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Abstract. We give a hypergraph generalization of Gallai’s theorem about factor-critical graphs.
This result can be used to determine t*(r, t) for r < 3t/2, where *(r, t) denotes the maximum value
of the fractional covering numbers of t-wise intersecting hypergraphs of rank r.

1. Introduction. -Expansive Graphs and Hypergraphs

Let # be a finite set-system with non-empty members (i.c. # is a hypergraph) and
let us denote by #(5#) the minimum integer ¢ for which

J# <]+t (1.1)

holds for all #” < #. If t(#) = t, then we call # t-expansive. If # is 2-uniform,
ie. |H| = 2forall He #,ie. # is a graph, then its expansion number ¢(#) equals
to the matching number v(#), where the matching number denotes the maximum
cardinality of an edge-set of # containing pairwise disjoint edges.

Let us denote by # — x the set-system {H € #°: x¢ H}. # is t-stable (or critically
t-expansive) if t(# — x) = t(#) holds for all xe  J#. Similarly, the graph & (or a
hypergraph 5#)is v-stable if v(% — x) = v(%) holds for all point x. E.g., the complete
graph K, .; and the circuit C,,,, are v-stable. The v-stability and ¢-stability
coincide for graphs.

More than 20 years ago Gallai [11] proved that if a graph % is v-stable and
connected then it is factor-critical, i.e. 4 — x has a one-factor for all x& { J%. Hence
IlJ%| < 3v holds for all (not necessary connected) v-stable graphs. Here equality
holds only in the case when % is the disjoint union of v triangles. (Triangle means
the complete graph K ;.) This result plays an important role in the Edmonds-Gallai
structure theorem (see [6], [11], [13, Problems 7.26-7.32]).

In this paper a similar theorem is proved about t-stable hypergraphs which
generalizes Gallai’s result. Our theorem shows that the natural extension of the
matching number of graphs to hypergraphs is the expansion number (and not the
usual matching number). -

We have to mention that the concept of t-expansion is not unknown in hyper-
graph theory. E.g., Brace and Daykin [3] proved that t(#) = ¢, || Jo#] = n implies
|#] < (n—t + 1)2, where equality holds iff | J# = X = AUB, [4]=n—1,|B| =1
and # = {H < X:|HN A] < 1}. Daykin [4] proved for m > 2¢t, Bang, Sharp and
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Winkler [2] proved for m > 1.3t and Daykin and Frankl [5] proved form > t + 25
that if # is a t-expansive hypergraph on the m-element set X then min, . y deg(x)
< 2, where deg(x) = |{H € 5#: xe H}|, the degree of x in the hypergraph .

2. Critical -Expansive Hypergraphs

Theorem 2.1. Let s be a finite set-system consisting of at least 2-element members,
and let t be an integer. Suppose that # is t-stable (i.e., (11) holds for ## and for all
H — x.) If H is connected, then || J#| < 2t + 1. Here equality holds if the graph
4 ={E:E c He#,|E| = 2} is a factor-critical graph on 2t + 1 vertices.

Corollary 2.2. Suppose 3 is a t-stable hypergraph in which every edge has size >2.
Then || Jo#| < 3t. Here equality holds iff # is the disjoint union of ¢ triangles.

Let 5 be a v-stable hypergraph of rank r (i.e, YH e # we have |H| < r). Erdos

-1
and Lovasz [7] and Lovasz [14] proved that || J#| < %(rv +r ) Loviisz
r

conjectures that there exists a constant ¢, (depending only on r) such that || J#| <
¢,v. (This ¢, cannot be less than 47/10r. The best upper bound is due to Tuza [17],

+r . . . . . .
\J#1 < (rv )) The following special case, which arose in a conversation with
r

P. Erdés, seems to be more hopeful.

Conjecture 2.3. Let 4 be a graph and 5 be the hypergraph consisting of the vertices
of the triangles of &. If J# is v-stable, then || J#| < 5v, and here equality holds only
if & consists of v disjoint K.

3. Application. Fractional Covering Number of r-wise Intersecting Hypergraphs

The covering number 1(#) of a hypergraph # denotes the minimum cardinality of
a cover T (ie, TN H # g for all H e ##). The real function t: (| Jo#) — R is called
fractional cover of # if t(x) = O for all x and ¥ .. 5 ¢(x) > 1 for all He . The sum
fiell =Y {t{x): x| J#} is the value of the fractional cover t. The fractional cover-
ing number of J#, denoted by t*(#°), equals to min{|¢]|: t is a fractional cover of
#'}. Analogously, the function w: # — R is a fractional matching if w > 0 and
Y usy w(H) < 1 holds forall ye ( J#. The fractional matching number, v*(#), is the
maximum value of | w||, where [[w]| = Y 4. » w(H). The Duality Theorem of linear
programming implies (see, e.g., [13, Problem 13.48], [15]) that v* = t* holds for
all hypergraphs . Trivially, v < v* = t* < 1 holds.

