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Let A’ be an n-element set and 9 c(f) such that all the (171) sets Fl u Fl, 
Fl, Fz~ 9 are distinct. Solving a problem of P, Erdos (“Proceedings, 8th 
Southeastern Conf on Combinatorics, Graph Theory. and Computing, Baton 
Rouge, 1977,” pp. 3-12) we show that there exist positive constants ck, CL such that 
cknrdk’3i’* G p5q G + W’j”* holds. For the proof of the lower bound we need a 
theorem of independent interest which is of algebraic number-theoretic character 
(Theorem 1.4.). 0 I986 Academic PI~SS, h 

1. INTRODUCTION AND STATEMENT OF THE RESULTS 

Let n, k be integers, n > k > 0. Suppose .A’ is an n-element set and 
5 c (t), i.e., 9 is a k-uniform hypergraph on X. We say that 9 is anion- 
free if all the (‘7’) unions Fi u F2, Fl, F2 e 5, are distinct; 9 is called 
weukly union-free if for any four distinct sets A, B, A’, B’ E 9 A u B = 
A’ u B’ implies {A, Bj = {A’, B’j. That is, in a weakly union-free family 
A u B= A u C is not excluded. Let us denote by fk(n) (Fk(n)) the 
maximum cardinality of a union-free (weakly union-free) family, respec- 
tively, The problem of determining f2(n) and F2(n) goes back to Erdos [ 11, 
1938. For known bounds on these functions and related problems see [4]. 
Here we only mention that the exact value of f2(n) is unknown for n > 10 
while the only infinite set of values for which F*(n) is known is 
n=4’+2’+1, $21: Fz(4+2’+l)=2’-‘(2’+l)*, which was proved by 
Ftiredi [5]. In [4] the present authors have shown that f3(n) = 
Ln(n - 1)/6 J for all n > 1 and F3(n) =n(n - 1)/3 for all n = 1 (mod 6), 
n>no. 
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Our main result is 

THEDREM 1.1. There exist positive constunts c~, ci, such that 

cknr4k’3”2 <fk(n) < Fk(n) < cinr4k’3”2 (11 

holds. 

Let us denote by H,+(n) the maximum possible size of F if it contains no 
four distinct sets A, B, A’, R satisfying A v B= A’u B’ and A’ n B’= 
A n B. 

In view of the next proposition it is sutXcient to deal with Hk(n). 

Thus Theorem 1.1 follows from the next theorem. 

THEOREM 1.3. 

The lower bounds in (4) and (5) are consequences of the lower bounds 
in (3), as we shall show in Section 4. 

To derive the Iower bound in (3) we use the next theorem. To state it, we 
need some definitions. 
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Let K be any field (not necessarily lmite). For any subset Y = { yl ,..., JJ~} 
of K and any integer i, i > 0, we denote by crj( Y) the zth elementary sym- 
metric polynomial in the variables JJ,,..., JJ~, that is, 

In particular oO( Y) = 1 and c~( Y) = 0 for i > f and i-~ 0. For any Iixed Y 
and I let us dehne an 1 by I matrix D/(Y). Let the general entry of D[( Y) be 
dV, where dti = ozi-j( Y). 

THEOREM 1.4. Suppose k= 3t + 1, t 2 1, cz, c4,..., cl[ are arbitrary but 
fixed elements of K and 9 c (F) consists of those k-tuples A = {x1 ,..., x~} for 
which 

ozi( A) = czi holds, i = l,..., t; 

moreover, for every subset Y c A we have 

det D,( I’) # 0, z= l,..., 1 Y[ - 1. 

Then 9 contains no four distinct sets A, B, A’, B’ satisfying 

AuB=A’uB’, AnB=A’nB’. 

This theorem and the next three propositions give the lower bound of 
(3). 

PROPOSITION 1.5. Suppose 1 Yi > 1. Then the poZynomia1 det D,(Y) is not 
the zero polynomial. 

