output 'al '  and Decompose ((a2a3 • • • ak), k - 1). 
If k = 2 and al ~ a2, then output 'ala2', STOP. 

If k > 2 and a~ ~ a2, then output 'ala2' and Decompose ((a3a4 • • • ak), k - 2). 
STOP. 

Theorem 3.4. Let A be a simple m x n matrix with no k x I submatrix F= 
[ t r y . . .  oc], where the decomposition of  ot is b i b 2 . . ,  bk-, (i.e., t blocks of  size 2). 
Then 

m 
n ~ ( k  1 ) + ( k m _ 2 ) + . . ' + ( O ) + ( l - 1 ) ( m - t ~  (3.5) 

- \ k - t / "  

Proof. Theorem 2.4 ensures that there are precisely (km 1) "Jr (kin_2) -I--  • • -t- ( ~ )  

columns with no submatrix o~. We say that y has o~ as a special submatrix if the 
entries of a block of  size 2 of o~ (from its decomposition) are chosen from 
consecutive rows of 3'. Note that if 3' has a submatrix c~ then it has a special 
submatrix ~. This follows from the simple observation that if (CLC2... Ci) is a 
(0, 1)-row with Cl = 0 and ci = 1, then there is an index ] (1 <~] ~< i) with cj = 0 and 
c~+1 = 1. There are only ( ~ - [ )  choices for the k rows of o~ to be a special 
submatrix of an m x I column. Thus if B is a m x n matrix with each column 
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having a submatrix o~ and n > ( 1 -  m - t  l ) ( k _ t ) ,  then by the pigeonhole principle, B 
has F as a submatrix. T h i s  proves (3.5). [] 

Theorems 3.3 and 3.4 provide some evidence for the conjectured bound (1.3). 
The bound (3.5) need not be best possible as Theorem 3.3 points out. The nicest 
result of this section is that  we have the exact answer for I = 2. 

Theorem 3.5. Let A be a simple m x n matrix with no k x 2 submatrix [om~], 
where the decomposition of oc has t blocks of size 2. Then 

m m -  

n < - ( k _ l ) + ( k m 2 ) + . . . + ( O ) + ( k  : ) ,  (3.6) 

and there exist simple matrices A for which equality in (3.6) holds. 

Proof.  The bound is from Theorem 3.4. We will provide an inductive construc- 
tion of some matrices achieving equality in (3.6), with the induction on the 
number  of blocks of o~. 

Our  inductive hypothesis for o~, where o~ is i x 1 and the decomposit ion of o~ 
j - - s  has i - s blocks of which s are blocks of size 2, is the existence of simple j x (i - s )  

matrices Aj for j ~> i, so that  each column of Aj has a submatrix o~ and yet Aj has 
no submatrix [ea~]. In addition, whenever o~ appears as a submatrix of a column 
of A i, the entries above the first entry of tr are all ~il's where al  is the first entry 
of ~ (i.e.,  the first entry  of o~ is chosen as the first available al). We do not 
concern ourselves with special submatrices. 

The base of induction is easy to verify. For o~ T = b, = 1, let Aj be the j x ({) 
simple matrix 

m 

Aj = 

1 
m 

and for f i t  = bl 

m 

0 1 

1 

0 

= [10], let  Aj be the j x (Js 1) simple matrix 

(3.7) 

m 

0 1 
"0  

a 
1 

1 0  
_ 0  O i  

(3.8) 

The remaining two cases are handled by taking (0, 1)-complements. 
Assume the inductive hypothesis works for columns 0~ with fewer than k -  t 
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blocks. Let c t ' r = ( a l a 2  • . . ak )  have a decomposition with k - t  blocks 

b i b 2 . . ,  bk - t .  