A hypergraph X is called t-wise intersecting if H, N H,N---N H, # & holds
for all H,, ..., H,e . The 2-wise intersecting hypergraphs are called briefly
intersecting.

Verifying a conjecture of Lovasz [12] the author proved [10] that t*(#) <
r — 1 + (1/r) holds for every intersecting hypergraph # of rank r, and here equality
holds iff # is the hypergraph consisting of the lines of a finite projective plane of
order r — 1. This result was generalized together with Frankl [9] for t-wise inter-
secting hypergraphs: If r = g™! + ¢""2 + --- + 1 and # is a t-wise intersecting
hypergraph of rank r then t*(#) < g + (1/r) where equality holds iff # is the
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hypergraph obtained as the set of hyperplanes of the t-dimensional finite projective
space of order q. Denote by t*(r, t) =:max {t*(#): # is t-wise intersecting and its
rank is r}. Theorem 2.1 helps us to determine the function t*(r, ) for small values
of r, namely:

Theorem 3.1. Let 2 < t < r be integers. If r < 3t — 1 then t*(r,t) = 1 + 2/(3t — r).
Moreover, T™(r,t) = 1 + 2/r for r = (3t — 1)/2.

If the rank r of the t-wise intersecting hypergraph # is less than ¢ then [ #
&, hence t(#) = t*(#) = 1, i.e,, in this case t*(r,z) = 1.

Example 3.2. Let2 <t <r < (3t — 1)/2. Let Dbe an (r + 1)-set and D = D,UD, U
---U D,_, be a partition, where | Do| = 3t — 2r + 1(=2),and |Dy| =~ =[D,_,| = 3.
Define the hypergraph J#/(r,t) on the vertex-set D as follows: # = #, U #, where
Hy={HcD:|H =r,Dy ¢t H} and o#, ={Hc<D:|H|=r—1, 31 <i<r—t
such that |D;N H| = 1}. Le., the complements of the members of 5# form a graph
over D consisting of (3t — 2r + 1) isolated vertices and (r — ¢) disjoint triangles.

We will use the following notation: #(r,t) = (3t — 2r + K, + (r — )K5)
where o/ + % denotes the disjoint union of the hypergraphs .« and % and s#° the
hypergraph consisting of the complements of the edges of 2#. Moreover, K, denotes
the hypergraph consisting of a single 1-element set and K, the triangle.

It is easy to calculate that t*(#(r,t)) = 1 + 2/(3¢t — r). The fractional cover
t:D->R

200 for xeD,

« forxe J D

1<i<r—t

Shows that t*(#) < |t| = (3t — r + 2)a. (Here a = 1/(3t —r).) The fractional
matching w: # - R

) =

w{H) = 2a for He i,
a for Hes#

shows that (3t — r + 2)a = [w|| < v*(#) = t*(5#). The fractional covering num-
bers of the following Examples can be calculated in the same way.

Example 3.3. Let t be an odd integer and r = (3t — 1)/2. Let %(r,t) = (3(r + 1)K, ).
Then t*(%) = (r + 2)/r.

Define the hypergraphs o/, #, ¢, ¢' and 2 by their incidency matrices (see
Fig. 1). Le, let

X e o

e o ) L)
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oo o o0 e o e ® e o
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o % 4 2

Fig. 1.
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o ={{1,2,3},{1,2,4},{1,3,4},{2,3,4}},

# = {{1,2,3},{1,2,4},{3,4},{2,5},{1,5}},

€= {{1.23},{1,4},{2,4},{1,5},{3,5}},

% =¢U{{3,4},{2,5}},

2 = {{1,2},{1,3,4},{2.3,4},{3,5,6},{4,5,6},{5,7},{6,7} .

Example 34. Let t + 2 < r (<(3t — 1)/2) and define #,(r,1) = (3t — 2r + 3)K, +
o +(r— 1 — 2)K,). Then t*(#) = 1 + 2/(3t — r + 2/3).

Example 3.5. Let t + 2 < r and define #5(r,t) = (3t = 2r + 2)K, + B +(r —t —
2K, ). Then () = 1+ 2/(3t — r + 0.5).

