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Separating Pairs of Points by Standard Boxes

NoGca ALoN,T Z. FUREDI AND M. KATCHALSKIE

Let A be a set of distinct points in R%. A 2-subset {a, b} of A is called separated if there exists
a closed box with sides parallel to the axes, containing a and b but no other points of A. Let
s(A) denote the number of separated 2-sets of A and put f(n, d) = max{s(A): AcR? |A|=n}.
We show that f(n,2)=[n?/4]+ n—2 for all n=2 and that for each fixed dimension d

f(n, d)=(1-1/22""Y - n?/2+0o(n?).

1. INTRODUCTION

Let A be a set of distinct points in the Euclidean d-dimensional space R%. For a, b € R?
let B(a, b) denote the minimal closed box with sides parallel to the axes, containing a
and b. A 2-subset {a, b} of A is called separated (in A) if An B(a, b) ={a, b}. Let s(A)
denote the number of separated 2-sets of A and put

f(n, d)=max{s(A): AcR% |A| = n}.

In this paper we study f(n, d). Obviously f(:l‘, 1)=n-1 for all n=1. In Section 2 we
observe that f(n, d)=(}) if and only if n<2*" . In Section 3 we prove:

THEOREM 1.1.
f(n,2)=[n?/4]+n—-2forall n=2.

In Section 4 we prove the following theorem, which determines the asymptotic behavior
of f(n, d) for every fixed d as n—> co.

THEOREM 1.2, For every fixed d =1,

f(n, d)= (1—?‘—) ~n?2+o(n2).

Our proofs use a generalization of de Bruijn to a theorem of Erdds and Szekeres on
monotone sequences and several results of Bollobds, Erdos, Straus and Stone in extremal
graph theory.

A related problem to the one considered here is discussed by Barany and Lehel in [1].

2. PRELIMINARIES

For a finite set A of points in R? let G(A) denote the separation graph of A, i.e., the
graph on the set of vertices A in which a, be A are joined iff {a, b} is separated. A
sequence a,, d,, ..., @, of points in R is called monotone if it is (weakly) monotone in
each of its coordinates.

Clearly:

a, be A are separated iff there is no ce A—{aq, b}
(2,1)
such that (a, c, b) is monotone.
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Erdés and Szekeres [5] proved that every sequence of I*+1 real numbers contains a
(weakly) monotone subsequence of /+1 terms. Furthermore, the number °+1 is best
possible. In an unpublished work (cf.[7]), de Bruijn has generalized this result and proved:

LEMMA 2.1 (DE BRULIN). Every sequence of I** +1 vectors in R? contains a monotone
. d . .
subsequence of size 1+ 1. Furthermore, the number I*" + 1 is the best possible.

De Bruijn’s proof is simply an iterated application of Erd0s-Szekeres’ result. Another
proof (of a more general result) is given by Kruskal [7]. To show that PP +1 is best
possible one has to construct a sequence vy, vy, ..., U, (M= lzd) of vectors in R, which
contains no monotone subsequence of >/ terms. Since such a construction does not
appear in [7] we describe it here. For d =1 let the sequence be

(I-D)I+1,(0-D)1+2,..., P, (1=-2)-1+1,(1=-2) - 1+2,...,(I-1) - L...,1,2,...,1

Assuming we have a sequence v,...,0,, (m= lzd) of vectors in R? without a monotone
subsequence of >/ terms and without two vectors sharing a common value at some
coordinate let us construct a sequence u;, .. ., u,,> of m? vectors in R*! having the same
properties. The d + 1st coordinate of the u; —s is given by:
(m-1)-m+1,(m—-1)m+2,...,m* (m-2)

m+1,(m-2)ym+2,...,(m—1)m,...,1,2,..., m

The first d coordinates are given by:
xU; 0, X0t U, .., X0 O, XU U, XU U, L, X0 Uy, XU T U, L., XU, U,

where x is a large constant. One can easily check that if x is large enough, the sequence
Uy, . .., Uy? has the desired properties.

An easy consequence of Lemma 2.1 is the following (see also [9]):

ProposiTiON 2.2.
n . . 2d—l
f(n,d)= ) ifandonly if n<2*"

PROOF. Let A be a set of n>2>"" points in R?. Arrange the points of A in a sequence
so that the first coordinate is monotone. By Lemma 2.1, applied to the last d — 1 coordinates
of the points, A contains a monotone subsequence of three points. Thus, by (2.1),
s(A) <)

Conversely, if n<2*" let Vi, Vs, ..., ¥, be a sequence of n points in R*™" with no
monotone subsequence of size >2. For 1<i<n define u,cR? by u;=(i, ») and put
A={uy, u, ..., u,}. By (2.1) s(A)=(3).

d—1

3. THE PLANAR CASE

In this section we prove Theorem 1.1, which determines f(n, 2) precisely for all n.

