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Abstract. We give a hypergraph generalization of Gallai's theorem about factor-critical graphs. 
This result can be used to determine z*(r, t) for r < 3t/2, where r*(r, t) denotes the maximum value 
of the fractional covering numbers of t-wise intersecting hypergraphs of rank r. 

1. Introduction. t-Expansive Graphs and Hypergraphs 

Let ~ be a finite set-system with non-empty members (i.e. ~ is a hypergraph) and 
let us denote by t (Y)  the minimum integer t for which 

IU~:¢~'I < I~,~('1 + t (1.1) 

holds for all ~ '  c ~ .  If t(Jt ~) = t, then we call H t-expansive. If H is 2-uniform, 
i.e. [H[ = 2 for all H ~ ,  i.e. H is a graph, then its expansion number t ( ~ )  equals 
to the matching number v(~) ,  where the matching number denotes the maximum 
cardinality of an edge-set of A ~ containing pairwise disjoint edges. 

Let us denote by X - x the set-system {H e ~ :  x ¢ H}. Y is t-stable (or critically 
t-expansive) if t(Jt ~ - x) = t(Jt ~) holds for all x ~ U~¢. Similarly, the graph ~ (or a 
hypergraph ,~P)is v-stable if v((¢ - x) = v(N) holds for all point x. E.g., the complete 
graph K2~+ 1 and the circuit C2~+1 are v-stable. The v-stability and t-stability 
coincide for graphs. 

More than 20 years ago Gallai [11] proved that if a graph N is v-stable and 
connected then it is factor-critical, i.e. ~ - x has a one-factor for all x s U(¢. Hence 
pUN[ < 3v holds for all (not necessary connected) v-stable graphs. Here equality 
holds only in the case when N is the disjoint union of v triangles. (Triangle means 
the complete graph K3.) This result plays an important  role in the Edmonds-Gallai 
structure theorem (see [6], [11], [13, Problems 7.26-7.32]). 

In this paper a similar theorem is proved about  t-stable hypergraphs which 
generalizes Gallai's result. Our theorem shows that the natural extension of the 
matching number of graphs to hypergraphs is the expansion number (and not the 
usual matching number). 

We have to mention that the concept of t-expansion is not unknown in hyper- 
graph theory. E.g., Brace and Daykin [3] proved that t(,,ug) = t, I U ~ t  = n implies 
I,~r < (n -- t + 1)2', where equality holds iff U ~  = X = A UB, fAr = n - t, IB[ = t 
and ~ = {H c X: IHf3AI <_ 1}. Daykin [4] proved for rn > 2t, Bang, Sharp and 
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Winkler [2] proved for m > 1.3t and Daykin and Frankl [5] proved for m _> t + 25 
that if ~ is a t-expansive hypergraph on the m-element set X then min~ ~ x deg~e(x) 
< 2 ~, where deg~e(x) = I{H e J~,~: x e H} ], the degree of x in the hypergraph o~. 

2. Critical t-Expansive Hypergraphs 

Theorem 2.1. Let H be a finite set-system consisting of at least 2-element members, 
and let t be an integer. Suppose that 9 f  is t-stable (i.e., (!.l) holds for ~ and for all 
~f" - x.) I f  s,~ is connected, then I~ocgl <_ 2t + 1. Here equality holds if the graph 

= {E: E c H ~ f ' , I E I  = 2} is a factor-critical graph on 2t + 1 vertices. 

Corollary 2.2. Suppose a~ is a t-stable hypergraph in which every edge has size >_ 2. 
Then IUJt°l <_ 3t. Here equality holds iff ~ is the disjoint union of t triangles. 

Let a'f be a v-stable hypergraph of rank r (i.e., VH ~ ~¢' we have IH] < r). Erd6s 

and Lovfisz [7] and Lovfisz [14] proved that I~ Jg ]  < -  . Lov~isz 
r 

conjectures that there exists a constant c, (depending only on r) such that I U ~ ]  < 
c,v. (This c~ cannot be less than 4'/10r. The best upper bound is due to Tuza [17-1, 

( r v ; r )  
I ~)Jg[ _< .) The following special case, which arose in a conversation with 

P. Erd6s, seems to be more hopeful. 

Conjecture 2.3. Let N be a graph and -~  be the hypergraph consisting of the vertices 
of the triangles ofN. I f~ f  is v-stable, then I ~ 1  < 5v, and here equality holds only 
if N consists of v disjoint K 5. 

3. Application. Fractional Covering Number of t-wise Intersecting Hypergraphs 

The covering number T(gf) of a hypergraph • denotes the minimum cardinality of 
a cover T (i.e., T n  H # ~ for all H ~ ~ ) .  The real function t: (U~uC)---, ~ is called 
fractional cover of Jt ° if t(x) > 0 for all x and Zx~ut(x)  > 1 for all H ~ a~¢'. The sum 
[[t]l = Z {t(x): x~  UW} is the value of the fractional cover t. The fractional cover- 
ing number of N ,  denoted by T*(gf), equals to min{ l[ t r]:t is a fractional cover of 
.,~}. Analogously, the function w: ~'~ ~ ~ is a fractional matching if w > 0 and 

H~ w(H) < 1 holds for all y ~ U a~'°. The fractional matching number, v* (~) ,  is the 
maximum value of [] w [], where l[ w [] = ~ n  ~ s~ w(H). The Duality Theorem of linear 
programming implies (see, e.g., [13, Problem 13.48], [15]) that v* = z* holds for 
all hypergraphs ~f'. Trivially, v < v* = z* _< z holds. 

A hypergraph ~t" is called t-wise intersecting if H~ f3/42 N.. .  fl H, ~ ~ holds 
for all H~, . . . ,  H ,~W.  The 2-wise intersecting hypergraphs are called briefly 
intersecting. 