Example 3.6. Let t + 2 < r and define A#(r,t) = (3t —2r + 2)K, + € + (r—t —
2)K,Y. Then t*(#) = 1 + 2/(3t — r + 2/3).
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Example 3.7. Let t + 3 < r and define #(r,t) = (3t —2r + 3)K, + 2 + (r — ¢ —
3)K,). Then t(#,) = 1 + 2/(3t — r + 0.75).

All of these Examples are t-wise intersecting. We are going to prove Theorem
3.1 in the following sharpened form.

Theorem 3.8. Let # be a t-wise intersecting hypergraph of rank r. Suppose that
() > t(r — 1,1). Then # has a minor H#, isomorphic to one of the Examples
3.2-3.7.

Here #, is a minor of 5 if its incidency matrix is obtained from the incidency
matrix of J# by deleting rows and columns.

4. The Proof of Theorem 2.1.

Let 5# be a t-stable hypergraph with at least 2-element edges. f He 3¢ and A < H,
|A| > 2 then the hypergraph # U {4} is also t-stable on the same underlying set.
Hence we can suppose that 5 is almost a downset, i.e., if |4] > 2, 4 = H e # then
A€ . Let us define ¥ = {Ae#: |A] = 2}. # is connected, so ¥ is a connected
graph as well. As usual, /'(x) denotes the neighbourhood of the point x in the graph
%, ie, I'x) = {y: {x,y}e%}.

A subsystem o/ < # is called maximal if || )| = |.o/| + t, the members of =/
are pairwise disjoint and IUﬂ] is maximal with respect to these constraints. Let
us choose a maximal subsystem and denote it by #. Let | J# = X.

Lemma 4.1. For each xe X there exists a t-expansive set-system %, such that | |,
covers X — {x}, x¢ | J¥, and it consists of pairwise disjoint edges of H.

Proof. 3 is a stable t-expansive hypergraph, hence there exists a set-system & =
{Ci,...,Ci} € # — x, such that [{ J€| =1+t Let C; = C, — | J{C;:j < i}. The
existence of the system {C;: |C]| > 2} shows that the following family of subsystems
is non-empty:

C, ={2: 9 < #, P contains disjoint members, 2 is r-expansive and x ¢ | ] 2}.

Let %, denote a subsystem belonging to C, for which |2 N %] (i.e, the number
of the common members) is maximal. We are going to show that X — {x} = ( J%,.
Suppose for contradiction that ye X — {x} but y¢| J%,. Let Be# the edge for
which ye B. We distinguish two cases. If xe B then {x, y} € # and the subsystem
%,U{x,y} would be (¢ + 1)-expansive. If x¢ B then let {C,,..., C,} = {Ce¥.:
CNB # &}. The set-system 4, — {C,,..., G} U{C, — B:|C; — B| > 1} U{B} be-
longs to C,, too, and has more common members with 2 than %.. This contradic-
tion proves, that such a y does not exist, i.e., (Ug)nX = x — {x}. O

Proposition 4.2. |{ |%| = | X| < 2t. Here equality holds if # < 4.

Proof. 2 consists of at least two-element disjoint sets, hence we get 2| 8| < WZIE
|B| +t,ie.,|%B) <t hence || |2 < 2.

Proposition 4.3. The sets | |%,(x e X) and the set | )# cover { | # .
Proof. Suppose for contradiction that ye| J# — ( J{{ J%.: xe X} — | J#. Then
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there exists a 2-element subset {x,y} e #. Joining the set {x,y} to ¥, we get a
(t + 1)-expansive subsystem, which is a contradiction. |

Returning to the proof of Theorem 2.1 we distinguish two cases.

1) If each (| J%,) = X then Proposition 4.3 yields that [( J#| = [{ j#|. Now
[{J##] < 2t, by Proposition 4.2, and we are ready.

2) From now on we can suppose that there exists a %, such that ({ J%,) — X # .
Then [ %,| > | X|. But # is maximal, hence |{ J%,| = | X|and |({ }%,) — X| = 1.
Let us denote by | J%, — X = {z}. Obviously, I'(z) = X (yel(z) — X implies
that ZU {z, y} is (t + 1)-expansive, which is a contradiction.

Proposition 4.4. Let ue I'(z). Then %, is maximal t-expansive and ({ |%,) = (X U {z}).
(%, is defined by Lemma 4.1.)

