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Let X be an n-element set and # <(}) such that all the (/5)) sets F\ U F,,
F,,F,e% are distinct. Solving a problem of P.Erdés (“Proceedings, 8th
Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Baton
Rouge, 1977,” pp. 3-12) we show that there exist positive constants ¢, ¢; such that
c B2 |\ F| < ejnl %372 holds. For the proof of the lower bound we need a
theorem of independent interest which is of algebraic number-theoretic character
(Theorem 1.4.).  © 1986 Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let n,k be integers, n>k>0. Suppose X is an n-clement set and
F < (f), ie, Z is a k-uniform hypergraph on X. We say that & is union-
free if all the ('5') unions F,UF,, F,, F;e %, are distinct; # is called
weakly union-free if for any four distinct sets 4, B, 4, B'e¥ AuB=
A'u B implies {4, B} ={A4’, B'}. That is, in a weakly union-free family
AuB=AuC is not excluded. Let us denote by fi(n) (F(n)) the
maximum cardinality of a union-free (weakly union-free) family, respec-
tively. The problem of determining f5(n) and F,(n) goes back to Erdos [1],
1938. For known bounds on these functions and related problems see [4].
Here we only mention that the exact value of f,(n) is unknown for n> 10
while the only infinite set of values for which F,(n) is known is
n=4+2"+1, s>1: Fy(4°+2°+1)=2°""(2° 4+ 1)% which was proved by
Fiiredi [5]. In [4] the present authors have shown that fi(n)=
Ln(n—1)/6 ] for all n>1 and Fiy(n)=n(n—1)/3 for all n=1 (mod 6),
n>ny.
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UNION-FREE FAMILIES OF SETS
Our main result is

THEOREM 1.1. There exist positive constants ¢, ¢i, such that
cent ¥PVEL fi(n) < Fi(n) S cionl 4732712

holds.
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(1)

Let us denote by H,{r} the maximum possible size of # if it contains no
four distinct sets A, B, A", B’ satisfying AVB=A'"VB and A'nB =

AnB.-
In view of the next proposition it is sufficient to deal with H,(n).

ProOPOSITION 1.2. For alinzk =1, we have
k!
Hk(”)>Fk(")?fk(n)>Pz Hy(n).

Thus Theorem 1.1 follows from the next theorem.

THeorReEM 1.3
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The lower bounds in (4) and (5) are consequences of the lower bounds

in (3), as we shall show in Section 4.

To derive the lower bound in (3) we use the next theorem. To state it, we

need some definitions.
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212 FRANKL AND FUREDI

Let K be any field (not necessarily finite). For any subset Y= { y,,..., y,}
of K and any integer i, i >0, we denote by g,(Y) the ith elementary sym-
metric polynomial in the variables y,,.., y,, that is,

ai(Y)= Z H yv'

In particular oo(Y)=1 and ¢(Y)=0 for i> f and i<O0. For any fixed ¥
and / let us define an / by [ matrix D/(Y). Let the general entry of D(Y) be
d;, where d; =05 _(Y).

ij

THEOREM 1.4. Suppose k=3t+1, t=1, c,, ¢4,..., €5, are arbitrary but
fixed elements of K and F < (X) consists of those k-tuples A = {x,,.., x, } for
which

6,4 A) = c; holds, i=1,.,¢
moreover, for every subset Y — A we have
det D(Y)#0, I=1,.,|Y|— 1L
Then & contains no four distinct sets A, B, A, B' satisfying
AuB=A4'"UB, AnB=A'nPB.

This theorem and the next three propositions give the lower bound of

(3).

PROPOSITION 1.5. Suppose |Y|> 1. Then the polynomial det D(Y) is not
the zero polynomial.

PROPOSITION 1.6. Suppose |K| = q, in particular that K is finite. Then the
number of k-tuples A € (X) for which det DY) =0 holds for some | and some
Yc A, [ <|Y|, is bounded from above by 2*k*(, 9 ).