PROPOSITION 1.6. Suppose 1 Kj = q, in particular that K is finite. Then the 
number of k-tuples A E (c)f or which det D,( Y) = 0 holds for some I and some 
Y c A, I-C 1 Y/, is bounded from above by 2kk2( k ? , ). 

PROPOSITION 1.7. There exist constants c2, cd,..., c2,~ K such that the 
family 9 defined in Theorem 1.4 satis$es 

Now for n a prime power the lower bound in [3] is immediate 
from Theorem 1.4 and Proposition 1.7. Note that H,Jn) is a monotone 
increasing function of n. As for every n there exists a prime q satisfying 
n > q > n - o(n) (see [6]) the lower bound in [3] holds for all n. 
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2. THE PROOF OF THEOREM 1.4 

Suppose that for some A, A’, B, B’ the assumptions A u B= A’ u B’, 
A n B = A’n B’ hold. We have to prove {A, B} = {A’, B’}. Let us define 
C=AnA’, D=An(B’-A’), C’=BnB’, D’=Bn(A’-B’). Then these 
four sets satisfy CnD=CnD’=CnD=C’nD’=@, CuD=A, 
C u D’ = A’, C u D = B’, C’ u D’ = B. Consequently, we have that 

c2i( C u D) = ozi( C u D’) = oJ C’ u D) = oiI( C’ u D’) = czi 

holds for 0 6 i < t. 

PROPOSITION 2.1. There exist non-negutiue integers u, b such thut 
a+b=t and oJC)=o;(C’), oj(D)=oj(D’) holdfor O<i<2a, O<j<2b. 

ProojY Let u and b be the largest integers for which o;(C) = oi(C’) and 
oj(D) = oj(D’) hold for 0 < i < 2u, 0 <j < 2b, respectively. Assume a + n < t. 
Let us write out the equation for ozO + zb + I : 

Denoting this equation by eII and the analogous equations for C’ u D’, 
C u D’, C’ u D by e22, e12, e21, respectively, eI, + e22 - e12 - e21 reads 

ocix2~+2b+2 (~i(C)-~i(~))(o2~+2b+2-;(D)-~2~+2b+2-;(D’))=O. 
. . 

Since I; = G;(C) for 0 < i < 2u and oj(D) = oj(D’) for 0 < j< 2b, this 
equation reduces to 

(0 2a+ I(C) - (‘2a+ ltc’))tg2b+ ,@I - O2b+ ~CD’)) = 0. 

Assume by symmetry 02a+ r(C) = a20 + ,( C’). Now write the equations 
involving cr20 + 2 : 

Subtracting from this the corresponding equation for C’ and D we obtain 
too(D) = 1) 

Since c~(C) = c;(C) for 0 < i < 2a + 1, c2a + 2(C) = c20 + 2( C’), contradicting 
the maximal choice of u. 1 
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If [C[<&z, then C=C’ and thus ,4=g, A’=B, i.e., {,4,Bl={,4’, B’} 
follows. Similarly, in the case IDi < 2h Thus we may assume ICI > Zz, 
/D[ > 2b. 

PROPOSITION 2.2. Either 1 Cl - 2a < f - a or 1 Dl - 2b < t - b holds. 

ProojI Suppose the contrary. Then we infer-using 1 Cl + 1 Dl = 3f + l- 

3t+l-2a-2ba2t-a-b+2 or equivalently t 2 a + b + 1, 

contradicting the choice of a, b. 1 

Assume, by symmetry: 0 < 1 D[ - 2b < t - b holds. 

PROPOSITION 2.3. gj(D) = crj( D’) holds for afi j 2 0. 

Note that this proposition yields D = D’ and consequently {A, B} = 
{A’, B’}, i.e., it concludes the proof of Theorem 1.4. 