Proof. By definition (more exactly by Lemma 4.1) ( J€,)N X = X — {u}. If z¢ | J%,
then the system %, U {z,u} is (£ + 1)-expansive, which is a contradiction. Hence we
get | J%, o (X — {u} U {z}). This yields that | J%,! > | X|, i.e. €, is maximal, as well.
So we have ( J€, = X — {u} U {z}. O

Change the role of # and z with ¢ and u. We get I'(u) < X U {z}. This yields
that I'(I'(z)) = X U{z}. Continuing procedure we get that the component of ¥
which contains z is contained in X U {z}. Hence | J# = | J¥ = X U {z}. Finally,
|X U{z}| < 2t + 1, by Proposition 4.2. The case of equality is clear. O

Remark 4.5. In the case || J#'| =2t + 1 the hypergraph # is not necessarily
2-uniform. E.g., # = {{2,3},{3,4},{4,5},{5,1} and {1,2,4}}.

Remark 4.6. The crucial point of Gallai’s proof is the following statement: If
the graph ¢ is v-stable then v(% — x — y) < v(¥), ¥(% — y — z) < v(¥) imply
v(% — x — z) < v(%). This means that the relation x ~ y: v(¢ — x — y) < v(%9)isan
equivalence relation on | J%. A similar statement for hypergraphs does not hold.
E.g.,, the hypergraph J# given on the pointset {1,2,3,4,5,6,7,8}, o# = {{4,6,8},
{3,5,7},{2,6,7},{1,5,8},{2,3,8},{1,4,7},{2,4,5},{1,3,6} } is critical 4-expansive -
and t(# — {1,3}) < 4, t(# — {3,2}) < 4 but t(# — {1,2}) = 4 (Fig. 3).

5. Lemmas for Theorem 3.8.

The case r = ¢ is trivial. (If # is a t-wise intersecting hypergraph of rank ¢ and
() = & then it is the complete t-graph over ¢ + 1 vertices.) From now on we
suppose that t < r < 3t.
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Let 5# be a hypergraph and denote by u(#) the optimal value of the following
linear program

u(o) =:max {xeyzw)m(x): m(x) > O,x;Em(x) < 1forall Eejf}.

(Properly, u(s#) = v*(#T) where #7 denotes the dual of #.)

Proposition 5.1. Let # = (#, + -+ + ). Then t*(#) =Y (3. — 1) where ) =
ZLSiSs#(%)'

Proof. Trivial. It follows from the definitions of x4 and t*. |

Definition 5.2. For any hypergraph J# denote by f{#) the following
f(#) = u(s#) — |UA#| + 3¢(o#),

where t(#) denotes the expansion number.
The aim of this section is to prove the following two lemmas.

Lemma 5.3. f(5#) > 0 for every #.
Lemma 5.4. Suppose # is connected and f(#) < 1/2. Then || J#| < 7, t(#) < 3

and one of the following six cases holds:

1) # =K, and thent =0, f =0,
2} # ~Kyandthent =1, f =0,
3) # ~ o andthent =2, f =1/3,
4) # ~RBandthent =2, f = 1/4,
5= H <€ andthent =2, [ =1/3,
6) # ~ D and thent = 3, f = 3/8.

Proof of Lemma 5.3. We need a series of propositions. We will use induction on
[ J##| =:v. The case v = 1 is trivial.
Proposition 5.5. If # is not t-critical then f(#) > 1/2.

Proof. We have a vertex x & V() such that t(# — x) < t. Use the inductional
hypothesis for # — x. We have

fl# —x)=p(# —x)—(v—1)+3(—1)=0.
As u(#) > p(# — x) we obtain f{#) = 1/2. O

Proposition 5.6. If there exists an He A with |H| > 4, then f(#) > 1/2.

Proof. It is similar to Proposition 5.5. Consider s# — H and apply the inductional
hypothesis. We have
f(of —H)=p(# — H)— (v —[H|) + 3t — |H| + 1)=0.

Hence
f(#) = u(# — H) — v+ 3t > 4(|H| - 3). (5.7)

Corollary 5.8. If there exists an edge H € 3# with |H| > 3, then f(#)=0.
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Proof. 1t follows from (5.7). ' O

Proposition 5.9. Let o = 3| ;. ;. Then f(#) = Y, f(#). O

Finally, Proposition 5.5, 5.8 and 5.9 imply f > 0 if we prove it for connected
t-critical hypergraphs with at most 2-elements edges. In this case u > v/2 and
v <2t + t by Theorem 2.1. ILe.,

v 3 2t+1 3
> - — — — —t = — >
f(;f)_z v+t 5+ 3! (t—1)/2>0
if t > 1. The case ¢ = 0 is trivial. The proof of Lemma 5.3 is complete. O

Proof of Lemma 5.4. We need three more propositions. We suppose that J is
connected and f(#) < 1/2. Then by Proposition 5.5 and 5.6 we have that # is
t-critical and |H| < 3 for all He .