Case 1. b l  = al  (thus al = a2). 
Let fl = ( a 2 a 3 . . .  ak). T h e  decomposition of fl is b 2 b 3 . . ,  bk-t .  By our 

inductive hypothesis, there are simple j x (k ks t__,) matrices By as described, each 

column of which has a submatrix ft. For m t> k, let 
m 

B 

~l 's  a l a l  • • • al  

a l a l . . . a l  (3.9) 
Am = 

a la i  • • • aa Bm-1  

Bk-1 Bk 
m 

We deduce that Am is a simple m × ('~-~) matrix using the formula of (2.11) to 

see  that 

m - l ( i - - t )  ( m - - t )  
E = . (3.10) 

i=k-1 k - l - t  k - t  

We find that every column of Am has a submatrix t~. Assume c~ occurs as a 
submatrix of some column in A m  for which the first entry of tr is not chosen as the 
first available al. Then some column of a Bi has a submatrix tr. But then fl 
appears as a submatrix of that column not using the first available a2, the first 
entry of ft. This contradicts our inductive hypothesis. 

If [t~,] is a submatrix of Am, then we deduce that [tiff] is a submatrix of B ,  for 
some i, contradicting our inductive hypothesis. Thus A m  has the desired 

properties. 

Case 2. b l  = ala2 (thus a1 #: a2). 
Let fl = (33a4 • •. ak). T h e  decomposition of fl has k - 1 - t blocks (t - 1 of size 

2). By our inductive hypothesis, there are simple j x ((k L2)(t---(t 1)- 1)) matrices B i as 
described. Let 

Am 

l 

-- alal  .. • al 

a 2 a 2 . . ,  a 2 

. nk-2 

fil'S . a l a l  . . • al 

a l a l . . . a l  a 2 a 2 . . . a 2  
. ¢ *  

a2a 2 . . .  a 2 
Bin-2 

BK-1 

(3.12) 

As before, using (2.11), we deduce that Am is a simple m x ('~__-ff) matrix with 
every column having a submatrix tr. Assume a~ occurs as a submatrix of some 
column in which the first entry of a~, namely al,  is not the first available al.  Then 
tr is a submatrix of some column of some B~. Now fl can be chosen as a submatrix 
of that column (fxom the rows chosen for tr) not using the first available a3 
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whether it be a I or a 2. This contradicts our hypothesis. As before, this implies 

that Am has no submatrix [trtr] and so Am has the desired properties. 
By induction,-the result is proved.  [] 

The bounds of Theorem 3.4 can sometimes be shown to be exact for larger l. 
The following result is the best along these lines. 

T h e o r e m  3.6. Let  A be a simple m x n matrix with no 2 x l submatrix [ o a r . . .  o:], 
where tff  = (10), l > 1. Then 

n <~ lm - (l - 2), (3.12) 

and there exists a matrix A f o r  which equality in (3.12) holds for  l <~ m. 

Proof. The bound follows f rom Theorem 3.4. We will construct a matr ix A as 

follows. Let Bk be the simple m x (m - 1) matrix 

e k  "~ 

- 1  
0 
0 

0 

1 

1 

0 
0 

0 

0 

1 1 1 1 ,1 
0 1 1 - - -  1 1 
0 0 1 1 1 
0 1 0 1 1 

0 1 1 0 1 
0 1 1 1 0 .  

,k 

(3.13) 

It has  m - k + 1 columns with a 1 followed by k - 1 O's and with O's above the 1 
and with l ' s  below the k - 1 O's. Bk also has k - 2 columns which have O's in the 
first m -  k rows, l ' s  elsewhere with the exception of a single 0 in row ] for 
] > m -  k + 2. We may check that no column of Bk is a column of Bs for 
2<~ k < s <~ I. Also, every co lumn of Bk has a submatrix a~. Let Bk(i, ]) be the 
number  of columns in Bk with a 1 in row i, a 0 in row ]. Then,  for i < ], we have 

! f ° r j - i > ~ k '  

Bk(i, j )  = for O < j - i < k, i 4= m - k - 1 ,  (3.14) 

f o r i = m - k - l < ]  

Let C be the m x (m + 1) s imple matrix of all columns without a sumbatrix tt 
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(Theorem 2.4). Let 