Let A be a strictly decreasing sequence of [n/2] points in the first quadrant, let B be
a strictly decreasing sequence of [ n/2] points in the third quadrant and define Aj=AuU B,
see Figure 1. For any a € A and b € B there is a rectangle with sides parallel to the axes
that contains exactly a and b, so that a and b are separated. There are [n?/4] such pairs
of points. In addition there are exactly n —2 pairs of consecutive a —s in A or consecutive
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FIGURE 1.
bs in B which are separated. It follows that
s(Ag)=|—|+n-2
so that

f(n,2)=]—[+n-2.

It remains to show that for any configuration A of n=2 points in the plane
s(A)<n’/4+n-2.

The proof is by induction on n. Since the cases n =2, 3 and 4 are obvious, assume that
n=Ss.

Let a be a point of A whose x-coordinate is minimal, let N be all the points of A
adjacent to a [in G(A)], and let b be the point of N whose x-coordinate is maximal.

Let N,(N,) be the points of N with y coordinate not less (less) than the y-coordinate
of a. From (2.1) it follows that if the points of N, (of N,) are arranged according to
increasing x-coordinate then the y-coordinates form a decreasing (increasing) sequence.
This implies by (2.1) that b is adjacent in G(A) to at most two points in N (at most one
in each of N; and N,).

Thus the number of edges in G(A) adjacent to either a or b is at most (n—2)+2+1=
n+1, so that

s(A)<s(A\{q, b})+n+1.

By the induction hypothesis s(A\{a, b})<(n—-2)’/4+(n—2)—2. Thus s(A)<
(n—=2)*/4+(n~2)—2+n+1=n?/4+n-2. This completes the proof.

4, THE GENERAL CASE

In this section we prove Theorem 1.2, (actually we prove a slightly stronger assertion).
For natural numbers g < n, let T(q, n) denote the complete g-partite graph with [{(n+1i)/g]
vertices in the ith class (0=<i<gq). Note that T(q, n) is the unique complete g-partite
graph of order n whose color classes are as equal as possible. Let t(q, n)=
Yo=icj<q L(n+1)/q] - [(n+j)/q] be the number of edges of T(q, n). As is easily checked
(see, e.g., [2, p.327])

t(g, n)=3(1-1/¢)n*+0(n).
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We will show: .
LEMMA 4.1. Put q=2*""'. Ifn=gq then

fn,d)=t(q,n)+n—gq

This clearly implies the lower bound in Theorem 1.2. To prove Lemma 4.1 we need a
simple consequence of de Bruijn’s result (Lemma 2.1). If 4, v € R? let u < v(u < v) denote
that the ith coordinate of v is not smaller (strictly greater, respectively) than the ith
coordinate of u forall 1si=<d.

d—1_ . . .
LEMMA 4.2. Suppose |, d =2 and put s ="' 7', Then there is a set A of s points in R®,
such that A contains no monotone sequence of size >1 and no two distinct vectors u, v with
u<sy.

PrOOF. By Lemma 2.1 there is a sequence ay, a,, . . ., a,.; of vectors in R?~" with no
monotone subsequence of size >/ As in the proof of Proposition 2.2, define b, = (i, a;)
to get a set B of s- I vectors in R? with no monotone sequence of size >1. Let D be the
directed graph on the set of vertices B in which (b, ¢) is a directed edge iff b=<c. Since
B contains no monotone sequence of size I+1, D contains no directed path of length 1
Hence, by the result of Gallai [6] and, independently, Roy [8] (see also [2, pp. 225-226])
the chromatic number of D is <I. Therefore D contains an independent set of =s vertices.
Take A as a set of s of them, to complete the proof.

ProoF oF LEMMA 4.1. By Lemma 4.2 there exists a set B={b,, ..., b,} of q points
in R? containing neither a monotone sequence of 3 terms nor two points u, v with u <.
Let A be a set of n points obtained from B by replacing b; by a monotone increasing
sequence of [(n+i—1)/q] points all lying in a small neighborhood of b. More precisely,
put c=(g¢,...,e)eR? for some small £>0, and define A=J!_| A, where A =
{bi+je; 0=j<[(n+i—1)/q]}. We claim that if a; € A; and a; € A; where 1 <i<j< g then
a; and q; are separated. Indeed, if this is false then there is some a, € A, such that
(a;, ay, a;) is monotone. If k# i, j (and £ >0 is sufficiently small) this is impossible since
(b;, by, b;) is not monotone. Similarly if k=i or k=j this is impossible since it would
imply that either a; <a; or a; <a; which would imply (for small enough &) that either
b; < b; or b; < b; contradicting the construction of B. Therefore the separation graph G(A)
contains T(gq, n) as a subgraph (on the sets of vertices A, 1 <i=g). In addition each A;
contains |A;|— 1 separated pairs. Hence

fn, d)= g, m)+ £ (Af=1)=t(gn)+n—g

To prove the upper bound in Theorem 1.2 we combine Proposition 2.2 with some
known results in extremal graph theory. We first state these results as lemmas.