Verifying a conjecture of Lov~isz [12] the author proved [10] that z*(W) < 
r - 1 + (l/r) holds for every intersecting hypergraph J¥ of rank r, and here equality 
holds iff o~f is the hypergraph consisting of the lines of a finite projective plane of 
order r - 1. This result was generalized together with Frankl [9] for t-wise inter- 
secting hypergraphs: If r = q,-~ + qt-2 + . . .  + 1 and ~,o is a t-wise intersecting 
hypergraph of rank r then v*(W) _< q + (l/r) where equality holds iff ~ is the 
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hypergraph obtained as the set of hyperplanes  of  the t-dimensional finite projective 
space of order  q. Denote  by r*(r, t) =: max {z*(,XP): ~ff is t-wise intersecting and its 
rank is r}. Theorem 2.1 helps us to determine the function z*(r, t) for small values 
of r, namely: 

Theorem 3.1. L e t  2 < t < r be integers.  I f  r < 3t - 1 then z*(r, t) = 1 + 2/(3t - r). 
Moreover ,  z*(r, t) = 1 + 2/r f o r  r = (3t - 1)/2. 

If the rank r of the t-wise intersecting hypergraph  Yf is less than t then O f  
~,  hence z(Y¢') = r * ( ~ )  = 1, i.e., in this case r*(r , t )  = 1. 

E x a m p l e  3.2. Let 2 < t _< r _< (3t - 1)/2. Let  D be an (r + 1)-set and D = Do (3 D1 t_J 
--" U Dr_, be a partit ion, where[Dot = 3t - 2r + 1 ( >  2), and [DI[ = " "  = ]Dr-t[ = 3. 
Define the hypergraph Y~'(r, t) on the vertex-set D as follows: ~ = ~ o  U Yfl where 
Ho = {H c D: IH] = r, Do C H }  and ~ I  = { H  = D: IHI = r - 1 ,  31<_ i <_ r - -  t 
such that  IDi f-I H[ = l}_._I.e., the complements  of the members  of Yf form a graph 
over D consisting of (3t -- 2r + 1) isolated vertices and (r - t) disjoint triangles. 

We will use the following notat ion:  Y~(r , t )  = ((3t - 2r + 1)K 1 + (r - t )K3)  c 
where d + ~ denotes the disjoint union of the hypergraphs d and ~ and 3/f c the 
hypergraph consisting of the complements  of the edges of o~¢'. Moreover ,  K~ denotes 
the hypergraph consisting of a single 1-element set and K 3 the triangle. 

It is easy to calculate that z*(o~ff(r, t)) = 1 + 2/(3t - r). The fractional cover 
t: D--* ~ 

f2 
e for x ~ D O 

t(x)= for U D, 
1 ~i<_r-- t  

Shows that z*(J¢') _< [ttH = (3t - r + 2)cc (Here c~ = 1/(3t - r).) The fractional 
matching w: o'/f --, {R 

w(H) = {~ ct forf°r H~JC'°H~ 

shows that (3t - r + 2)a = [I w [I -< v*(W) = z*(ovg). The fractional covering num- 
bers of the following Examples can be calculated in the same way. 

E x a m p l e  3.3. Let t be an odd integer and r = (3t - I)/2. Let fq(r, t) = (½(t + 1)K3)q 
Then  z*(f~) = (r + 2)/r. 

Define the hypergraphs sO, M, cg, cg, and @ by their incidency matrices (see 
Fig. 1). I.e., let 

I "r' I"1 0 0  0 0  • • Q  

Fig. I. 
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s¢  = { { 1 , 2 , 3 } , { 1 , 2 , 4 } , ( 1 , 3 , 4 } , { 2 , 3 , 4 } } ,  

= {{1,2,3},{1,2,4},{3,4},{2,5},{1,5}},  

cg = { { 1 , 2 , 3 } ,  { 1 , 4 } , { 2 , 4 } , { 1 , 5 } ,  {3 ,5}} ,  

cg' = (g U { {3,4}, {2, 5} }, 

..@ = { { 1 , 2 } , { I , 3 , 4 } , { 2 , 3 , 4 } , { 3 , 5 , 6 } , { 4 , 5 , 6 } , { 5 , 7 } , { 6 , 7 } } .  

Example 3.4. Let  t + 2 < r ( < ( 3 t  - -  1)/2) and  define Y#~(r,t) = ((3t - 2r + 3)K 1 + 
~& + (r - t --  2)K3) c. T h e n  r * ( ~ )  = 1 + 2/(3t - r + 2/3). 

Example 3.5. Let  t + 2 < r a n d  define d~b(r, t) = ((3t --  2r + 2 )K I + ~) + (r - t - 
2)K3)L T h e n  V*(/a~b)= t + 2 / ( 3 t - - r  + 0.5). 

Example 3.6. Let  t + 2 < r an d  define Jta~(r, t) = ((3t - 2r + 2)K 1 + cg + (r - t - 
2)Ka)  c. T h e n  r * ( ~ )  = 1 + 2/(3t - r + 2/3). 

D O D I ... D~_, 

°o ° I }::o 

°ol...t.. i 
0 0 0 1 0 0 0  

3 t - 2 r +  1 3 ( r - t )  

Example 3.2 (r = 16, t = 12) 

0 
0 

0 
0 

0 
0 

0 
0 0 0 0 0  

• 0 0 0  
• 0 0 0  
O 0  • • 
0 0 0  • 

: 0 0 0 0  • 
0 0 0 0 0  

)k y y 
3t - 2r + 3 7 

Example 3.7 

3(r - t - 3) 

0 
0 

0 
0 

0 
0 

0 

~ y  ) ~ k y 

3t - 2r  + 3 4 3 ( r -  t - 2) 

Example 3.4 

"14 ° o 

'.1...i t 0 0 0  • 

0 1  

Example 3.3 

Fig. 2. (r = 16) 
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Example 3.7. Let t + 3 _< r and define ~g~(r,t) = ((3t - 2r + 3)K,  + ~ + (r - t - 
3)K3) ~. Then  z * ( ~ )  = 1 + 2/(3t -- r + 0.75). 

