NOTE

HYPERGRAPHS WITHOUT A LARGE STAR

Z. FÜREDI

Mathematical Institute of the Hungarian Academy of Sciences, H-1364 Budapest, Hungary

Zs. TUZA

Computer and Automation Institute of the Hungarian Academy of Sciences, H-1111 Budapest, Hungary

Received 18 January 1985

Let r, t be positive integers, \mathscr{F} a set-system of rank r (i.e., $|F| \le r$ for every $F \in \mathscr{F}$). If $|\mathscr{F}| > (r_i^{+t})$, then there exist $F_0, F_1, \ldots, F_{t+1} \in \mathscr{F}$ and points p_1, \ldots, p_{t+1} forming a 'star', i.e., $p_i \in F_i$ but $p_i \in F_i$ for $i \neq j$.

1. Introduction and results

1.1. Hypergraphs without a large star

Let \mathcal{H} be a hypergraph (i.e., a finite set-system, $\emptyset \in \mathcal{H}$ is allowed). The rank of \mathcal{H} is r if $\max_{H \in \mathcal{H}} |H| = r$. The hypergraph \mathcal{H} is an r-graph (an r-uniform hypergraph) if each member of \mathcal{H} has exactly r elements. The complete hypergraph consisting of all the l-element (all the at most l-element) subsets of an n-element set is denoted by K_l^n ($K_{\leq l}^n$).

A set-system $\{A_1, \ldots, A_t\}$ is strongly representable if every A_i has an own point (its strong representative), i.e., there exist a_1, \ldots, a_t such that $a_i \in A_i \setminus (\bigcup_{j \neq i} A_j)$, $1 \le i \le t$. (The other name of a strongly representable system is t-star.)

Frankl and Pach [8] proved that if an r-graph \mathcal{F} does not contain a 3-star as subsystem then $|\mathcal{F}| \leq [r^2/4] + r + 1$. (The extremal \mathcal{F} can be obtained from the complement of the Turán graph on r+2 points.) They conjecture that an r-graph without a t-star can have at most T(r+t-1, t, t-1) members, where T(n, k, l) is the Turán number, i.e., $\max\{|\mathcal{H}|: \mathcal{H} \subset K_l^n, K_l^k \neq \mathcal{H}\}$. This conjecture seems to be hopeless now because there is almost nothing known on the Turán numbers if $l \geq 3$. The following result, concerning hypergraphs of rank r instead of r-uniform ones, settles the problem apart from a constant factor.

Theorem 1. Let \mathcal{F} be a set-system of rank r without a (t+1)-star. Then $|\mathcal{F}| \leq {r+t \choose t}$.

Remark. Since $T(n, t+1, t) > \frac{1}{2} {n \choose t}$ (see [10]), for the maximal number m = m(r, t)

0012-365X/85/\$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

of edges in an r-uniform hypergraph without a (t+1)-star we have $\frac{1}{2}\binom{r+t}{t} < m \le \binom{r+t}{t}$.

1.2. Extremal families

There is a great number of extremal families (except for the trivial cases when r=1 or t=1). That is, if r, t>1, there exist a lot of non-isomorphic set-systems \mathscr{F} of rank r without a (t+1)-star and having $\binom{r+t}{t}$ members. Now we give two examples. The notation $\binom{x}{t}$ stands for the set-system consisting of all the i-element subsets of X.

Example 1. Let $X = \{x_1, \ldots, x_{r+t-1}\}$, $X_i = \{x_1, \ldots, x_i\}$, $X_0 = \emptyset$. Set $\mathscr{F}_i = ({}^{X_i}{}_{i}^{t-1})$ and $\mathscr{F} = \mathscr{F}_0 \cup \cdots \cup \mathscr{F}_r$. Then \mathscr{F} is a set-system of rank r without a (t+1)-star, and $|\mathscr{F}| = ({}^{r+t})$.

Example 2. Let $t \ge 2$, $Y = \{y_1, \dots, y_r\}$ and X_i as in Example 1 $(0 \le i \le r + t - 2)$.

$$\mathscr{F}_{i,j} = \left\{ F \colon F = \{y_1, \ldots, y_i\} \cup J, J \in {X_{j+t-2} \choose j} \right\}$$

and $\mathcal{F} = \bigcup \mathcal{F}_{i,j}$ where $i, j \ge 0$ and $i+j \le r$.

These examples can be found in [9] concerning a related problem. We could not describe all the extremal families, even for t = 2, but the following holds.