LEmMA 4.3 (Erdés and Stone [4], see also [2, pp. 327-336] for some extensions). For
every natural number q, m and every ¢ >0 if n> n(q, m, €) and G is a graph on n vertices
having =t(q, n)+¢en’ edges then G contains T(q+1,(qg+1)m), ie. a complete (q+
1)-partite graph with m vertices in each vertex class.

LEMMA 4.4 (Bollobds, Erdos and Straus [3], see also [2, p. 317]). Let G be an r-partite
graph with | vertices in each vertex class. If G contains no complete graph on p vertices then
the number of edges of G is <t(p—1,r) - I*.
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We can now prove the upper bound in Theorem 1.2. Put g = 227" and let A be a set
of n points in R%. We must show that s(A)<1(q, n)+o(n’). Assume this is faise, i.e.
assume € >0, n>n(e, d) and

s(A)=t(q, n)+en’. 4.1)

Put m=(2¢+2q+1)>*"'+1, and let G=G(A) be the separation graph of A. By
expression (4.1) and Lemma 4.3 G contains a complete (g+1)-partite graph with m
vertices in each vertex class. By Lemma 2.1 the ith class (1 < i < g+ 1) contains a monotone
sequence of points v(i,0), v(i, 1),..., v(i, I) of size I+1=2g"+2g+2. (Indeed, arrange
the points according to their first coordinate and apply Lemma 2.1 to the other d —1
coordinates.) For1<isg+1land 1<j<l!let B(i,j)= B(v(i,j—1), v(j, j)) be the smallest
closed box with sides parallel to the axes containing v(i, j —1) and v(j, j). Note that since
{v(i,j)},'-=o is monotone the boxes B(i,j) and B(i, k) are disjoint if k>j+1 and they
share exactly one common point (=v(j, j}) if k =j+1. Let D be the (g + 1)-partite directed
graph on the classes of vertices {B(i,j)}}=,(1s i< g+1) in which (B(i,j), B(i,j)) is a
directed edge iff i#i" and (v(i,j—1)e€ B(i',j') or v(i,j)e B(i',j')). By the preceding
remark about the pairwise disjointness of { B(i, j)}}zl, the outdegree of every vertex of D
is at most 2 - q. Let H be the (g+ 1)-partite graph on the classes of vertices {B(i,j)}}=l
in which {B(i, j), B(i', j'}} is an edge iff i # i’ and B(j, j) and B(i', j') are not adjacent in
D. The number of edges of H is at least

(q;1>l2-—2q(q+l) : 1>((q;1) —1>l2=t(q,q+1) NG

Hence, by Lemma 4.4 (with p=r=g+1) H contains a complete graph on g+ 1 vertices
{B(i, j)}2!. For 1<i<gq+1 define u(i,1)=0(ij;—1), u(i,2)=v(i,j;), and put C=
U:’: {u(i, 1), u(i,2)}. We claim that s(C)=('S), i.e. that every two points of C are
separated in C. Indeed, for i # i'u(i, j) and u(i’, j') are separated even in the larger set
A, and hence certainly in C. To show that u(i, 1) and u(j, 2) are separated in C note that
otherwise there is some i'# i and some j' €{1, 2} such that u(i', ;)€ B(u(i, 1), u(i, 2)).
But this implies that (B(#’, j+), B(i,j;)) is an edge of D, contradicting the choice of the
B(i, ;) —s. Hence s(C) = ('S'). However |C|=2g+2>2¢=2%"" and thus by Proposition
2.2. s(C)>('S)). This contradiction shows that (4.1) is false and establishes the upper
bound in Theorem 1.2. This together with Lemma 4.1 completes the proof of Theorem 1.2.

REMARK 4.5. It is worth noting that we actually proved a somewhat stronger assertion
than that of Theorem 1.2. The lower bound for f(n, d) given in Lemma 4.1 is asymptotically

1 n?
(1 —F;rr_—l)—2—+0(n).

Replacing Lemma 4.3 by the extensions of Bollobds, Erdos and Simonovits (see [2,
pp- 328-336]) to Erdos-Stone’s result one can easily check that our proof implies that
for every d there is a § = 5(d) >0 such that

2
f(n,d)S(l—Egll—_l)"?+0(n2"5).

It seems likely that our lower bound is the correct value of f(n, d). We conclude our
paper with the following conjecture:

CONJECTURE 4.6. Put g(d)=2%"""".

If n<2q(d) then f(n,d)=().
If n>2q(d) then f(n,d)=1t(g,n)+n—gq.
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Note that by Theorem 1.1 and Proposition 2.2 the conjecture’s assertion holds for d <2
and for {(d, n): n<2q(d)}.
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