Proof of the Proposition. For i= l,..., t-b let ei (ei) denote the 
equation 0 2b+dCUD)=c2b+Z (02b+2i(CUD’)=C2b+2i), respectively. 
Now ei - e,! reads (using gj(D) = gj(D’) for 0 <j < 2b) 

This is a homogeneous system of linear equations in the variables 
Ozb+@) - fJzb+@‘) for V = l,..., l-b, because [D[<l+b by our 
assumptions, i.e., cj(D) = 0 for j > t + b. By the assumptions of Theorem 1.4 
the determinant of this system det Dte b( C) is non-zero; consequently 
(‘2b+v@)=C’2b+v (D’) holds for v= l,..., r-b and consequently gj(D)= 
gj(D’) for all j 2 0. 1 

3. Trrn FR~~F OF PROPOSITIONS 1.5, 1.6, AND 1.7 

The Proof of Proposition 1.5. Suppose first I odd. Let L be an arbitrary 
extension field of K over which x’ - 1 factorizes (splits?) into linear factors, 
i.e., (x’- 1) = IJiZI(x- si) holds with EWE L. Note that the si are not 
necessarily distinct but uj(sI ,..., s,) = 0 holds for all j> 0 except for j= 1, 
Cd&, >***, Ed) = 1. Let us count D,(& ,,..., Ed, 0,O ,..., 0). Denoting by dg the 
(i, j)th entry of D,(E~ ,..., Q, 0, . . . . 0) we see that 

dq= 1 if j E 2i (mod /) 

=o otherwise. 
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Consequently 

det D,(ai ,..., Ed, 0, . . . . 0) = ( - l)(“+2i”2) # 0, 

thus det D!(Y) is not the zero-polynomial over K either. 
If I is even, we argue in the same way but for an extension held L’ con- 

taining all the roots of x’+ r - 1. 1 

Note that it might happen that D[( Y) assumes only the 0 value over K if 
[K[ is small ([K[ < (Z/2)). 

The Proof of Proposition 1.6. Fix a subset ZV= {n,, n2,..., nj} c 
{1, 2 ,,,,, k}, N=@. Let us suppose X= {xi ,..., x~} E(F), such that 
Y={xigX, iEN}, detD[(Y)=O (lY[=lN/>Z). By the preceding 
proposition we may find ni E N for which det D,(x”, ,..., x “,-, , y, x~,+, ,..., xnj) 
considered as a polynomial p(y) of y is not identically zero. Moreover 
deg p(y) < 1. For any choice of {xi, x1 ,..., x~,-, , x,,+ 1 ,..., x~} there are at 
most Z values of y satisfying det Dj( Y) = p( y) =O. Since there are only 
2k - 2 choices for N, and less than k choices for I, the statement follows. 1 

The Proof of Proposition 1.7. Let us look at the values of Gus for 
1~ i< t, 1X1= k and A’ such that det D,(Y) # 0 holds for all Y c X. The 
number of possible value sequences is bounded by q’. On the other hand, 
by Proposition 1.6 we have at least (f) - 2kk2(k! ,) choices for F, thus there 
is a particular value sequence, say c2, cd,..., Cam, which occurs at least 
(g)/qf-2kk2(k:I)/q’ times. 1 

4. Trm PROOF OF THE LOWER BOUNDS OF (4) AND (5) 

First we prove (4). Let 9 c= ( 3,T ,) be a family of maximal size and 
without four distinct sets ,4, B, ,4’, B’ satisfying A u B= ,4’ u B’, A n B = 
A’ n B’. Deline 9(x) = {F- {x}: XE FEY}, for every XE X. Obviously 
xX.X /F(x)1 = (3t + 1) 191 = (3t + 1) H3,+ I(n) holds. Thus we may choose 
some x E A’ satisfying /F(x)1 > ((3t + 1)/n) H-,t+ I(n). Moreover, F(x) 
satisfies the assumptions: therefore are no four distinct sets 
,4, A’, B, B’ E F(x) satisfying A u B = A’ u B’, A n B = ,4’ n B’, 5(x) c 
(X-3/~Y}). Using (3), we infer 