PROPOSITION 1.7. There exist constants c,, C4,.., €2, € K such that the
family F defined in Theorem 1.4 satisfies

(%) q .
Bz, 4 )

Now for n a prime power the lower bound in [3] is immediate
from Theorem 1.4 and Proposition 1.7. Note that H,(n) is a monotone
increasing function of n. As for every n there exists a prime g satisfying
n>q=n—o(n) (see [6]) the lower bound in [3] holds for all n.
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2. THE PROOF OF THEOREM 1.4

Suppose that for some A, A', B, B' the assumptions AU B=A4"UB,
AnB=A"nB hold. We have to prove {4, B} ={A’, B'}. Let us define
C=AnA,D=An(B'—-A4"), C'=Bn B, D=Bn(A’"—B’). Then these
four sets satisfy CNnD=CnD' =CnD=CnD'=g, CuD=A,
CuD'=A4,C'uD=PF, C'uD = B. Consequently, we have that

0,{CUD)=0,(CuD)=0{C'UD)=0,(C"UD")=cy
holds for 0<i<1.

PROPOSITION 2.1. There exist non-negative integers a,b such that
at+b=tand o (C)=0/(C"), 6(D)=04D’) hold for 0<i<2a, 0<<2b.

Proof. Let a and b be the largest integers for which ¢,(C)=o{(C’) and
o/{D)=0,D’") hold for 0 <i<2a, 0<;<2b, respectively. Assume a+n<t1.
Let us write out the equation for a,,, 5, 5:

02+2+20CUD)= Z 6{C)0aiap42-dAD)=Coar2p42-
0<ig2a+2b+2

Denoting this equation by e, and the analogous equations for C'u D',
CuD’, C'"uD by e,,, €5, €5, respectively, e, + e,, —e,, — 5, reads

Z (Gi(c)_O-i(C,))(UZa+2b+2—i(D)_62a+2b+2—i(D’))=0'

0<ig2a+2b+2

Since 6(C)=0(C’) for 0<i<2a and o(D)=0,(D’) for 0<j<2b, this
equation reduces to

(0204 1(C) = 0204 1 (C' 02 4 (D)~ 03, 1(D))=0.
Assume by symmetry o,,, ;(C)=0,,,,(C’). Now write the equations
involving a,,,,:
02+ 2ACUD)= z 06(C) 0242 AD)=Co0y .

0<i<2a+2
Subtracting from this the corresponding equation for C’ and D we obtain
(oo(D)=1)

02a+2(C) = 0204:2(C)+ Y (6{C)~0(C")) 020r2_AD)

0<ig2a+1
=02542(CUD)~02,,(C"UD)=0.
Since 0,(C)=0,(C") for 0<i<2a+1, g,5,,,(C)=0,,,,(C'), contradicting
the maximal choice of a. ||

641/23/2-5*



214 FRANKL AND FUREDI

If |C| <2a, then C=C" and thus A=B', 4'=B, ie, {4,B}={4", B’}
follows. Similarly, in the case |D|<2b. Thus we may assume |C|>2a,
|D| > 2b.

PROPOSITION 2.2. Either |C| —2a<t—a or |D|—2b<t—b holds.
Proof. Suppose the contrary. Then we infer—using |C] + |D| =3t + 1—

3t+1-2a—-2b=22t—a—b+2 or equivalently t2a+b+ 1,

contradicting the choice of a, b. ||

Assume, by symmetry: 0 < |D| —2b<t—b holds.

PROPOSITION 2.3. 4,(D)=0a/(D’) holds for all j=0.

J

Note that this proposition yields D= D’ and consequently {A4, B} =
{d4’, B'}, ie., it concludes the proof of Theorem 1.4.

Proof of the Proposition. For i=1,.,t—b let e, (e/) denote the
equation 0, 3 (CUD)=cCpra (024 2{CUD )=y »), respectively.
Now e;—e; reads (using g(D)=0,(D’) for 0<j<2b)

Z aj(c)(02b+2iAj(D)_02b+2iAj(D’)) =0.

