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Abstract. Let P be a partially ordered set. Define k = k(P) = maxpEp 1 {x E P : p < x or p > x} 1, 
i.e., every element is comparable with at most k others. Here it is proven that there exists a constant 
c (c < 50) such that dim P < ck(log k) *. This improves an earlier result of Rod1 and Trotter (dim P < 
2k’ + 2). Our proof is nonconstructive, depending in part on LOW&Z local lemma. 
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1. Introduction and Statement of the Theorem 

Let (P, <) be a poset (partially ordered set) not necessarily finite. A permutation L 
of P is called a (linear) extension of P if x <py implies x <L y, (Note a permutation 
x1x2, . ..1 x, of [n] is regarded as the total order x1 < x2 < ... < x, .) The dimension of 
P is the minimum number of extensions L1, . . . , L, such that P=L, n ...fJ Ld (i.e., 
x <p y iff x <Lo y for all 1 < i Gd). Denote by C(x) the set of elements of P comparable 
withx,i.e.,C(x)={yEP:y<xorx<y},andlet 

k=k(P)=max{IC(x)I:xEP}. 

Rijdl and Trotter [4] proved that 

dimP<2k2 +2. (1.1) 

Let f(k) = max { dim P: k(P)S k}. Considering the poset on 2k + 2 elements whose 
Hasse diagram is Kk + 1S k + 1 with a complete matching removed, one can see that 
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f(k)>k + 1. 

Our main result is 

Z. FtJREDI AND J. KAHN 

(1.2) 

THEOREM 1.3. There exists a c (c < 50) such thatf(k) < ck(log k)2. 
After some preparations the proof is given in Section 5. Section 2 deals with a simple 

reformulation of the dimension; Section 3 deals with scrambling sets of permutations; 
and Section 4 contains a pair of results on hypergraph coloring, one elementary and the 
other a straightforward consequence of Lovasz’ local lemma. 

The basic ingredients of the proof are Lemmas 2.2, 3.3, 4.2 and 4.3. Probably the 
most efficient way to read the paper is to scan the statements of these four results and 
then proceed directly to Section 5 to see how they fit together. 

Before proceeding, let us mention that what we are really proving in Sections 3-5 
is the following result, which may be of independent interest. 

THEOREM 1.4. There is a constant c such that for any n, k and any family zof sub- 
sets of size at most k of [n] with each member of [n] in at most k sets of x there is a 
set 77 1, ..‘> nd of at most ck(log k)2 permutations of [n] with the property that 

foreachXE %and XE [n]\X 

x<,:Xforsomei, l<i<d. 

2. A Reformulation 

For our purposes it is convenient to work with the alternate description of dimension 
given in Lemma 2.2. Both the results below are presumably well known. 

Let (P, <) be a poset and rr a permutation of the elements of P. If x, y are elements 
of P such that x <p y but y <,, x, we may in some sense bring 71 closer to being an 
extension of P by removing x from its position in 7~ and inserting it immediately before 
y. We call such an operation a left-shift. Although a left shift may create new out-of- 
order pairs, it is easy to see that the process cannot cycle, that is, it is not possible to 
return to n via a sequence of left-shifts. We thus have 

LEMMA 2.1. Any permutation rr of the elements of (a finite) P may be turned into a 
linear extension by a finite sequence of left-shifts. Cl 

ForxEPletU(x)={yEP:y~x}.Letu=max{lU(x)l:xEP}. 

LEMMA 2.2. The dimension of P is the least CY for which there exist permutations 
771, . . . . n, of the elements of P such that 

y =$, x *for some i, x Cni U(y). 

Proof: Clearly OL is a lower bound on the dimension. That it is also an upper bound 
follows from Lemma 2.1 once one observes that if x <n U(y) then also x <nf U(y) for 
any 7~’ obtained from rr by left-shifts. 0 
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A set of permutations as in Lemma 2.2 will be said to be destroying (with respect to P), 
A simple consequence of Lemma 2.2 is 

PROPOSITION2.3. Withuasabove, dimP<2(ut l)(logJPI)t 1. 
Proo$ Let Al, . . . . nd, d=r2(u+ I)loglP(l b e random permutations of P. Then for 

anyx,yEPand 1 <i<d, 
1 1 

Prob (x <ni U(y)) = >- 
I WY) I + 1 u+l’ 

hence 

Prob(Qix Kni U(y)) G 

This proves the proposition, since 

Prob( 711, . . , nd not destroying) 

= Prcb( 3x, y : y Vtp x, Vix Y$ U(Y)) 

IPI < ( > 2 lIPI 

<I q 

3. Scrambling Sets of Permutations 

For II a positive integer we set [n] = ( 1, ., n}. In this section we are interested in small 
sets of permutations of [n] which are ‘mixing’ in the following sense. 

DEFINITION 3.1. For 2 < t S n a set S = CT,, . . . . nd} of permutations of [n] is 
t-scrambling if for each t-subset X of [n] and x E X there is some ni ES under which 
x is the smallest member of X (i.e., x <,,j (X - (x})). The least cardinality of a t-scram- 
bling set of permutations of [n] is denoted d(n, t). 

The notion of a t-scramble is due to Dushnik [I] who found a simple formula for d(n, t) 
when 2 [d/n] - I < t Gn. We note in passing that for all n, d(n, 2) = 2, and that d(n, t) 
is nondecreasing in n and t. 

For fixed t and large 12. A. Hajnal and J. Spencer (see [5]) have shown 

log, log, n Gdln, t) d t2’ log, log, n. (3.2) 

In what follows we will need an upper bound on d(n, t) for t - log n. In this range (3.2) 
is not strong enough, but we can use the following simple bound. 

LEMMA 3.3. For all n, t, d(n. t) <t* (1 t log(n/t)). 

