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The Erdos-Ko-Rado theorem states that if F is a family of k-subsets of an n-set 
no two of which are disjoint, n>2k, then IFI <(;I:) holds, Taking all k-subsets 
through a point shows that this bound is best possible. Hilton and Milner showed 
that if OF=@ then lFl<(“,:i)-(“;kri)+l holds and this is best possible. In 
this note a new, short proof of this theorem is given. (7) 1986 Academic Press. Inc 

1. INTRODUCTION 

Suppose X is an n-element set and F is a family of k-subsets of X. The 
family F is called intersecting if Fn F # Qr holds for all F, F E F. For 
n < 2k every F is intersecting. From now on assume IZ 2 2k. 

If all members of F contain a fixed element of X then, obviously, F is 
intersecting. Such a family is called trivial. Clearly, a trivial intersecting 
family has at most ( ;I :) members. 

ERD~S-KORADO THEOREM [ 11. Zf r~ > 2k, F is intersecting then 
IF( 6 (;I;) holds. 

EXAMPLE 1. Take F,cX, IF1l=k and x,EX--FI. Define F,= 
{F1} u {Fc X: xi E F, IFI = k, Fn F, #@a>. It is easily checked that F, is 
intersecting and IF,1 =(;I:)-(“ik;l)+ 1. 

150 
0097-3165/86 $3.00 
Copyright 0 1986 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



NON-TRIVIAL INTERSECTING FAMILIES 151 

EXAMPLE 2. Take F, c X, 1 F21 = 3 and define F, = { Fc X; ) FI = k, 
IFn F,( > 2). Again, F, is intersecting. For k = 2, F, = F, while for k = 3, 
IF11 = lFzj hold. If n>2k and k>4 then IF,1 > (F,J. 

HILTON-MILNER THEOREM [4]. Zf n > 2k and F is a non-trivial inter- 
secting family then IFI < IF, 1 holds. Moreover, equality is possible only for 
F = F, or F = F,, the latter occurs only for k < 3. 

Note that this theorem shows in a strong way that only trivial families 
attain equality in the Erdos-Ko-Rado theorem. The proof of the 
Hilton-Milner theorem is rather long and complicated. The aim of this 
note is to give a more concise argument. 

2. THE NEW PROOF OF THE HILTON-MILNER THEOREM 

Suppose for simplicity the elements of X are linearly ordered. Let F be a 
non-trivial intersecting family of maximal size. We prove the statement by 
induction on k. If k = 2, then F consists necessarily of the three edges of a 
triangle. For X, y~x, X< y we define S,,(F) = {S,,(F): FE F}, where 

S,(F)=V’- {Y>)u (4 ifx#F, Y EF, (F- (Y>)u ix> 4F 

=F otherwise. 

PROPOSITION 2.1 (see Cl]). IS,(F)/ = IF( and S,(F) is intersecting. 1 

Apply repeatedly the operation S, to F until we obtain either a family 
H such that S,(H) is trivial or a family G which is stable, i.e., S,(G) = G 
holds for all x < y. In the second case we define X0 = 0 in the first 
X, = {x, y}. Then Hn X, # 0 holds for all HE H. The maximality of IHI 
implies that all k-subsets containing X, are in H. Now apply repeatedly S, 
to H for x < y, x, ye (X-X,). Since the sets containing X, stay fixed, 
finally we obtain a family G, satisfying: 

(1) GnX,#@ for all GEG, 
(2) S,(G)=G for x, ye(X-X,), x< y. 

For i= 0, 1 let Yi be the set of first 2k - 2i elements of X-X,, 
y=xiu Y,. 

LEMMA 2.2. For all G, G’ E G, G n G’ n Y # fa holds. 

Proof: Consider first the case Y = X1 u Yi. Suppose for contradiction 
GnG’n Y=0 and G, G’EG are such that IGnG’I is minimal. Now (1) 
implies that G and G’ intersect X, in different elements. Thus G-Xi, 
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G’ - X, are (k - 1 )-sets. Since G n G’ A (X- Y) # a, we may choose x E Y, 
x~GuG’,y~Y,~~GnG’.Then(2)implies(G’-{y})u{x)=d”G”~G. 
However, G n G” n Y = @ and JG n G”1 < 1G n G’l, a contradiction. 

The case Y = X0 u Y, is similar but easier (cf. [2] ). 1 

Let us define Ai= {Gn Y:GEG, 1Gn Y( =i}. 

LEMMA 2.3. 

and 

Proof. Consider first the case 2 < i 6 k - 1. Suppose for contradiction 

In view of Lemma 2.2, Ai is intersecting. Thus the induction hypothesis 
yields that Ai is trivial, say x E fi Ai. As G is nontrivial, we may choose 
GE G, x 4: G. By Lemma 2.2 A n G # M holds for all A E Ai. Consequently, 
IAil <(*f:,‘)- (:I:) holds, as desired. The case i= 1, i.e, A, = /25, is 
obvious. 

lAkl < (:k:/) = i(y) follows easily from the fact that A, is intersecting 
and therefore A E Ak implies ( Y - A) 4: A,. 1 

Since for a fixed A E Ai there are at most (7~~;) k-element sets G with 
Gn Y=A, we infer 

IGI G t IAil (nk12F)~l+i$I ((2~~~~1)-(:r:))(~k~2~) 
i=l 

=l+(;I;)-(“;l;‘)=lF1,, 

proving the inequality part of the Theorem. 
To have equality we must have equality in Lemma 2.3, in particular 

IA21 = (2k; ‘) - (k;‘) = k. As A, is intersecting either it is a k-star or k = 3 
and it is a triangle. In the second case G c F, is immediate. In the first case 
let A2={{~i,xZ),..., {x~,x~+~}}. If GEG, x,$G then necessarily 
G= {X2,..., Xk+l), . . le., all other members of G contain x1 and intersect G, 
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proving G z F, . Recall that G was obtained from F by a series of exchange 
operations S, y. It is easy to check that if H is intersecting and S,(H) = Fi 
then H is isomorphic to Fi, too (i= 1, 2). Consequently, F is isomorphic to 
either F,or F,. 1 

3. FURTHER PROBLEMS 

If for F, F’ E F 1 Fn F’j > t holds then F is called t-intersecting, t > 2. 

THEOREM 3.1 (Erdos-Ko-Rado Cl]). Suppose n >n,(k, t), F is t-inter- 
secting then IFI < (;I:). 

The best possible bound for n,(k, t) is (k - t + l)(t + 1) as was shown by 
Frank1 [2] for t > 15 and very recently by Wilson [ 51 for all t. They 
showed that for n > (k - t + l)(t + 1) equality holds only if F consists of all 
k-subsets containing a fixed t-subset. Again, such an F is called trivial. 

Examples of non-trivial t-intersecting families are F, = {F c X, 1 FI = k: 
(Y,cF, Y,nF#@) or (IY,,nFI=t-1, Y,cF)}, where IY,I=t, 
IY,I=k-t+l, Y,nY,=@, and F,={FcX, IFI=k:IFnY,l>t+l}, 
where I Y,( = t + 2. 

THEOREM 3.2 ( [3]). Suppose F is a non-trivial t-intersecting family, 
n>n,(k, t). Then IFI <max{IF,J, lF21}. Moreover, equality holds zy and 
only ifeither F=Fi, k>2t+l or F=F,, k<2t+ 1. 

It would be interesting to know whether n,(k, t) < ckt holds. 
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