All of  these Examples  are t-wise intersecting. We are going to prove  T h e o r e m  
3.1 in the following sharpened  form. 

Theorem 3.8. Let ~ be a t-wise intersecting hypergraph of rank r. Suppose that 
z*(2/~) > r*(r - 1, t). Then ~ has a minor J¢~o isomorphic to one of the Examples 
3.2-3.7. 

Here  ~"0 is a minor  of  J~  if its incidency matr ix  is obta ined  from the incidency 
matr ix  of  ~ by deleting rows and columns.  

4. The Proof of Theorem 2.1. 

Let .Xp be a t-stable hypergraph  with at least 2-element edges. If H ~ X and A c H, 
[A[ > 2 then the hypergraph  ~ U {A} is also t-stable on the same underlying set. 
Hence we can suppose  that  ~ is a lmost  a downset ,  i.e., if ]A[ > 2, A c H ~ o~ then 
A e X .  Let us define ~ = {A s ~ " :  [AI = 2}. ~ is connected,  so ff is a connected 
graph  as well. As usual, F(x) denotes  the ne ighbourhood  of the point  x in the graph  
N, i.e., F(x) = {y: {x,y} ~ } .  

A subsys tem d c .;4" is called maximal if I U d [  = [ d [  + t, the member s  ofs~" 
are pairwise disjoint and  [ U d  ] is max imal  with respect to these constraints.  Let 
us choose a max imal  subsystem and denote  it by N'. Let UN '  = x .  

L e m m a  4.1. For each x ~ X there exists a t-expansive set-system ~x such that ~)~gx 
covers X - {x}, x ¢ ~ ) ~  and it consists of pairwise disjoint edges of ~ .  

Proof. H is a stable t -expansive hypergraph ,  hence there exists a set-system ~g = 
{C1 . . . . .  C~} c W - x, such that  IUf f [  = l + t. Let C[ = Ci - U { C / j  < i}. The  
existence of the system {C[: tC~[ _> 2} shows that  the following family of  subsystems 
is non-empty :  

C~ = {@: ~ c ~ ,  N contains disjoint members ,  @ is t -expansive and x ¢  U ~ } .  
Let  ~f~ denote  a subsystem belonging to _C~ for which [ ~  Cl %1 (i.e., the n u m b e r  

of  the c o m m o n  members ) i s  maximal .  We a re  going to show that  X - {x} c U ~ .  
Suppose  for contradic t ion  that  y e X -  {x} but  y ¢  U~f~. Let  B e N '  the edge for 
which y s B. We distinguish two cases. If  x s B then {x, y} s X and the subsys tem 
~ U { x , y }  would be (t + 1)-expansive. If x C B  then let {C 1 . . . .  , C~} = { C ~ /  
C n B ¢- 2~}. The  set-system ~ - {C~ . . . .  , C~} U {C~ - B: ]Ci - BI > i} U {B} be- 
longs to C~, too, and has more  c o m m o n  member s  with N' than ~f~. This  contradic-  
tion proves,  that  such a y does not  exist, i.e., (U~f~) ~ X = X - {x}. [ ]  

Proposition 4.2. [[Jg~ I = Ix[  _< 2t. Here equality holds i f ~  ~ f~. 

Proof. ~ consists of  at least two-element  disjoint sets, hence we get 2[~[  _< [Q)9~ I = 
[~l  + t, i.e., ]N'I < t, hence t[,_)~l < 2t. [ ]  

Proposition 4.3. The sets Uc~x(x ~ x )  and the set U ~ cover ~ ) ~ .  

Proof. Suppose  for contradic t ion that  y ~ U ~ -  U{~)~x :  x ~ X } -  U ~ .  Then 
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there exists a 2-element subset {x, y} 6 9¢'. Joining the set {x, y} to c~ we get a 
(t + 1)-expansive subsystem, which is a contradiction. [ ]  

Returning to the proof  of Theorem 2.1 we distinguish two cases. 

1) If each (U ,Ex)c X then Proposi t ion 4.3 yields that  [ U H [  = 10~[. Now 
I U ~ [  < 2t, by Proposit ion 4.2, and we are ready. 

2) From now on we can suppose that  there exists a ~fx such that  (UEx) - X ~ ~.  
Then [~CK~l > [XI. But 9~ is maximal, hence I~E~[ = IXI and [({,j~) - X[ = 1. 
Let us denote by U ~  - X = {z}. Obviously, F(z) ~ X (y ~ F(z) - X implies 
that  N U {z, y} is (t + l)-expansive, which is a contradiction. 

Proposition 4.4. Let  u ~ F(z). Then ~gu is maximal t-expansive and (~)~g,) c (X  U {z} ). 
(cg, is defined by Lemma 4.1.) 

Proof. By definition (more exactlY by Lemma 4.1)(UE,) ~ X = X - {u}. I fz  ~ U ~  
then the system cg, U {z, u} is (t + 1)-expansive, which is a contradiction. Hence we 
get U ~ ,  = (X - {u} U {z}). This yields that  [ Ucg, t >_ [gl,  i.e. cg, is maximal, as well. 
So we have U~K, = X - {u} U {z}. []  

Change the role of ~ and z with cg and u. We get F(u) ~ X U {z}. This yields 
that  F ( F ( z ) ) c  X U {z}. Continuing procedure we get that  the component  of f# 
which contains z is contained in X t5 {z}. Hence U J F  = Uf# c X U {z}. Finally, 
IX U {z}[ _< 2t + I, by Proposit ion 4.2. The case of equality is clear. []  

Remark 4.5. In the case I U ~ l  = 2t + 1 the hypergraph ~ is not necessarily 
Z-uniform. E.g., ~ = { {2, 3}, {3, 4}, {4, 5}, {5, 1} and {1, 2, 4} }. 