A = [B2B3 . . . B,C]. (3.15) 

Then A is the desired m x n matrix with equality holding in (3.12) and without 

the k x I submatrix [aa~.. .  tr]. [] 

4. Forbidden rows 

L e t  tr = (a la2 .  • • a:) be a I x I (0, 1)-row. Let A be a simple m x n matrix with 
no submatrix or. Our  rough bound of (1.2) becomes 

n ~<2(l -  1)m + 1. (4.1) 

To improve this bound, we use more fully the fact that A has distinct columns. 
For a given row fl = ( b i b 2 .  • . b n )  o f  A, we say that there is a change  in pos i t ion  

(i, i + 1) of fl if b~ ~ b~+l. Two changes in A are adjacent  if they occur in the same 
row and in positions (i, i + 1), (i + 1, i + 2) for some i. Note that then the entries 
in the row in columns i and i + 2 are equal. 

Lemma 4.1. L e t  A be a s i m p l e  m x n matrix .  Then  A m u s t  h a v e  n - 1  

nonad jacen t  changes.  

Proof. We will show something stronger, that the n - 1 changes can be chosen in 
different positions. Consider a multigraph G in which the vertices represent the n 
columns and the edges correspond to changes and are labelled with the row in 
which they occur. We will show there is a path from 1 to n in which no two 
incident edges have the same label. 

Note that there are no edges (i, j )  with ] i - j ]  ~: 1 and that there is some edge 
(i, i + 1), for each i, since columns are different. The proof of our claim is by 
induction on n and is clearly seen to be true for n = 1, 2. 

Assume the result is true for any matrix having fewer than n columns. Assume 
that for some i that (i, i + 1) has at least 3 edges. Then, by induction, there are 
paths from 1 to i and from i + 1 to n as desired. One of the three edges (i, i + 1) 
can be chosen to complete the path from 1 to n as desired. 

Thus we may assume G has at most 2 edges joining (i, i + 1) for each 
i = 1, 2 , . . . ,  n - 1. If, for all i, there are precisely 2, then one can easily find the 
desired path from 1 to n, in a greedy fashion. Thus the only impediment to 
finding our path occurs as follows where possibly i + 1 = j. 

Vertices Labels of edges joining vertices 

i , i+  l a~ 
i +  1, i + 2  a~, a 2 
i + 2, i + 3 a2, aa 

. 

j - 1, j as_.  a~_~+l 
], j + 1 a j - j+l  

(4.2) 
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We find tha t  each row has an even number  of changes in the interval i to j + 1, 
which forces columns i and j + 1 to b e  equal. This contradiction proves the 
result. [] 

Lemma 4.2. Let A be a 1 x n (0, 1)-row ( b i b 2  • • • b,)  with p nonadjacent changes. 
Then any 1 x p (0, 1)-row tr is a submatrix o f  A.  

Proof.  The p nonadjacent  changes correspond to 2p distinct column indices 
(il, il + 1), (i2, i2 + 1 ) , . . . ,  (i~,, i~, + 1) where il + 1 <i2 ,  i2 + 1 < i3 ,  • • . ,  ip_l + 1 
< i~, and 

{bi,, b/l+l} = {bi2, bi2+1} = ' " =  {bip, bi~+l} = {0, 1}. (4.3) 

Thus if t r =  ( a l a 2 . . .  ap) then ak occurs either i n  column ik or  ik + 1, for 
k = 1, 2 , . . . ,  p, and so tr is a submatrix of A. [] 

Theorem 4.3. Let  A be a s imple  m x n matrix with no 

( a l a 2 . . .  at). Then 

n<~(l - 1)m + 1. 

1 x I submatrix tr = 

(4.4) 

Proof.  By Lemma 4.1, A has at least n -  1 nonadjacent changes. For n > 
(l - 1)m + 1, at least 1 of these changes will occur in the same row. By Lemma 
4.2, that row, and hence A, will have ~ as a submatrix. This contradiction proves 
(4.4.).  [] 

We know that the bound (4.4) need not be best possible for certain tr. For a 
1 x I row tr = [ 1 1 . . .  1], Theorem 3.3 shows that for l >I 2 

n <~ ½1m + 1. (4.5) 

The following result slmws that (4.4) is best possible sometimes. 