The proof is similar to that of Lemma 2.3 (consider d = [ t”(l + log(n/t))] random 
permutations of [n]) and we omit it. 0 
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4. Coloring Hypergraphs 

Z. FUREDI AND J. KAHN 

The only not quite elementary ingredient in the proof of Theorem 3.3. is the following 
powerful result of Lovasz [2]. 

LEMMA 4.1 (Lovasz’ local lemma). Let G be a graph on [m] with maximum degree d 
andAl, . . . . A,,, events defined on some probability space such that for each i, 

Prob(Ai)< d . 

Suppose further that each Ai is jointly independent of the events Aj for which {i, j} 4 
E(G). Then Prob(Al ...A-,) > 0. 

Recall that a hypergraph on a set X is a collection %of subsets of X. For x E X the 
degree of x in %, denoted deg?{x), is the number of members of %that contain x. 
We write deg zfor max { deg,&x) : x E X}. A coloring of X by s colors is just a parti- 
tion X =X1 U ... U X, (where Xi = $ is allowed). We denote by [Xliu the collection of 
subsets of size at most a of X. 

The proof of Theorem 1.3 will begin by partitioning the set P into a relatively small 
number of sets X1 U ... U X, such that each 1 U(x) f~ Xi 1 <v, where v is also small. 
Lemma 4.1 enables us to do this with s and v on the order of k/log k and log k, respec- 
tively . 

LEMMA 4.2. Let r be a hypergraph, ZC [Xl” b with deg x< b, where b > 500. 
Set s = [b/log bl , v = r4.7 log bl . Then there is a coloring of X, X=X1 U ... U X, such 
thatlHnXiI GvforallHE Lund 1 di<s. 

Proof Let X1 U ... U X, be a random partition of X (i.e., for each x E X and i 
Prob(x E Xi) = l/s and events corresponding to distinct x’s are mutually independent). 
Denote by A(H, i) the event 1 H f~ Xi I > v and define the graph G on the index set 
xx [s] by {(H, i), (H’, i’)} E E(G) if H fl H’ # $. Then G has maximum degree at 
most (1 + b(b - 1))s. 

On the other hand, since I H I G b, 

Prob(lHnXiI >v)< c 
t>v(Y)(:y (4)b-* 

<$ (“v)(+)” (l-+)b-v 

<+($v * (1-t)“-” 

4.5 log b 
b-(1-@/b)) 

< +b-3, 
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so Lemma 4.2 follows from Lemma 4.1. 0 

Finally we require the following fact, whose straightforward inductive proof we omit. 

LEMMA 4.3. Let a, b be positive integers and XC [ Y 1’ a a hypergraph with deg z< 
b. Then there exists a coloring Y = Y1 U ..’ UY, with n=(a-1)bt1 such that 
)Hn Yil < lfora22HE zand 1 <i<n. 

5. Proof of Theorem 1.3 

For k < 500 the theorem follows from (1 .l), so we assume k > 500. Set y= (U(x) : 
x EP). Then Lemma 4.2 applied to $$? yields a partion 

k+l 
log(k + 1) 

such that 

1 U(X) n Xi I < v (v = r4.7 log (k + I>] ) 

holds for all x and i. 
Set q=(U(x)nXi:xEP}. Since TC- [Xi]“” anddeg g<k+l,Lemma4.3 

implies the existence of a partition Xi =Xit U ... U Xi,, TV = (V - 1) (k + 1) t 1, such 
that I U(x) fl Xii I < 1 for all x, i, j. With d = d(rz, v + 1) as defined in 3.1, we have, 
according to 3.3, 

(v-l)(k+l)tl 
v+l ). 

(5.1) 

Let {nr, . . . . trd} be a (v + 1)scrambling set of permutations of [n]. Also, for each i, j, 
let Rii be a fixed linear ordering of Xii, and RG its converse (i.e., x <R$ y iffy <Rij x). 
Finally, for each i E [s] and I E [d] we define two permutations II, i and II:, r of X: 

ni,l =(Ri, nl(l)j&, x1(2)3 ...,Ri, nl(n)?X-Xi), 

n ;,I =(R~n1(1)*R[nl(~)r ~.-,R~m,(n)~X-Xi), 

where in each case the ordering of X - Xi is arbitrary. 
We assert that this family of permutations is destroying. To see this let x, y E P with 

y$x,let XEXi (y and set T = {j : U(y) n Xi, i f $I}. Since 1 T I< v there is an I for which 
(Y <nl T (a, <ml (T - ((~1) in case a! E T). Then x <nj, t U(y) or x <n; 1 u(Y) (or both 

if a: 6? T), verifying the assertion. But in view of Lemma 2.2 and (5.1) this gives 

and the theorem is proved. q 
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6. Final Remarks 

(1) As pointed out to us by T. Trotter, the following result of R. J. Kimble shows that 
it would have been sufficient to consider posets of height 1 (i.e., having no chains of more 
than two elements). 

THEOREM 6.1 ([3]). Given a poset P, let Q be the poset defined on the set P x { 0, 1) 

by 

ThendimPddimQGdimPt 1. 

Of course, k(Q) < k(P) t 1. 
(2) If in analogy with the definition of u in Section 2 we set D(X) = {v E P: y <x} 

and d = max { 1 D(x) I: x E P}, then our method yields 

THEOREM 6.2. dim P d 4O(u + d) log u log d. 

(3) Better bounds: If it is true that f(k)/(k log k)+ 00 then Lemma 2.3 shows that 
1 P 1 is superpolynomial in k, so fairly large examples will be required. The most likely 
place for improvement of our result is in the bound of Lemma 3.3. But the more intriguing 
problem is to say anything at all about the lower bound beyond the rather trivialfck) > 
k+ 1. 
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