Remark 4.6. The Crucial point of Gallai's proof  is the following statement: If 
the graph f9 is v-stable then v(ff - x - y) < v(f#), v(ff - y -  z) < v(~) imply 
v(ff - x - z) < v(~¢). This means that  the relation x ~ y: v(Cg - x - y) < v(f¢)is an 
equivalence relation on Uff .  A similar statement for hypergraphs does not  hold. 
E.g., the hypergraph oct ° given on the pointset {1,2,3,4,5,6,7,8}, ~ = {{4,6,8}, 
{3, 5, 7}, {2, 6, 7}, {1, 5, 8}, {2, 3, 8}, {1,4, 7}, {2, 4, 5}, {1, 3, 6} } is critical 4-expansive 
and t(Jg - {1,3}) < 4, t(~gt ° - {3,2}) < 4 but t ( ~  - {1,2}) = 4 (Fig. 3). 

1 2 3 4 5 6 7 8  

• o l o  

o •  • 

Fig. 3. 

5. Lemmas for Theorem 3.8. 

The case r = t is trivial. (If W is a t-wise intersecting hypergraph of rank t and 
(-]of( = ~ then it is the complete t-graph over t + 1 vertices.) From now on we 
suppose that t < r < 3t. 
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Let ~ be a hypergraph and denote by ~t(X) the optimal value of the following 
linear program 

#(~¢') =:maxm { x ~ J r ,  rn(x): m(x)>O,x~e ~ m(x)_< 1 for all E ~ } I  

(Properly, # ( Y )  = v*(~F r) where ~ , r  denotes the dual of ~ . )  

Proposition 5.1. Let o~ = (o~ 1 + . . .  + ~)c.  Then ~*(~,") : E/(Y', - 1) where 2 = 

Proof. Trivial. It follows from the definitions of # and r*. [ ]  

Definition 5.2. For  any hypergraph ~ denote by f(24 ~) the following 

f ( ~ )  = : # ( o ~ ) -  IU~I + ~ t ( ~ ) ,  

where t(Jt °) denotes the expansion number.  
The aim of this section is to prove the following two lemmas. 

Lemma 5.3. f(~4, ~) > 0 for every ~ .  

Lemma 5.4. Suppose ~ is connected and f ( ~ f ' ) <  I/2. Then ]U ) f l  <_ 7, t ( ) f )  <_ 3 
and one of the following six cases holds: 

1) 2If ~ K 1 and then t = O, f = O, 
2) ~ ~ K 3 and then t = 1, f = O, 
3) ~ d a n d t h e n t = 2 ,  f =  1/3, 
4) ~ M a n d t h e n t = 2 ,  f =  1/4, 
5) g c__ ~ '  ~ c~, and then t = 2, f = 1/3, 
6) J ~ ' ~ @ a n d t h e n t = 3 ,  f = 3 / 8 .  

Proof of Lemma 5.3. We need a series of propositions.  We will use induction on 
I U~,~[ =:v. The case v = 1 is trivial. 

Proposition 5.5. I f  2,~ is not t-critical then f ( ~ )  > 1/2. 

Proof. We have a vertex x ~ V(~¢ ') such that t ( ~  - x) < t. Use the inductional 
hypothesis for ~ -- x. We have 

f ( ~  - x) = #(94" - x) - (v - 1) + ~(t - 1) > 0. 

As #(,g') _> #(v~t ° - x) we obtain f ( ~ )  >_ 1/2. []  

Proposition 5.6. I f  there exists an H ~ ~f~ with ]HI -> 4, then f(o~) >_ 1/2. 

Proof. It is similar to Proposi t ion 5.5. Consider  2/g - H and apply the inductional 
hypothesis. We  have 

f (o~  -- H) = ~ ( ~  - H) - (v - - I n l )  + 3(t - t i l l  + 1) _> 0. 

Hence 
f ( ~ )  > #(J~6' - H) -- v + 3t _> ½(Inl - 3). 

Corollary 5.8. I f  there exists an edge H s ~  with [HI ~ 3, then f(~f  ~) > O. 

(5.7) 
[ ]  
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Proof .  It follows from (5.7). [ ]  

Proposition 5.9. L e t  2/g = Z~<-,<-, ~ .  Then  f ( J f )  = ~ f ( 3 f ~ ) .  [] 

Finally, Proposi t ion 5.5, 5.8 and 5.9 imply f > 0 if we prove it for connected 
t-critical hypergraphs  with at most  2-elements edges. In this case /~ > v/2 and 
v < 2t + ! by Theorem 2.1. I.e., 

v 3 2 t +  1 3 
U(,R ~ ) > ~ - v + ~ t _ >  - - - 2  + ~ t = ( t -  1)/2_>0 

if t > 1. The case t = 0 is trivial. The p roof  of Lemma 5.3 is complete. [ ]  

P r o o f  o f  L e m m a  5.4. We need three more  proposit ions.  We suppose that ~ is 
connected and f(Y#) < 1/2. Then by Proposi t ion  5.5 and 5.6 we have that ~ is 
t-critical and IHI -< 3 for all HEJ~4 ~. 

Proposition 5.10. Either  t < 6 and v = 2t + 1 or t < 2 and v = 2t holds. 

_ 2. ,  1) Proof .  We have # > v/3 hence by Theorem 2.1 f ( ~ )  > - ~ v  + 3t > - 5 ( ~ t  + + 
3t = (t - 4)/6 > 1/2 for t >__ 7. If v < 2t then the above inequality gives that  f > 
t /6 > 1/2 for t > 3. [ ]  

F rom now on we have to consider only finitely many cases. Hence we only 
sketch the proof. If the reader believes that  the au thor  has examined all (finitely 
many, there are < 1051 13 x 13 0 - !  matrices) cases of the hypergraphs with at most  
13 vertices, then he or she can cont inue reading Chapte r  6. It is easy to check the 
cases t < 2 (v < 5). 

Proposition 5.11. L e t  H ~ X ,  ]HI = 3. Then  ~ - H is (t - -  2)-critical. 

Proof .  It follows from Proposi t ion 5.5 and (5.7). [ ]  

Let ~.~(3) =: { H ~ - ~ :  IHI = 3}. 