Theorem 4.4. Let A be a simple m x n matrix with no I x I submatrix [1010 . . .  ]. 
Assume l > 1. Then 

(l - 1)m + 1 for  I even, 

n <~ (l - 1)m for  I odd,  
(4.6) 

and there exist matrices for  which equality in (4.6) holds, when m >1½(l + 3). 

Proof.  The bound for l even follows from Theorem 4.3. For I odd, assume that  
n = ( 1 - 1 ) m  + 1. Then each row of A would have l -  1 nonadjacent  changes. 
Since each row cannot have the 1 x I submatrix [1010 . . . ] ,  then each row can be 
written 

0"(01)1" (10)0" (01)1" . . .  1"(10)0", (4.7) 
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where a* denotes any number of a's, possibly none. The parity of I forces the first 
and last entry to be equal and thus the first and last column of A would be equal. 
This contradiction proves (4.6). 

Using Lemma 4.5 (which follows), we need only construct small examples, for 
which equality in (4.6) holds, to verify existence for larger m. The 2 × 4 matrix 

[ 01 
1 1  48, 

has no submatrix [101] and so Lemma 4.5 shows that there exist m x 2m simple 
matrices with no submatrix [101] for m ~> 2. The 4 x 16 matrix 

A4 

- 0  

= 0 

0 

_0 

1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 -  

0 1  1 0 0 0 0 0 0 1  1 1 1 1 1 

0 0 1  1 1 0 0 1  1 1 1 1 0 0 0  

0 0 0 0 1  1 1 1 0 0 1  1 1 1 O__ 

(4.9) 

has no submatrix [10101] and so Lemma 4.5 shows that there exist m x 4m 
simple matrices with no submatrix [10101] for m t> 4. The first 13 columns of A4 
show that there exist m x (3m + 1) simple matrices with no sumbatrix [1010] for 
m ~< 4. After constructing this matrix, we were told by Griggs of its use in the 
interval number of a graph [5, p. 47]. 

The theorem is proven if we can show that there exists a t x (t(2t - 4)) simple 
matrix At with no 1 x ( 2 t -  3) submatrix [1010. . .1] ,  where all but the last t -  1 
columns is a t x ( t ( 2 t - 5 ) +  1) simple matrix with no 1 x ( 2 t - 4 )  submatrix 
[1010 . . .  10]. The matrix At will begin with a column of O's followed by a column 
with one 1 in the first row and At will end with k columns of decreasing column 
sum from k to 1. We inductively construct At, starting from A4, as follows. 
Assume Ak-~ has been constructed. For each column ~ in Ak-~, add an initial 
z e r o :  

iol [°o]  410, 

with the exception that for certain chosen pairs of adjacent columns a~i, tei+l we 
insert additional columns: 

0 1 1 0 ] (4.11) 
[O~iO[i+l]""~O~i OLi 1~'i+ 1 0( i+1 " 

A total of k - 3 disjoint pairs are chosen, one pair consisting of the column of 
all l ' s  in Ak-1 and the preceding column (columns k and k - 1 from the end) and 
k -  4 additional pairs of columns, each column beginning with two O's and not 
chosen from the last k -  2 columns. For k = 5 the chosen columns are 8, 9, 12, 
13. For larger k the existence of these pairs is readily verified in view of (4.10) 
and the rest of the construction. From this resulting matrix we form Ak by 
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inserting between the first and second column, the k x 2k matrix 

- 1  1 1 1 1 1 

0 0 1  1 0 0  

0 1 1 1 1 0 

0 0 0 1 1 1  

0 

1 1 1 1 

1 1 1 1 

0 0 0 0 

1 1 0 0 

1 1 1 

1 

0 

• - -  1 1 1 "~ 

• -- 1 1 1 

0 0 0 

1 0 0 

1 1 O. 