To prove (5) consider again a family 9 realizing the maximum size but 



216 FRANKL AND F’6REDI 

this time for k’ = 2k = 6t + 4 = 3(2t + 1) + 1. For each FE 9 let us fix a 
partition of F into two-element sets: F= PI u . . . u P3t+*. Let us detine 

Obviously 131 = i*q/, and .J@ also satisfies that for any four tistinct 
A,B,A’,B’c$either AuB#A’uB’or AnB#A’nB’.Thus, wehave 

Using (3) and setting 3r + 2 = k we infer 

5. THE PROOF OF THE UPPER BOUNDS 

Let us set s = r(2k - 1)/31. Suppose 9- c (f), 9 contains no four distinct 
sets A, B, A’, B’ satisfying A u B = A’ LJ B’, A n B = A’ n B’. For SE (f) let 
us set 9(S)= {F-S: SC FEF] and dF(S)= /9(S)/. Obviously, 

Using the inequahty between the arithmetic and quadratic means: 

Combining this with (6) we obtain 

On the other hand for S, S’ E (f), T, T’ E (9(S) A 9(S’)) implies that the 
four distinct sets A=SuT, B=SuT, A’=SuT, B’=S’uT satisfy 
AuB=A’uB’, A~B=(SA,S)U(T~T’)=A’~B’. Consequently the 
sets (T&S)) are pairwise disjoint for SE (f), yielding 



UNION-FREE FAMILIES OF SETS 217 

Let us set CZ= IFi (~)/(~) and note ($)c b2/2. combining (7) and (8) we 
obtain 

(9) 

If k = 3f + 1 then s = 2f + 1 and (9) yields 

as desired. 
If k= 3t then ~=2& (9) yields ~(cz-- 1) G (7) and consequently UC 

fi + I, that is, 191 < ($)(a i- l)/(y), yielding (4). 
If k = 3f + 2 then .r = 2t -t- 1. Now (9) yields 

consequently 

To complete the proof of Theorem 1.1 we must prove Proposition 1.2. 
The first two inequalities are trivial; to prove the third let us take ,F c (c), 
satisfying is/= Hk(n) and for any four distinct members ,4, B, A’, B’ o F 
eitherAuB#A’uB’orAnB#AfnB’.LetX=YOuY~u~~- wYkwlbe 
a random equipartition of X, that is, ) Yi/ = r(n-- i)/kJ. Let us define 
m YOY..., YkWI)= {FEF: [Fn YJ = 1, Ogi<k-l]. The expected num- 
ber of mem~rs of $( YO ,..., Yk-,) is 

Thus there exists a choice of YO,..., YkW r, forming an equipartition of X 
and satisfying 

lF( yo, y* ,.*., Yk- *)I 2 H&z) k!,‘k’. 

(The theorem “every k-uniform .F contains a k-partite @ c F with /$/> 
IF\ k!/k’*’ is due to Erdos and Kleitman {3-J) 

Now the validity of the third inequality is proved if we show 
that $ = .F( Yo,..., Yk-. r) is union-free. Suppose the contrary, i.e., there 
exist A,B,A’, B’c$, {A,B]#{A’,B’] with AuB=A’uB’. Then 
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(A u B)n Yi= (,4’~B’)n Yi holds for i=O,..., k- 1. Since for Fe.9 we 
have IFn Yi[ = 1, (,4 n B) n Yi= (A’n B’) n Yi. Taking the union of these 
sets for i=O ,..., k-l we infer AnB=A’nB’. As {A,B}#{A’,B’}, 
A, B, A’, B’ must all be distinct members of 9 and then of 5, con- 
tradicting the choice of 9. 1 

6. CONCLUDING REMARKS 

It would be nice to lind out what other, more algebraic properties are 
possessed by the family 9, constructed in Theorem 1.4, 

Let us note that for k < 4 and k = 6 the family 9 is weakly union-free. In 
particular 
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