Proposition 5.12. Set  z 3 : z(~(3)) .  Then z 3 >_ t --  1. 

Proof .  If we have a T ~  U ~ ,  IT[ < t - 2 such that I T N H [  2 1 for all H s Y ,  
[HI = 3, then define the function m: U~.~ ~ ~ as follows 

r n ( x ) = { U 2  i f x ~ U o . ~ -  T 
otherwise. 

Then  # ( ~ )  >_ 2 x m ( x )  > ((2t + 1) - (t - 2))/2 = (t + 3)/2. This implies f ( ~ )  _> 1/2. 
(We used that v = 2t + 1.) [ ]  

The  case t = 3. First we prove that there exist H1, H2 E Jt~(3) such that [H1 N H21 = 1. 
(~ (3 )  is intersecting, and z3 > 1. Hence, if ~,~(3) is 2-intersecting then Yg(3) ~ d 
which leads to a contradiction). Next we prove that  ~ ( 3 )  does not  contain a triangle, 
(i.e., H I, H 2, H3 e ,5f'(3), IHiNHJ[ = I implies H 1 N H 2 N H  3 =fi fg.) Suppose H x = 
{1,2,3}, H 2 = {3,4,5}. As Z" 3 > 1 we have an Hae~t~(3) such that 3q~H 3. Then  
n 3 c n 1 O n2,  e.g., H 3 = { 1, 2, 4}. There exists a H,~ ~ H1 U n 2 (otherwise m(Jt °) >_ 
5-½ + 2-~ = 3), e.g., 6 ~ H  4. Then 3 e l l ,  and H3 NH4 # Z~. If H4 = {1,3,6} then 
H2, H 3 a n d / / 4  form a triangle, hence H 4 = {3,4,6}. H - H 1 ~ K 3 + K1,  whence 
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we have a H 5 ~ {5, 6}. There exists an edge H 6 such that 7 ~ H 6. Then H 6 c { 1, 2, 7} 
and [H61 < 2. This implies that H 5 = {5,6} and H 6 = {1,7} or {2,7}. We obta ined 
the family @. [ ]  

The case t = 4. Then v = 9. Let H 1 ~ •(3).  By Proposi t ion  5.11 we have that  either 

4/1. a f t - H i  ~ d + 2 K  1 ,o r  

4/2. ~ ~ + K 1, or 

4/3. ~ -~ + K ~ where cg ~ ~ = cg,, or  

4/4. ~, 2K 3. 

The case 4/1. Let H 1 : {1,2,3), and J¢' - H 1 ~ {4} + {5} + {H2,H3,H4, Hs} 
where H~ = {6, 7, 8, 9} - {i + 4}. Consider  -.~ - /4 , -  (2 _< i < 5). Again we have 4 
cases. But 4/4 is impossible ( ~  - Hi contains  a 3-element set), 4/1 is impossible 
(then 4 or 5 would be an isolated point  in oaf') hence )¢' - Hi has two components  
one with 5 elements and the other  is an isolated vertex. This isolated vertex cannot  
be 4 or 5 and in { I, 2, 3}, so it is i + 4. But then ) f '  has two components  {1, 2, 3, 4, 5} 
and {6, 7, 8, 9}, a contradict ion.  Hence case 4/1 is impossible. 

Proposition 5.13. ~ ( 3 )  contains two disjoint members. 

Otherwise 3/f(3)is an intersecting family with r(.~°(3)) = 3 by Proposi t ion 5.12. 
Hence we can use a theorem of Meyer  [16] or Hansen and Toft  [12] which says 
that  in this case IUYg(3)I _< 7. Let  {1,2} c V ( J f ) -  (UYt'(3)), and define r e ( l ) =  
m(2) = 2/3, re(x) = 1/3 for x > 3. Then  ~ m(x) > 3.66 a contradict ion,  except if this 
m does not  fulfil its constraints, i.e., there is an edge H ~ J{' with { i, 2} c H. Then  
Yf(3) is a < 3-expansive family, and so it does not  contain 3 members with one 
c o m m o n  element (HI, H z, H 3 ~..vf(3), [Hi f? Hj] = 1, HI N H2 f'l H3 ~ ~). Then  the 
above ment ioned theorem of Hansen and Toft  says that 1 0Yf(3)[  < 6. In this case 
the following function m: V(Jg) ~ ~ shows that #(~") > 3.5 contradiction, re(x) = 
l /3 for x~  U ~ ( 3 ) ,  otherwise re(x)= 1/2. [ ]  

LetHa,H2~Jf(3) ,H~ = {1,2,3},H2 = {7, 8,9}. Then  J Y -  Hi(i = 1,2) has two 
components ,  one of them an isolated vertex x~. Ifx~ = x2 then it is isolated in ~f', 
a contradict ion.  Let  x 2 = 4, x~ = 6. Denote  c ~ ( ~ ) = :  {{u,v}: 3H~J¢ '  such that  
{u, v} ~ H}. Clearly, {4,6} q} f#(~).  

If {4, 6} fq ([..)~(3)) = e then #(,,~) _> 3 + (2/3). Suppose there exists H 3 ~ og,~(3), 
4 6 H  3. Then  H 3 ~ {1,2,3,4,5} hence )ff1{1,2,3,4,5} ,~ iS. E.g., H 3 = {1,2,4} and 
Yfl{ 1, 2, 3, 4, 5} ~ {{H~, H 3 }, {3, 4}, {1,5}, {2,5} } U {some one-element members}. 
Consider  )¢' - H 3. Then 3 is an isolated vertex, hence {3, 4} s J r .  If 6 is not  covered 
by any 3-element members of J¢' then the following m shows #(J r )  > 3.5: re(l) = 
m(2) = 1/4, m(3) = m(4) = 1/2, m(6) = 2/3, otherwise m(x) = 1/3. 