0<j<2i

This is a homogeneous system of linear equations in the variables
Ooprv(D)—05 (D) for v=1,.,¢t—b, because |D|<t+b by our
assumptions, i., o,(D)=0 for j> ¢+ b. By the assumptions of Theorem 1.4
the determinant of this system det D, _,(C) is non-zero; consequently
G (D)=064,,(D') holds for v=1,..,r—b and consequently o(D)=
o(D’) for all j>0. |

3. THE PROOF OF PrOPOSITIONS 1.5, 1.6, AND 1.7

The Proof of Proposition 1.5. Suppose first / odd. Let L be an arbitrary
extension field of K over which x’— 1 factorizes (splits?) into linear factors,
ie, (x'—1)=TI!_,(x—¢; holds with ¢;e L. Note that the ¢; are not
necessarily distinct but g(¢;,.., &) =0 holds for all j>0 except for j=/,
6/&;,, &) =1. Let us count D(e,..,¢,0,0,.,0). Denoting by d; the
(i, j)ith entry of D (e,,..., &, 0, .., 0) we see that

d;=1 if j=2i (mod /)

=0 otherwise.
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Consequently

((l+1)/2)
dCt D[(Sl,..., &y 0, avey O)=(—1) 2 #O,

thus det D(Y) is not the zero-polynomial over K either.
If [ is even, we argue in the same way but for an extension field L’ con-
taining all the roots of x'*'—1, |

Note that it might happen that DY) assumes only the 0 value over K if
|K| is small ({K] < (1/2)).

The Proof of Proposition 1.6. Fix a subset N={n,,n,,.,n}c
{1,2,.,k}, N=. Let us suppose X={x,.,x.}€(X), such that
Y={x,eX, ieN}, detD(Y)=0 (|Y|=|N|>I). By the preceding
proposition we may find #n,e N for which det D/(x,,,..., X,._,, ¥, Xp,, soes X,
considered as a polynomial p(y) of y is not identically zero. Moreover
deg p(y)<! For any choice of {x,, X5,.., X, 1, X, 4 1, Xx} there are at
most / values of y satisfying det D(Y)= p(y)=0. Since there are only
2¥—2 choices for N, and less than k choices for /, the statement follows. ||

The Proof of Proposition 1.7. Let us look at the values of o,,(X) for
1<i<t, |X|=k and X such that det D(Y)#0 holds for all Y« X. The
number of possible value sequences is bounded by ¢’. On the other hand,
by Proposition 1.6 we have at least (7) — 2*k?(, ¢ ,) choices for X; thus there
is a particular value sequence, say c,, ¢,,..., C5,, Which occurs at least

(2)/q' —2*k*(, ¢ ,)/q" times. 1

4. THE PROOF OF THE LOWER BOUNDS OF (4) AND (5)

First we prove (4). Let # < (;,%,) be a family of maximal size and
without four distinct sets 4, B, A’, B’ satisfying AUB=A"UB, AnB=
A'NB'. Define F(x)={F—{x}: xe FeF}, for every xe X. Obviously
Seex | F(x)=@t+1)|F|=(3t+1) H;, (n) holds. Thus we may choose
some xeX satisfying |#(x)| =((3t+1)/n) H;,,(n). Moreover, F(x)
satisfies the assumptions: therefore are no four distinct sets
A, A, B, B'e #(x) satisfying AUB=A"UB', AnB=A'nB, F(x)c
(*51*1). Using (3), we infer

1
Be+1)!

= ((_311_)'_ o(1 )) n*.

To prove (5) consider again a family & realizing the maximum size but

Hyn) > | (x)| >3’—:—1( —o(l)) e
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this time for k'=2k=6t+4=3(2t+ 1)+ 1. For each Fe % let us fix a
partition of F into two-element sets: F= P U -+ U Py, ,. Let us define

X
9’*‘={{Pl,...,P3,+z}:Pie(2), 1<i<3t42(PU - UPy ,)eF ).

