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The Chromatic Index of Simple Hypergraphs 

A hypergraph H = (V, g) is a set of vertices V = V(H) and a set g = N(H) of non- 
empty subsets (called edges) of V. H is called simple (or linear, or (0, 1)-intersecting) 
if IEnFI < 1 holds for all pairs of edges E, Fe4*. Let us denote IV(H)I by n. A 
matching in H is a collection of pairwise disjoint edges. By q(H) we denote the 
chromatic index of H, it is the minimum number q such that one can decompose 4. 
into q matchings. Clearly, q > D where D = D(H) = max~, v deg.(x) = max] {E ~ 4*: 
x ~ E}[ is the maximum degree. The neighborhood of x a V is N(x) =: [.9 {E -- {x}: 
x ~ E ~ 4'}. Define N = maxx~ v IN(x)I- For  graphs D = N. The well-known Vizing 
Theorem says. 

Theorem 1. (Vizing [8]) For every graph G = (V(G),e(G)) we have q < D + 1. 

The following would be an interesting generalization: 

Conjecture 2. For  every simple hypergraph H, q(H) < N(H) + t. 

This would imply the Erd6s-Faber-Lov/tsz [5] conjecture 

q(H) < ] V(H)t holds for simple hypergraphs. (3) 

Indeed, trivially Ig(x)l _< IV(H)[ -  1 holds. The original formulation of (3) asserts 
that if the edge-set of a graph is the edge-disjoint union of t complete graphs on t 
vertices then its chromatic number is equal to t. The equivalence with (3) was 
pointed out by Hindman [6]. 

Let v(H) denote the matching number of H, i.e., the maximum cardinality of 
pairwise disjoint edges in H. Note that (3) would imply v ( H ) >  18(H)t/n. This 
weaker (but by far nontrivial) statement was proved by Seymour: 

Theorem 4. (Seymour [7]) For a simple hypergraph H one has ~(H) >_ le(/-/)l/n. 
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Seymour  character ized the ext remal  families as well, i.e., those hypergraphs  for 
which v = Idol/n holds. This is a general izat ion of  the deBrui jn-Erd6s  [2] theorem 
on combina tor ia l  geometries.  A m o n g  o ther  part ial  results, using a compute r  search 
H i n d m a n  [6] p roved  (3) for n _< 10. 

Conjecture  2 appears  to be very difficult. A first step could be to establish the 
following. 

Conjecture 5. v(H) >_ ]~(H)[/(N(H) + 1) holds for every simple hypergraph  H. 

Let H be a simple hypergraph  and  co: g (H)  ~ N+ a non-negat ive  real valued 
function on the edges, f[ ~ PJ = ~ E  ~ g(n) ~(E) .  If Conjec ture  2 is true then the follow- 
ing is an easy consequence:  

Conjecture 6. There  exists a match ing  ./A¢ c do(H) such that  

ll ll (7) ~, ~ ( M )  >_ N(H) + 1" 

Let us note that  a weaker  version of (7) namely,  max ~ (~#)  > l[ ~ ][/n, was conjec- 
tured by Seymour  [7]. 

Now we settle the above  conjectures for intersecting hypergraphs.  Another  
special case, when H is a cyclic Steiner-system, was proved  by J. and M. Co lbourn  
[3]. We have to remark  that  Conjecture  2 was posed independent ly  by C. Berge 
[1] and H. Meyniel  (unpublished). 

Theorem 8. Suppose that H is a simple, intersecting hypergraph, i.e., I E • F1 = 1 holds 
for all pairs of distinct edges E, F ~o*(H). Then JS(H)I <_ N(H) + I. 

Before the p roof  we recall a definition and  a lemma.  A collection of sets E 1, E2, 
. . . .  E s is called a star with kernel K if Ei VI Ej = K holds for every 1 < i < j _< s. The  
following l emma is a very special case of  a theorem of  Deza  [4] on equidistant  codes: 

L e m m a  9. Let P be a simple, intersecting hypergraph and suppose that [E] = k holds 
for all E~do(P), [do(P)[ _> k 2 - k + I. Then either P is a star or it is isomorphic to a 
finite projective plane of order k - 1. [] 

Proof of Theorem 8. Let Eo be an edge of H of minimal  size. Deno te  [Eol by k. The  
case k = 1 is trivial, so we will suppose  tha t  k > 2. Define d = { E s  do(H): IEI = k}, 
N' = d ° - d .  By definition for every x ~ V we have 

E (I El -- 1 ) =  N(x) 
E : ~ x  

i.e., 
(k - 1)degAx) + kdeg (x)  N 

Since H is l-intersecting, we obtain  

Y' d e g d ( x ) =  [all  + k - 1 
x~Eo 

and 

Z deg~(x) = [~1. 
x~Eo 
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Hence the above three inequalities yield that  

(k -- 1)()d{ + k - 1) + k]~l  ___ kN. 

Rearranging we get 

1 (k 1)2). I~(H)I -< N + ~ ( l d l  - - (lO) 

1 
Since ]g(H)[ is an integer the p roof  is complete unless ~ ( [ d l  - (k - 1) 2) > 2, or 

equivalently, Is¢[ > k 2 + 1 holds. However  this inequality implies, by Lemma 9, 
that  d is a star. Denote  by x o the center of  the star, and let A 1, A 2 ~ d ,  degu(xo) = d. 
Every pair  xl  ~A 1 - {Xo}, x2 sA2  -- {Xo} is contained in at most  one member  of 
H, hence 

On  the other  hand  

Ig(H)j _< d + (k - 1) 2. (11) 

N >_ [N(x)l > d(k - 1). (12) 

As d > k 2 + 1, (11) and (12) give IN(H)I -< N + 1 finishing the proof. 

The case of equality in Theorem 8. We need two more definitions. A near-pencil (of 
order n) is  a hypergraph  N V(N) = {1, 2 . . . . .  n} and g(N) = {{1, i} 2 _< i _< n and 
{2, 3 . . . . .  n} }. Call the hypergraph a star with a loop it if has a one element edge 
{x}, and all the other  edges have 2-elements and contain  x. N o w  suppose that  H is 
a simple, interesting hypergraph with Ig(H)I = N(H) + 1. Then by (10) we have 
Fall > k 2 - k + 1. Hence L e m m a  9 implies that one of  the following three cases 
holds 

(a) H is a star with a loop, 
(b) H is a near-pencil, 
(c) H is a finite projective plane. 
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