If 6 e ( U a f ( 3 ) ) t h e n  (aef - H 1 ) ~  K ,  + M, e.g., {6,8,9} ~)ff.  Then the following 
m shows that # ( J r )  > 3.5: #(i) = 1/2 for 3 _< i _< 7,/~(j) = 1/4 otherwise. So we have 
proved that  in every case #(Jr °) >_ 3.5, i.e., f ( a f )  _> 1/2 in the case t = 4. 

Proposition 5.14. Suppose a f  is t-critical, connected, [V(Jg)] = 2t + 1, x s  V(~°). 
Then the components of J f  - x have an even number of vertices. 

Proof. This trivially follows from the second half of Theorem 2.1. [ ]  
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Proposition 5.15. Let  t = 5 or 6. I f  9et ° has a vertex x which is not covered by a 
3-element member then f ( ~ )  > 1/2, 

Proof. Let m( i )=  1/3 for i #  x and re(x)= 2/3. Then  # ( ~ f ) >  I[m II = (2t + 2)/3 
yields f(Of') > (t - 2)/6 > 1/2. [ ]  

The case t = 5. Let H ~ J¢'(3), consider ~ - H and apply Proposi t ion 5.11. We have 
3 possibilities: 

5/1. 9 f - H ~ + K ~  

5/2. ~ s¢ + K 3 + K~ 

5/3. ~ ~ or ~ (where ~ ~ ~- c ~ ')  + K 3. 

First we prove that  the case 5/2 is impossible. The  p roo f  is similar to the case 4/1. 
[ ]  

Now we prove that the case 5/1 is impossible. Let  H1 = {1,2,3}, V ( ~ " ) =  
{1, . . . ,  11}, 11 is the isolated point  in o~ - H~. By Propos i t ion  5.15 we have a 
3-element set covering 11, e.g., Hz = { 1, 2, 11 }. Consider  Jt ° - H2. It is isomorphic  
to N + K~ as well, hence its isolated vertex is 3. N o w  we can suppose that {4,6, 7}, 
{5, 6, 7}, {6, 8, 9}, {7, 8, 9} ~ ~ and {4, 5}, {8, 10} and {9, 10} ~ c~()f,). We have a 3- 
element set //3 E ~ through 11. If 3 e l l 3 ,  e.g., H3 = {1, 3, 11} then considering 
Jt ° - H 3 ~ Kt  + N, we have that the point  1 is a cutpoint  with two odd compo-  
nents, which contradicts  to Proposi t ion 5.14. ( J r  - {1} = {2, 3, 11} U {4 . . . .  , 10}.) 
Hence 3 ~ H3, i.e., H3 = { 1, 2, 11 }. Consider  the following function: 

i 1 2 3 4 5 6 7 8 9 10 11 

1 m,(i) ¼ ¼ ½ ½ ½ 2 2 3 3 3 

Then [[m[[ > 4 and ~ x ~ e m ( x )  _< 1 for all EeoVf except if EfI  {1,2} # ~ and E = 
{4, 5}. So we are ready if such an edge E does not  exist. Suppose / / 4  = { 1,4, 5} e H .  
Then J¢' - / - / 4  has two components  ({2, 3, 11} and {6, . . . ,  i0}) Consider  the follow- 
ing m2:mz(1 ) = 0, m2(2) = ½ and m2(i ) = m1(i ) fo r  i _> 3. Then  2i~Em2(i)  <- 1 
excel~ for the edge H5 = {2, 4, 5} (if it exists.) Suppose  that H5 E H .  Then the 
following function m3 shows that/1(0¢') > 4: 

i 1 2 3 4 5 6 7 8 9 10 I1 

I m3(i ) ¼ ¼ ½ 3 3 z ~ 3 83_ s 

N o w  we consider the case 5/3. Let H1 = {1,2, 3} ~o~f, W - H~ ~ K 3 q- f t .  Let  
H2 ~ ~ fq ~¢tQ(3). Consider  9(¢ -- H2. It contains a 7- and a 1-element component .  But 
the case 5/1 is impossible, as we have seen above. [ ]  

The case t = 6. Let H1 ~ ( 3 )  and apply Propos i t ion  5.11 to the family 9((' - H1. 
It is critical 4-expansive on 10 vertices. Consider  the components  of Jet ~ - HI = 
~ + --. + ~ where oct~ is a critical ti-expansive hypergraph.  Apart  from the O's we 
have 5 possibilities to part i t ion 4 into non-negat ive integers: 
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6/1. 4 =  1 + 1 + 1 + 1(+0)  

6/2. = 2 + 1 +  1(+0)  

6/3. = 3 + 1 ( + 0 )  

6/4. = 2 + 2 (+  O) 

6/5. = 4 (+  0). 

By Proposition 5.6 we have that f (Jg)  >_ Z~=I f(~,~). Hence using the previous 
results we have in the case 

6/5. f (W) _> 1/2 (+0) 

6/4. f(gf') > 1/4 + 1/4 (+0) 

6/1. [ V ( J f - H 1 ) I > 4 " 3 = 1 2  

which are contradictions. In the case 6/2 we have ~ - H1 ~ d + 2K 3. Let H 2 ~ d 
and consider ~ - H 2.  Then (because only the cases 6/2 or 6/3 are possible) we have 
that at least one of the K3's remains separated. This contradicts the connectivity 
of Yg. 

Finally in the case 6/3 we have ~ - H 1 ~ N + K 3. Suppose that there is an 
edge H z with 3 elements such that ] V(K3)f3 Hzl > 2. E.g., let H 1 = { 1, 2, 3}, K 3 = 
{{11, 12},{12, 13},{13, 11}) and Hz = {1, 11, 12}. Then ~ '  - H 2 ~ ~ + K 3 hence 
Jg - {1} has two odd components ({2,3, 11, 12, 13} and {4 . . . . .  10}). 

This contradicts Proposition 5.14. So we can suppose that IN n { 11, 12, 13 } I -< I 
for H ~ ( 3 ) .  Then the following m shows that #(JC) >_ 55/12 > 4.5. m(1) = m(2) = 
m(3) = 1/4, m(11) = m(12) = m(13) = 1/2 and m(i) = 1/3 otherwise. [] 

Conjecture 5.16. Suppose that H is connected and t-expansive. Then f(Yf) _> 
(t/6) - (1 /9)  + (1/9)(-1)'2- ' .  