Theorem 2. If \mathscr{F} is a set-system of rank r without a (t+1)-star, and $|\mathscr{F}| = \binom{r+t}{t}$, then $|\mathscr{F}(i)| = \binom{i+t-1}{t-1}$ where $\mathscr{F}(i) = \{F \in \mathscr{F} : |F| = i\} \ (0 \le i \le r)$.

Another property of extremal families will be given later in Lemma 2.

1.3. Traces of finite sets

Let \mathscr{F} and $\mathscr{H} = \{H_1, \ldots, H_m\}$ be two set-systems. We write $\mathscr{F} \to \mathscr{H}$ (\mathscr{F} implies \mathscr{H}) if there exist $F_1, \ldots, F_m \in \mathscr{F}$ and a set Y such that the set-system $\{F_i \cap Y: 1 \le i \le m\}$ is isomorphic to H: otherwise $\mathscr{F} \to \mathscr{H}$. E.g., Theorem 1 can be formulated as follows. If \mathscr{F} has rank r and $|\mathscr{F}| > \binom{r+t}{t}$ then $\mathscr{F} \to K_1^{t+1}$.

One of the first results of this type was given by Sauer [11] who proved that if $\mathscr{F} \subset K^n_{\leq n}$, $|\mathscr{F}| > \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{t}$, then $\mathscr{F} \to K^{t+1}_{\leq t+1}$. One could think that $\mathscr{F} \to K^{t+1}_1$ even if \mathscr{F} is smaller. However, for t=2 Frankl (unpublished) and Anstee [1], and later Füredi [9] showed the existence of set-systems

$$\mathscr{F}_{n,t} \subset K_{\leq n}^n$$
 with $|\mathscr{F}_{n,t}| = {n \choose 0} + \cdots + {n \choose t}$ and $\mathscr{F}_{n,t} \not\to K_1^{t+1}$.

Corollary 1 ([9], for t = 2 [1]). If $\mathcal{F} \subset K_{\leq n}^n$, $|\mathcal{F}| = \binom{n}{0} + \cdots + \binom{n}{t}$ and $\mathcal{F} \not\to K_1^{t+1}$, then $|\mathcal{F}(i)| = \binom{i+t-1}{t-1}$ whenever $0 \leq i \leq n-t+1$.

For further results see Bollobás [4], Bondy [5], Frankl [7]. Instead of Theorem 1, we prove the following slightly stronger result.

Theorem 3. Let \mathcal{F} be a set-system of rank r and $|\mathcal{F}| > \binom{r+i}{i}$. Then $\mathcal{F} \to K_{\leq 1}^{i+1}$. (That is, there exist $F_0, F_1, \ldots, F_{i+1} \in \mathcal{F}$ and a set $Y = \{y_1, \ldots, y_{i+1}\}$ such that $Y \cap F_0 = \emptyset$ and $Y \cap F_i = \{y_i\}$ if $1 \leq i \leq t+1$.)

We mention that, for K_1^{t+1} -extremal families, one cannot expect a statement similar to Theorem 2 because e.g. K_r^{t+t} is $K_{\leq 1}^{t+1}$ -extremal.

1.4. More examples for t = 2

Let C_k denote the cycle of length k (i.e., a 2-uniform connected hypergraph with k points and k edges). Anstee [1] proved that if \mathscr{F} is K_2^3 -extremal on n points, then $\mathscr{F} \not\rightarrow C_k$ (whenever $k \ge 3$) and $|\mathscr{F}(i)| = n - i + 1$, $1 \le i \le n$. (Then $|\mathscr{F}| = 1 + n + \binom{n}{2}$.) On the other hand, he proved that if $\mathscr{F} \not\rightarrow C_k$ for any $k \ge 3$, then \mathscr{F} can be completed to a K_2^3 -extremal family (see [2]). From these results we obtain:

Example 3. Let \mathscr{F} be a K_2^3 -extremal family on an n-element set X $(n \ge r+1)$. Set $\mathscr{G} = \overline{\mathscr{F}(n)} \cup \cdots \cup \overline{\mathscr{F}(n-r)}$ where $\overline{\mathscr{F}(i)} = \{X \setminus F : F \in \mathscr{F}, |F| = i\}$. Then \mathscr{G} has rank r, $\mathscr{G} = \binom{r+2}{2}$, $\mathscr{G} \nrightarrow K_1^3$.

These examples show that the number of K_1^3 -extremal families is not smaller than the number of trees on r vertices, that is, at least exponential in r.