(4.12) 

We must verify that this yields a simple matrix. Columns in (4.12) begin with a 
1 and so we need only check overlap with columns generated in (4.11). The first 
pair of columns chosen for (4.11) have column sums k, k - 1 and so do not arise 
in 4.12 (exept for k = 5 which may be checked directly). The remaining columns 
generated in (4.11) have zeros in rows 2 and 3 thus the only possible overlap is 
with columns 1 and 5 of (4.12). Column 1 is not generated since column 2 of Ak-x  

has a 1 in row 1. Column 5 will not be generated for k = 5 using the pairs 
indicated above. For larger k, Ak-1  has 4 columns with one 1, the second, the last 
and two other columns with their l 's in the last two rows. Thus column 5 is not 
generated in (4.11). Hence Ak is a k x ( k ( 2 k - 4 ) )  simple matrix with no 
1 x 2k - 3 submatrix [1010. . .  1], where each row has the form (4.7) except the 
third from last row ending in a 1. We then see that if the last k - 1 columns are 
deleted, the resulting k x ( k ( 2 k -  5 )+  1) matrix has no 1 x ( 2 k -  4) submatrix 
[1010. . .  10]. [] 

The bound on m is clearly not best possible but a general construction rule for 
matrices such as A4 is elusive. 

L e m m a  4.5. Let  A be a simple m x n matrix with no I x l submatrix [1010•..]. 
For n >I l and any p >I 1, there is a simple matrix B o f  size (m + p)  x (n + p( l  - 1)) 
with no 1 x I submatrix [1010. . .  ]. 

Proof. A construction goes as follows. Let U, D be two p x (p + 1) matrices 

-0 

0 

0 1 

0 1-  

1 

D = 

-1 

1 

U =  

m 

0 0 
1 0 

. ( 4 . 1 3 )  

1 0  
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Let a~ be the ith column of A. For  I even, let 

n 

[Oq~l U D U I . . .  

I • - -  ~ 1  ~ 2 ~ 2 -  " -  ~ 2  ~ 3 ~ 3  - - -  ~ 3  

U 

acl-la:t-i • • • act-1 

(1 denotes a block of l ' s)  and for I odd, let 

B =  

I~I~'lCI~'I • • • £¥1  1~1~2~2 • • • £1~2 ~ 3 0 ~ " 3  • . .  £ 1 ~ ' 3  O ~ l - - l O ~ l - l . .  • 

(0 denotes a block of O's). [] 

1 ]  

I 1~1~/1~¥/+1 . , " 

(4.14) 

I o, o1~1° o.] 
(4.15) 

5. The 3 X 2 forbidden submatrices 

As an example of our results, we consider the possible 3 x 2 forbidden 
sumbatrices. There are 14 essentially different 3 x 2 (0, 1)-matrices (different up 
to taking (0, 1)-complements and reversing row and/or  column order): 

Ei °] [ii] Ii ° [i ° F~= 0 , F2=  , F3= , F , =  , 

0 

[:il [ii] [i Ii F~ , F6 , F7= , F8 , 
0 

[i!] [1i] [ii] [!o] Fg= , Fm=  1 , F u =  , F12- 0 , 

1 1 [10] E o] 
F13= 0 0 , F14= 1 . 

1 0 1 
(5.1) 

Theorem 5.1. Let F be one o f  F~, F2, F3, F4, Fs, F6, FT. Let A be a simple m x n 
with no submatrix F. Then 

n-<(~)+(~)+(7)+(O), 
and there exists a matrix A with equality in (5~2) holding. 

(5.2) 
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Proof. For Ft, this follows from Theorem 3.3, and for F2, F3, F4, Fs, F6, FT, this 
follows from Theorem 2.5. [] 

Theorem 5.2. Let F be one o f  F8, F9. Let A be a simple m × n matrix with no 
submatrix F. Then 

m -  

and there exists a matrix A with equality in (5.3) holding. 