Proposition 5.10. Either t < 6 and v = 2t + 1 or t < 2 and v = 2t holds.

Proof. We have u > v/3 hence by Theorem 2.1 f(#) > —3v + 3t > —3(2t + 1) +
3t=(t—4)/6>1/2for t > 7. If v < 2t then the above inequality gives that f >
t/6 > 1/2 fort > 3. (1

From now on we have to consider only finitely many cases. Hence we only
sketch the proof. If the reader believes that the author has examined all (finitely
many, there are <10°! 13 x 13 0~1 matrices) cases of the hypergraphs with at most
13 vertices, then he or she can continue reading Chapter 6. It is easy to check the
casest < 2 (v < 5).

Proposition 5.11. Let He #, |H| = 3. Then # — H is (t — 2)-critical.
Proof. 1t follows from Proposition 5.5 and (5.7). 0
Let #(3) =:{He #: |H| = 3}.

Proposition 5.12. Set 75 = t(#(3)). Thenty >t — 1.

Proof. 1f we have a T < (Jo#, |T| <t — 2 such that |[TNH| > 1 for all He #,
|H| = 3, then define the function m: { J# — R as follows

() = {1/2 ifxe(J# -T

0 otherwise.

Then u(#) = ) m(x) = ((2t + 1) — (t — 2))/2 = (¢ + 3)/2. This implies f(#) > 1/2.
(We used that v = 2r + 1.) g

The caset = 3. First we prove that there exist H,, H, € #/(3)such that |H; N H,| = L.
(#(3) is intersecting, and 4 > 1. Hence, if #(3) is 2-intersecting then #(3) ~ o
which leads to a contradiction). Next we prove that 5#/(3) does not contain a triangle,
(ie, H', H*, H*e #(3), |[H'N H’| = | implies H'NH*N H? # &.) Suppose H, =
{1,2,3}, H, = {3,4,5}. As 1, > 1 we have an H;e3#(3) such that 3¢ H,. Then
Hy = HiUH,,e.g, Hy = {1,2,4}. There exists a H, & H, U H, (otherwise m(:#) >
5:3+2-3=3), eg, 6eH,. Then 3eH, and H;NH, # . If H, = {1,3,6} then
H,, Hy and H, form a triangle, hence H, = {3,4,6}. # — H, ~ K, + K, whence
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we have a Hg o {5, 6}. There exists an edge Hg such that 7e Hy. Then Hg < {1,2,7}
and |Hg| < 2. This implies that Hs = {5, 6} and Hg = {1,7} or {2,7}. We obtained
the family 2. 0

The case t = 4. Then v = 9. Let H, € #(3). By Proposition 5.11 we have that either
4/1. # —H ~o +2K,,0r

4/2. ~ %+ K,,or
4/3. ~F + K, where¥ &% & ¥, or
4/4. ~ 2K 5.

The case 4/1. Let H, = {1,2,3}, and # — H, ~ {4} + {5} + {H,,H;,H,, Hs}
where H; = {6,7,8,9} — {i + 4}. Consider # — H, (2 <i < 5). Again we have 4
cases. But 4/4 is impossible (# — H; contains a 3-element set), 4/1 is impossible
(then 4 or 5 would be an isolated point in #’) hence # — H, has two components
one with 5 elements and the other is an isolated vertex. This isolated vertex cannot
bed or Sandin {1,2,3},so0itisi + 4. But then # has two components {1,2,3,4,5}
and {6,7, 8,9}, a contradiction. Hence case 4/1 is impossible.

Proposition 5.13. #(3) contains two disjoint members.