This is best possible (if true) as the following example shows. 

Example 5.I 7. Let ~ = {{1,2}, { 2 t -  t ,2t  + 1}, {2t, 2t + 1}} U {{i, 2 j - 1 , 2 j } : i  = 
2 8 

2 j -  2 or 2j--  3, 2 <j_< t}. Then ~ t  is critical t-expansive, # ( ~ )  = ~t + ~ + 

1 1 
5(-- 1) ~ .  

Define g, = inf{/~(Yf): Yf is t-expansive, connected}. Then we can prove the 
following proposition which can help for the proof of Proposition 5.16. 

Proposition 5.18. There exists a t-expansive, connected hypergraph ~ with I~(H) = 
~, and 1,~t -< I v(..~)l. 

6. The Proof of Theorem 3.8 

First we need some definitions. 
We call edge-contraction the following operation on a family Jr :  we replace an 

edge E ~ ~ by a smaller, non-empty set E' ~ E, and thus we get the family ~ - 
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{E} U {E'}. A t-wise intersecting family is ~-critical if it has no multiple edges and 
the hypergraph obtained by contract ing any of its edges is not  t-wise intersecting. 
That  is: 

For  all E~YF, x e E  there exists H~ . . . .  , Ht_ ~ s W  
(6.1) 

such that  E N H  1 N-.-NH~_ 1 = {x}. 

We can get a E-critical system from any t-wise intersecting set-system by contract ing 
its edges as far as possible and deleting all but  one copy of the appearing multiple 
edges. Of  course, a i-critical hypergraph does not  contain two edges, E, F such that 
E ~ F .  

Remark 6.2. I f ~  is ~-critical hypergraph of rank r then 1~[  < r 2~. 

Proof. We say that the sets E~, E 2 , . . . ,  Ek form a k-star with kernel A i fE  i N Ej = A 
holds for all 1 < i < j < k. Obviously,  X does not  contain an (r + 1)-star as sub- 
system. Hence we can apply the followlng theorem of Erd6s and Rado [8]: If the 
family ~ of rank r does not  contain a k-star then [,,uf I _< rt(k - 1)'. [ ]  

Fo r  t = 2 Erd6s and Lovfisz [7] proved that [r[e] <_ max{lYf]:  Y¢' is 2-critical 
of rank r} < r'. 

Problem 6.3. Determine or estimate max[~°l  where ~X p is i-critical hypergraph of 
rank r. 

N. Alon and the au thor  [1] have more  results on this problem. 
Now we are ready to prove Theorem 3.8. Let J~  be a t-wise intersecting hyper-  

graph of rank r such that  r*(Yf) > z*(r - 1, t). Contract ing its edges we get a 
Lcritical hypergraph N o. Our  next aim is: 

Propos i t ion  6.4. Jfo is isomorphic to one of the Examples 3.2-3.7. 

This Proposit ion is the crucial point of the proof. Its proof  consists of investigating 
several cases. 

r*(Yfo) > z*(W) because a fractional cover  t: (U3~o) ~ ~ covers 9if, too. Hence 
~*(,-~o) > z*(r - 1, t), thus there exists an edge F ~ o ,  IFI -- r. Let us define V = 
U • o  and set W 1 = {F - F': F'~Ho,F '  ~ F}. 

Propos i t ion  6.5. ~'] is a critical (r - @expansive hypergraph. 

Proof. Let H 1, H2,  . . . ,  Ht-  1 ~ Jt¢~l and let Fi be an edge from ~g(~o such that F - Fi = 
Hi- ~ o  is t-wise intersecting, hence F N F I N---N Ft_ 1 ¢ ~ holds, thus we get 
H1U- - -UH,_ I  ~ F, i.e., J¢'1 is at most (r -- t)-expansive. Now let x e F  arbitrary.  
By (6 .1) there  exist edges F1 . . . . .  Ft-~ such that  F N F 1 N . . N F , _ ~  = (x}. Then  
U ( F  - Fi) = F - {x}, i.e., {F - F/: 1 < i ___ t - 1} is an (r -- Q-expansive subsystem 
of ~uf~ outside the point  x. [ ]  

Apply Corol lary  2.2 for the hypergraph orgy. We get 

[ U { H ~ I :  1HI > 2}1 -< 3 ( r - -  t). (6.6) 

3(r -- t) < r, so we get that ~ contains isolated point. We distinguish two cases. 

Case I. ~ contains only one isolated point. Denote  it by p. We get r - 3(r - t) _< 1, 
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i.e., r = (3t -- 1)/2. M o r e o v e r  equali ty holds in (6.6) thus X I consists of (t - 1)/2 
triangles and the isolated point  p by Corol la ry  2.2. 

Let us denote  by F~, F a . . . .  , F~ the edges of a f  0 such that  F - F~ = {p}. Let 
Fj = (F 0 Fj) U {xi}. We claim that  the point  x~ is covered by all of the edges of J¢'o - 
{/:i . . . . .  Ft}. Indeed,  knowing  the s t ructure  of aft1, we can see that  for each edge 
F~ s J f o  - {F~ . . . .  , F~} we can choose edges F 2, F3, . . . ,  U -1 such that  

(") f ~ n F =  {p}. 
I < _ i < t - 1  

Replace F by F~. We have ~1_<i_<,-~ F ' n F j  4: Z,  hence it is {xj}. So x j ~ F  ~ follows. 
Hence  we get l < 2, and we obta in  Example  3.2 or 3.3 according to l = t or  2. 