Proof. This follows from Theorem 3.5. [] 

A theorem of Frankl, Fiiredi, and Pach is required for F~0, Fll. 

Theorem 5.3 (Frankl, Fiiredi, Pach [3]). Let A be a simple m x n matrix with no 

k x 2 submatrix o f  a column o f  l 's  fol lowed by a column o f  O's. For k = 2 

n <~ ( 2 )  + ( 7 )  + (O)  + m -  2+  61,, .(5.4) 

(where 6Xm = 1 for  m = 1 and 0 otherwise) and there exist matrices for  which 
equality holds. For k > 2 

(5.5) + o  , 

and there exist matrices A with 

m + . .  (5.6) 

Thus Theorem 5.3 handles F~0. For Fn, we need the following construction. 

PrOllN~lion 5.4. Let  F be a k × I matrix. Assume that there is a constant cF so that 

i f  A is a simple m x n matrix with no submatrix F, then 

n ~ cFm p. (5.7) 

Then there is a constant cx  so that i f  B is a simple m x n matrix with no (k + 1) × 1 
submatrix 

then 

.-[ "] 
0 0 . . . 0  ' 

(5.8) 

n ~cHm p+I (5.9) 

Proof. Consider all columns of B with a 0 in row i and l 's in rows i + 1, 
i + 2 , . . . ,  m. Then the submatrix formed by these columns and the first i -  1 
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rows will have no submatrix F and so there will be at most  CF(i- 1)t' such 
columns for i > 1. But every column in B is uniquely described as such a column, 
for some i > 1, with the exception of a column of l 's  or a column of r s  with a 0 in 
the first row. Thus 

n <~ cF(m - 1)P + CF(m -- 2 ~  + ' ' '  + CFF' + 1 + 1. (5.10) 

Now the bound of (5.9) follows readily. [] 

Note that this supports our conjectured general bound (1.3) when k = p .  

Neither the bound (5.9) nor indeed the bound (5.10) need be best possible. 

Remark 5.5. If the bound of (5.7) is replaced by the Sauer bound for Pp+l, then 
the bound (5.9) becomes the Sauer bound for Pp+2. 

Theorem 5.6. Let  A be a simple m x n matrix with no submatrix F~. Then 

n ~  < ( 3 ) +  ( 2 ) +  ( 7 ) +  ( O ) +  (m 2 2 ) ,  

and there exists a matrix A with equality in (5.11) holding. 

(5.11) 

Proof. Using the bound of Theorem 5.3 for k = 2 and applying this as in 
Proposition 5.4 in (5.10), we deduce 

m (;)(;) ) 
n ~  + + + i - 2 + 6 1 2  +2,  (5.12) 

i----1 

which yields (5.11). 
A construction which meets this bound is as follows. Let C be the m x (('~) + 

(7) + ('~) + ('g)) simple matrix obtained by the construction of Lemma 2.2 where 
a, = (000) T and Ai is as determined in Theorem 2.4. Thus C has no F~I or no 
column (1000) T. Let B be a m x (m~-2) matrix consisting of all columns with no 
submatrix (110) T and yet c o n t ~ g  (1000) T. Then A = [BC] meets the bound of 
(5.11) and has no submatrix Fll. [] 

Theorem 5.7. Let  F be one o f  F12, F13, F14. Let  a be a simple m x n matrix with no 

submatrix F. Then 

and there exist matrices A with 

) ,514  
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Proof. The bound of (5.13) follows from Sauer's bound. For example, any 
column permutation of the 5 x 2 matrix 

G 
0 1 

0 0 

1 0 

0 1 
m ~ 

has F12 as a submatrix and so for F =/712 we deduce A has no Ps. 
The existence of the matrices with equality in (5.14) follows from the 

constructions of Lemma 2.2 applied to matrices without a certain 3 x 1 matrix 
obtained in Theorem 2.4. [] 

Thus we do not have very good solutions for F12, F13, F~4, and it may be 
possible that one of them'violates our conjectured bound (1.3). 
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