Otherwise #(3) is an intersecting family with t(#(3)) = 3 by Proposition 5.12.
Hence we can use a theorem of Meyer [16] or Hansen and Toft [12] which says
that in this case || J#(3)] < 7. Let {1,2} = V(#) — (| J#(3)), and define m(1) =
m(2) = 2/3, m(x) = 1/3for x = 3. Then ) m(x) > 3.66 a contradiction, except if this
m does not fulfil its constraints, i.e., there is an edge H e # with {1,2} < H. Then
#(3) is a <3-expansive family, and so it does not contain 3 members with one
common element (H,, H,, Hye #(3), [H;NH;| = 1, H N H, N H; # »). Then the
above mentioned theorem of Hansen and Toft says that || J2#(3)/ < 6. In this case
the following function m: ¥{#) — R shows that u(#) > 3.5 contradiction. m(x) =
1/3 for xe | J#(3), otherwise m(x) = 1/2. O

LetH,,H,e #(3), H, = {1,2,3}, H, = {7,8,9}. Then # — H;(i = 1,2) has two
components, one of them an isolated vertex x;. If x, = x, then 1t is isolated in #,
a contradiction. Let x, =4, x; = 6. Denote 4(#) =: {{u,v}: 3H e # such that
{u,v} = H}. Clearly, {4,6} ¢ 9(H#).

If {4,6} N (| J#(3)) = @ then u(#) = 3 + (2/3). Suppose there exists Hy e #(3),
4eH,. Then H; < {1,2,3,4,5} hence #{{1,2,3,4,5} ~ 4. E.g., H; = {1,2,4} and
H1{1,2,3,4,5} =~ {{H, H3},{3,4},{1,5},{2,5}} U {some one-element members}.
Consider # — H;. Then 3 is an isolated vertex, hence {3, 4} € . If 6 is not covered
by any 3-element members of # then the following m shows u(#) > 3.5: m(1) =
m(2) = 1/4, m(3) = m(4) = 1/2, m(6) = 2/3, otherwise m(x) = 1/3.

If6e(l J#(3)) then (# — H,) ~ K, + %, e.g., {6,8,9} € #. Then the following
mshows that u(#) > 3.5: u(i) = 1/2for 3 < i < 7, p(j) = 1/4 otherwise. So we have
proved that in every case u(#) > 3.5, i.e,, f(#) > 1/2 in the case t = 4.

Proposition 5.14. Suppose A is t-critical, connected, |V(#)| =2t + 1, xe V(#).
Then the components of # — x have an even number of vertices.

Proof. This trivially follows from the second half of Theorem 2.1. O
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Proposition 5.15. Let t = 5 or 6. If # has a vertex x which is not covered by a
3-element member then f(#) > 1/2.

Proof. Let m(i) = 1/3 for i # x and m(x) = 2/3. Then p(+#) > |m|| = (2t + 2)/3
yields f(#) > (t — 2)/6 > 1/2. 0

The caset = 5. Let H € #(3), consider # — H and apply Proposition 5.11. We have
3 possibilities:

51 #-H~9+K,
5/2. ~o + K; + K,
5/3. ~BorF (where ¥ =« #F <« ¢') + K.

First we prove that the case 5/2 is impossible. The proof is similar to the case 4/1.

O

Now we prove that the case 5/1 is impossible. Let H, = {1,2,3}, V(#) =
{1,..., 11}, 11 is the isolated point in # — H,. By Proposition 5.15 we have a
3-element set covering 11, e.g., H, = {1,2,11}. Consider »## — H,. It is isomorphic
to 2 + K, as well, hence its isolated vertex is 3. Now we can suppose that {4,6,7},
{5,6,7}, {6,8,9}, {7,8,9} € # and {4, 5}, {8,10} and {9,10} ¢ 4(#’). We have a 3-
element set Hye s through 11. If 3e Hj, e.g., Hy; = {1,3,11} then considering
# — Hy ~ K, + 9, we have that the point 1 is a cutpoint with two odd compo-
nents, which contradicts to Proposition 5.14. (3# — {1} = {2,3,11} U {4, ..., 10}.)
Hence 3 ¢ H,, i.e., Hy = {1, 2, 11}. Consider the following function:

i 1'2'3}4‘5[6}7' ’9'10[11
thalelalalalsls

Then ||m| >4 and Y, gm(x) < 1 for all Ec# except if EN{1,2} # @ and E =
{4,5}. So we are ready if such an edge E does not exist. Suppose H, = {1,4, Stesf.
Then # — H, has two components ({2,3,11} and {6, ..., 10}) Consider the follow-
ing my:my(1) =0, my(2) =% and my(i) = my(i) for i = 3. Then ) pmy(i) <1
excepr for the edge Hs = {2,4,5} (if it exists.) Suppose that Hse #°. Then the
following function m, shows that u(#) > 4:

(o]

1
Py

o
ol
oejuw

m(i) 3|4z

oojby

Now we consider the case 5/3. Let H, = {1,2,3}e#, # — H, ~ K; + #. Let
H,e % N #(3). Consider # — H,.It contains a 7-and a 1-element component. But
the case 5/1 is impossible, as we have seen above. O

The case t = 6. Let H, € #(3) and apply Proposition 5.11 to the family # — H,.
It is critical 4-expansive on 10 vertices. Consider the components of 5 — H, =
H, + -+ + A, where H#,is a critical ¢,-expansive hypergraph. Apart from the 0’s we
have 5 possibilities to partition 4 into non-negative integers:



t-Expansive and t-wise Intersecting Hypergraphs 77

6/1. 4=1+1+1+1(+0)

6/2. =2+1+1(+0)
6/3. =3+1(+0)
6/4. =2+2(+0)
6/5. =4(+0).