Case 2. H1 contains  at least two isolated points. We claim that  

[ ~ X o l  = IV[ = r + 1. (6.7) 

Denote  two of the isolated points  by p~ and p: ,  and let o~ = {H~a fo :  H N F  = 
F - {p~} }, i = 1, 2. We prove  that  [J~21 = 1. (Then, similarly [ ~ [  = 1 holds.)Indeed,  
let F~ = F -- {p~} tO {x}. Apply  (6.t) for the edge ?'1 at the poin t  x. We get F 2 . . . . .  
U such that  F~ f'l F 2 G- . .  f'l U = {x}. A m o n g  the sets F 2 . . . . .  F '  there exists an 
edge, e.g. F z, such that  P2 ¢ Fz- Then  F 2 E o~ z. Suppose  for contradict ion,  that  there 
exists an edge if2 SYz - {FE} - We get that  F~ fq G z f-I F 3 N. - .  fq U = N, which is a 
contradict ion.  

So we have Io~z[ = 1 holds, i.e., all edge of J~0 contains the point  P2, except F 2. 
Because a f  o is i-critical, this implies that  ~J¢'o = V = F 2 U {Pa}- I.e., IV[ = r + 1. 

[ ]  

Let V = F U {p}. N o w  we prove  that  Jfo is i somorphic  to one of the Example  
3.2 or 3.4-3.7. 

Consider  the complemen t  of  Jfo, X~ = { V - F: F s afro }. Let  )¢'~ = )¢'~ + --. + 
S s . . J ~  is (r - t)-expansive and by Propos i t ion  5.1 we have 

~*(H) = 2 / ( 2 -  l) 

where ~ = ~ i  #(J~/). 

Hence we have 

/ ( ~ .  ) 3 
r * ( S )  = 1 + 1 (#(R,.) - 1 m(~ ) t  + ~t~ + I V(X)t  - 5(r  - t)) 

= 1 + 2/(3t - r + 2 ~ f ( ~ i ) ) .  (6.8) 

L e m m a  5.3 immediate ly  implies that  r * ( Y f ) _ < 1 +  2 / ( 3 t -  r), i.e. r * ( r , t ) =  
l + 2/(3t - r), proving Theo rem 3.1 in the case r < (3t - 1)/2. N o w  suppose that  
r*(~ff) > r*(r  - 1, t) = l + 2/(3t - r + 1). Then  (6.8) implies that  

f(Y~/) < 1/2. 
i = 1  

Using L e m m a  5.4 we have that  every but at most  one ~ is i somorphic  to K~ or 
K 3 and the exceptional  is i somorphic  to one of sO, .¢~, -~ (where ~ _~ Y _ ~'),  or 
~ .  Hence ~ o  is i somorphic  to one of the Examples  3.2, 3.4-7. Finally, Theorem 3.8 
follows f rom the following fact: 
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Proposition 6.9. Let  ~ be a t-wise in tersect ing h y p e r g r a p h  of  r ank  r given by  one 
of  the Examples  3.2-7.  Let  E s J f ,  JE] < r, x s  V(o,~) - E and replace the edge E by 
E U {x}. Then  for the ob ta ined  hype rg ra ph  ~ '  = ~ - {E} U {E U {x} } we have 

t,0. 
Proof. It  is an easy calculat ion.  [] 

References 

1. Alon, N., F/iredi, Z.: On the kernel of intersecting families. 
2. Bang, C., Sharp, H., Winkler, P.: On coverings of a finite set: depth and subcovers. Period. 

Math. Hung. 15, 51-60 (1984) 
3. Brace, A., Daykin, D.E.: Cover theorems for finite sets I-III .  Bull. Aust. Math. Soc. 5, 197-202 

(1971), 6, 19-24 (1972), 6, 417-433 (1972) 
4. Daykin, D.E.: Problem E 2654. Amer. Math. Mon. 84, 386 (1977). Minimum subcover of a 

cover of a finite set (Problem E 2654). Amer. Math. Mon. 85, 766 (1978) 
5. Daykin, D.E., Frankl, P.: Sets of finite sets satisfying union conditions. Mathematica 29, 128- 

134 (1982) 
6. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449-467 (1965) 
7. Erd6s, P., Lovfisz, L.: Problems and results in 3-chromatic hypergraphs and some related 

questions. In: Infinite and Finite Sets. Colloq. Math. Soc. JSmos Bolyai 10, 609-627 (1975) 
8. ErdSs, P., Rado, R.: Intersection theorems for systems of sets. J. London Math. Soc. 35, 85-90 

(1960) 
9. Frankl, P., Ffiredi, Z.: Finite projective spaces and intersecting hypergraphs. Combinatorica 

(to appear) 
10. Ffiredi, Z.: Maximum degree and fractional matchings in uniform hypergraphs. Com- 

binatorica 1, 155-162 (1981) 
11. Gallai, T.: Neuer Beweis eines Tutte'shen Satzes. MTA Math. Kut. Int. K6zl. 8, 135-139 (1963) 
12. Hanson, D., Toft, B.: On the maximum number of vertices in n-uniform cliques. Ars Comb. 

16-A, 205-216 (1983) 
13. Lovfi.sz, L.: Combinatorial Problems and Exercises. Budapest: Akad~miai Kiad6/Amsterdam: 

North-Holland 1979 
14. Lovfi.sz, L.: Doctoral Thesis. Szeged 1977. Also see: On minimax theorems of combinatorics (in 

Hungarian). Mat. Lapok 26, 209-264 (1975) 
15. Lovfisz, L.: Minimax theorems for hypergraphs. In: Hypergraph Seminar 1972, Lecture Notes 

in Mathematics 411, pp 11 I-126. Berlin-Heidelberg-New York: Springer-Verlag 1972 
16. Meyer, J.-C.: Quelques probl6mes concernant les cliques des hypergraphs h-complets et q-patti 

h-complets. In: Hypergraph Seminar 1972, Lecture Notes in Mathematics 411, pp 127-139. 
Berlin-Heidelberg-New York: Springer-Verlag 1974 

17. Tuza, Z.: Critical hypergraphs and intersecting set-pb.ir systems. J. Comb. Theory (B) 39, 134- 
145 (1985) 

Received: January 1, 1986 
Revised: February 5, 1986 