Obviously || =|#]|, and & also satisfies that for any four fistinct
A, B A", B e% either AUB#A"UB or AnB+# A nB. Thus, we have

. 1_0(1) n (41 +3)/2
H3:+2<(2)>'>"(6t_+1_)~g<2 <2>) '

Using (3) and setting 37 + 2 ==k we infer

H,(n)= (:2% —o(l )) (2n)t4 302,

5. Tue Proor oF tHE UpPER BOUNDS

Let us set s =[ (2k — 1)/37]. Suppose # <= (), # contains no four distinct
sets A, B, A', B’ satisfying AUB=4"UB, AnB=A"n B For Se(¥) let
us set Z(S)={F—S:ScFe#} and dz(S)=|#(S)|. Obviously,

Y ds(S)= Y ('f')=(k) |Z]. (6)

s
Se(f) Fe#F

Using the inequality between the arithmetic and quadratic means:

) (@(S))"‘z((';) tgfz)z/(’;).

Se(f)
Combining this with (6) we obtain
de(S\_1(k\ . ((k n\
= ()0 (OmfC)r) o

On the other hand for S, S'e (¥), T, T' e (¥ (S)n #(S")) implies that the
four distinct sets A=SuT, B=S'uT, A'=SuT, B=S5uT satisly
AUB=A"UB, AnB=(SNnS)u(TnT)=AnB. Consequently the
sets (1) are pairwise disjoint for Se(}), yielding

P L I
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Let us set a=|#| (*)/(?) and note (§) <b%/2. Combining (7) and (8) we

obtain
n n \?
(Yaa-ve(,") o

If k=3t+1 then s=2t+1 and (9) yields

- 7] k
IZ1<d+o(1)) (2t+ l)/(2i+ 1)’
as desired.

If k=3t then s=2¢, (9) yields a(a—1)<(¥) and consequently a<

VG +1, that is, [F[ < (2)(/ () + 1)/(3), yielding (4).
If k=3t+ 2 then s=2t+ 1. Now (9) yields

a(a~1)<(1+o(1));;’f—f(2‘“),

t+1
consequently
GHYye+1
F S {4r+3y2 i+1 .
e g et

To complete the proof of Theorem 1.1 we must prove Proposition 1.2.
The first two inequalities are trivial; to prove the third let us take & < (§),
satisfying |F| = H (n} and for any four distinct members 4, B, A’, B'e F
either AUB# A UB orAnB#A nB. Let X=Y,uY,u - uY,_,be
a random equipartition of X, that is, |Y,]=[(rn—i)/k. Let us define
F( Yoo Yo )={FeF: |[FnY]=1, 0<i<k—1}. The expected num-
ber of members of #(¥y,..., ¥, _ ) is

[ Yol 1Y,]- n 1Yl \F| = |F| k! kﬁjw},&éfﬁ}. {10)
() =0 71 k

Thus there exists a choice of Yy,.., ¥, _,, forming an equipartition of X
and satisfying

i‘g(YO! Yl,"" Yk.—i)* >Hk(n) k!/kk.

(The theorem “every k-uniform % contains a k-partite & < & with |#] >
|F| k!/k* is due to Erdds and Kleitman [3].)

Now the validity of the third inequality is proved if we show
that & = #(Y,,... Y,_,) is union-free. Suppose the contrary, ie., there
exist A,B A, Be%, {4, B}#{4,B} with AUB=A'UB. Then
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(AuB)nY,=(A"UB')n Y, holds for i=0,.., k—1. Since for Fe F we
have |[FNnY,|=1,(AnB)nY,=(A"nB')n Y, Taking the union of these
sets for i=0,.,k—1 we infer AnB=A'nB. As {4,B}# {4, B},
A, B, A, B must all be distinct members of # and then of %, con-
tradicting the choice of #. ||

6. CONCLUDING REMARKS

It would be nice to find out what other, more algebraic properties are
possessed by the family &, constructed in Theorem 1.4.

Let us note that for k <4 and k = 6 the family # is weakly union-free. In
particular

Fyn)= <515 +o(1 )) n’.
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