By Proposition 5.6 we have that f(#) > > i, f(##). Hence using the previous
results we have in the case

6/5. f(o#) = 1/2(+0)
6/4. f(#) = 1/4 + 1/4(+0)
6/1. |V(# —H,)|=4-3=12

which are contradictions. In the case 6/2 wehave # — H, ~ o + 2K;. Let H,e o/
and consider # — H,. Then (because only the cases 6/2 or 6/3 are possibie) we have
that at least one of the K;’s remains separated. This contradicts the connectivity
of #.

Finally in the case 6/3 we have # — H, ® @ + K5. Suppose that there is an
edge H, with 3 elements such that |V(K;)NH,| > 2. Eg, let H; = {1,2,3}, K, =
{{11, 12},{12,13},{13,11}} and H, = {1,11,12}. Then &# — H, = 2 + K; hence

— {1} has two odd components ({2,3,11,12,13} and {4, ..., 10}).

This contradicts Proposition 5.14. So we can suppose that [H N{11,12,13}} <1
for H e #/(3). Then the following m shows that u(#) > 55/12 > 4.5. m{1) = m{2) =
m(3) = 1/4, m(11) = m(12) = m(13) = 1/2 and m(i) = 1/3 otherwise. O
Conjecture 5.16. Suppose that # is connected and t-expansive. Then f(#) >

(/6) — (1/9) + (19)(~ 172"
This is best possible (if true) as the following example shows.

Example 5.17. Let #, = {{1,2}, {2t — 1,2t + 1}, {26, 20 + 1}}U{{i,2j — 1,2j}:i =

2i—2or 2j—3,2<j<t} Then 4 is critical t-expansive, u(#;) = %t + g +

1 1
—(—=1)=.
5= 15

Define p, = inf{u(#): # is t-expansive, connected}. Then we can prove the
following proposition which can help for the proof of Proposition 5.16.

Proposition 5.18. There exists a t-expansive, connected hypergraph # with u(#) =
e and | #| < |V(A).

6. The Proof of Theorem 3.8

First we need some definitions.
We call edge-contraction the following operation on a family #: we replace an
edge E e # by a smaller, non-empty set E' & E, and thus we get the family # —
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{E}U{E’}. A t-wise intersecting family is f-critical if it has no multiple edges and
the hypergraph obtained by contracting any of its edges is not t-wise intersecting.
That is:

For all E€s#, xe E there exists H,, ..., H,_, € #

(6.1)
such that ENH N---NH,_., = {x}.

We can get a f-critical system from any t-wise intersecting set-system by contracting
its edges as far as possible and deleting all but one copy of the appearing multiple
edges. Of course, a i-critical hypergraph does not contain two edges, E, F such that
EcF.

Remark 6.2. If # is {-critical hypergraph of rank r then |3#| < r?".

Proof. We say that the sets E,, E,, ..., E, form a k-star with kernel AIf E;NE; = A
holds for all 1 < i <j < k. Obviously, # does not contain an (r + 1)-star as sub-
system. Hence we can apply the following theorem of Erdés and Rado [8]: If the
family # of rank r does not contain a k-star then || < rl(k — 1. O

For t = 2 Erdos and Lovasz [7] proved that [rle] < max{|#|: # is J-critical
of rank r} < r".

Problem 6.3. Determine or estimate max|s#| where & is i-critical hypergraph of
rank r.

N. Alon and the author [1] have more results on this problem.

Now we are ready to prove Theorem 3.8. Let # be a ¢-wise intersecting hyper-
graph of rank r such that t*(#) > t*(r — 1,1). Contracting its edges we get a
i-critical hypergraph #,. Our next aim is:

Proposition 6.4. 5#, is isomorphic to one of the Examples 3.2-3.7.

This Proposition is the crucial point of the proof. Its proof consists of investigating
several cases.

t*(#,) = *(#) because a fractional cover t: ({_#;) — R covers #, too. Hence
T*(A,) > v*(r — 1,1), thus there exists an edge F e #,, |F| = r. Let us define V' =
(Jo#% and set #, = {F — F": F'e #,, F' # F}.

Proposition 6.5. # is a critical (r — t)-expansive hypergraph.

Proof. Let H,, H,, ..., H,_, € 5, and let F, be an edge from 3 such that F — F; =
H. #, is t-wise intersecting, hence FNF N---NF,_, # & holds, thus we get
H,U---UH, | & F, ie, 5, is at most (r — t)}-expansive. Now let xe F arbitrary.
By (6.1) there exist edges F,, ..., F,_, such that FOF, N---NF,_; = {x}. Then
U(F —F)=F —{x},ie, {F— F: 1 <i<t— 1} is an (r — t)-expansive subsystem
of A#, outside the point x. ]

Apply Corollary 2.2 for the hypergraph 5. We get
WJ{He: |H| = 2} < 3(r —1). (6.6)
3(r — £) < r, so we get that #, contains isolated point. We distinguish two cases.

Case 1. #, contains only one isolated point. Denote it by p. We get r — 3(r —t) < 1,



-Expansive and t-wise Intersecting Hypergraphs 79

ie, r = (3t — 1)/2. Moreover equality holds in (6.6) thus #; consists of (t — 1)/2
triangles and the isolated point p by Corollary 2.2.

Let us denote by F, F,, ..., F, the edges of 4 such that F — F, = {p}. Let
F; = (FN F)U{x;}. We claim that the point x; is covered by all of the edges of #;, —
{Fy, ..., F;}. Indeed, knowing the structure of #,, we can see that for each edge
Fle#, — {F,, ..., F;} we can choose edges F2, F*, ..., F'"! such that

(\ F0F={p}
1<i<t—1

Replace F by F;. We have (), c;<,— F'NF; # @, hence it is {x;}. So x;€ F* follows.
Hence we get I < 2, and we obtain Example 3.2 or 3.3 according to [ = 1 or 2.

Case 2. #, contains at least two isolated points. We claim that
Ul =1VI=r+1L (6.7)

Denote two of the isolated points by p, and p,, and let & = {He#,: HNF =
F —{p:;}},i = 1,2. Weprove that|.%,| = 1.(Then, similarly | #,| = 1 holds.) Indeed,
let F; = F — {p, } U{x}. Apply (6.1) for the edge F, at the point x. We get F?, ...,
F' such that F;NF2N---NF" = {x}. Among the sets F%, ..., F' there exists an
edge, e.g. F2, such that p, ¢ F?. Then F? e .%,. Suppose for contradiction, that there
exists an edge 9% F, — {F*}. We get that F,NG*NF3*N---NF' = ¢, which is a
contradiction.
So we have |%;| = 1 holds, ie., all edge of #, contains the point p,, except F2.
Because #, is i-critical, this implies that ( Jo#, = V = F?U{p,}. Le, [V] =r + L.
O

Let V = FU{p}. Now we prove that 5 is isomorphic to one of the Example
32 o0r 34-3.7.

Consider the complement of #, #° = {V ~ F: Fe #y}. Let #° = #, + - +
H,. #* is (r — t)-expansive and by Proposition 5.1 we have

HA) =2/ - 1)
where Y = >, u(H).

Hence we have

)= 141 / (zwm e + iz) V) 2 - 1)

i

6.8
=1+2/3t —r+2Y f(#)) (68)

Lemma 5.3 immediately implies that t*(#) < 1+ 2/(3r —r), ie. t*(r,t) =
I + 2/(3t ~ r), proving Theorem 3.1 in the case r < (3t — 1)/2. Now suppose that
™H(H#) > t*(r — 1,t) = 1 + 2/(3t — r + 1). Then (6.8) implies that

Z 1(8) < 1/2.

Using Lemma 5.4 we have that every but at most one #; is isomorphic to K, or
K5 and the exceptional is isomorphic to one of &7, B, F (where C=F <%) or
2. Hence #;, is isomorphic to one of the Examples 3.2, 3.4-7. Finally, Theorem 3.8
follows from the following fact:
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Proposition 6.9. Let 5# be a t-wise intersecting hypergraph of rank r given by one
of the Examples 3.2-7. Let E€ 5, |E| < r, xe V(#) — E and replace the edge E by
EU/{x}. Then for the obtained hypergraph # = s# — {E}U{EU {x}} we have
™) < t(r — L,0).

Proof. It is an easy calculation. ]
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