2. Proof of Theorem 3

The following result of Frankl [6] is an improvement of a theorem of Bollobás [3]. (For other developments and applications see [12] and [13].)

Theorem 4 (Frankl [6]). Let A_1, \ldots, A_m be at most r-element, B_1, \ldots, B_m at most t-element sets with $A_i \cap B_i = \emptyset$. Suppose that $A_i \cap B_j \neq \emptyset$ for i > j. Then $m \leq \binom{r+t}{t}$.

For a set-system \mathcal{H} and a set X define $\mathcal{H}|_X = \{H \cap X : H \in \mathcal{H}\}$ and $\mathcal{H} \setminus X = \{H \setminus X : H \in \mathcal{H}\}$. The set B is called *transversal* of \mathcal{H} if $B \cap H \neq \emptyset$ holds for every $H \in \mathcal{H}$, $H \neq \emptyset$. Set $\tau(\mathcal{H}) = \min\{|B| : B \text{ is transversal of } \mathcal{H}\}$. Finally, let $t(\mathcal{H}) = \max\{t : \text{there exist } H_1, \ldots, H_t \in \mathcal{H} \text{ strongly representable subsystem}\}$.

The following lemma can be found in [8] as well.

Lemma 1. For every set-system \mathcal{F} , $\tau(\mathcal{F}) \leq t(\mathcal{F})$. Therefore $\tau(\mathcal{F} \setminus X) \leq t(\mathcal{F})$ and $\tau(\mathcal{F}|_X) \leq t(\mathcal{F})$.

Proof. Let B be a minimal transversal of \mathscr{F} , then $|B| \ge \tau(\mathscr{F})$. For every $b \in B$ there exists an $F_b \in \mathscr{F}$ such that $F_b \cap B = \{b\}$. Therefore $t(\mathscr{F}) \ge |B|$. \square

Corollary 2. If $\mathscr{F} \rightarrow K_{\leq 1}^{t+1}$ and $F \in \mathscr{F}$, then $\tau(\mathscr{F} \setminus F) \leq t$.

Proof. Indeed, $\tau(\mathcal{F} \setminus F) \leq t(\mathcal{F} \setminus F) \leq t(\mathcal{F}) \leq t$. \square

Now we are ready to prove Theorem 3. Let \mathscr{F} be a set-system of rank r and $\mathscr{F} \not\to K_{\leq 1}^{t+1}$. Using Corollary 2, for every $F \in \mathscr{F}$ choose a B(F) such that $B(F) \cap F = \emptyset$, $|B(F)| \leq t$ and $B(F) \cap F' \neq \emptyset$ whenever $F' \in \mathscr{F}$ and $F' \not\subset F$.

Without loss of generality we can suppose that $\mathscr{F} = \{F_1, \ldots, F_m\}$ and $|F_i| \le |F_j|$ if $i \le j$. In this case Theorem 4 can be applied for $\{F_i, B(F_i)\}$, implying $m \le \binom{r+r}{t}$. \square

3. Proof of Theorem 2

Lemma 2. Let \mathscr{F} be a set-system of rank r such that $\mathscr{F} \not\to K_{\leq 1}^{t+1}$, $|\mathscr{F}| = \binom{r+t}{t}$, and let $F \in \mathscr{F}$, |F| < r. Then there exist exactly t different sets $F' \in \mathscr{F}$ for which $F \subset F'$ and |F'| = |F| + 1.

Proof. Clearly, the number of such sets F' is at most t. We prove that if $F \in \mathcal{F}$, |F| < r, then $F \cup \{x\} \in \mathcal{F}$ holds for every $x \in B(F)$, where B(F) is as defined in the proof of Theorem 3.

Suppose that this is not true for $F_i \in \mathcal{F}$. We can assume $|F_i| < |F_j|$ for every j > i. Let $F' = F_i \cup \{x\} \notin \mathcal{F}$ for some $x \in B(F_i)$. Lemma 1 guarantees the existence of B(F'), a transversal of $\mathcal{F} \setminus F'$, $|B(F')| \le t$. Now $B(F') \cap F_j \ne \emptyset$ if j > i, $F_i \in \mathcal{F}$, because $|F_j| \ge |F'|$. Let $\mathcal{F}' = \mathcal{F} \cup \{F'\}$. Now the sets $F_1, \ldots, F_i, F', F_{i+1}, \ldots, F_m$ and $B(F_1), \ldots, B(F_i), B(F'), B(F_{i+1}), \ldots, B(F_m)$ satisfy the assumptions of Theorem 4, therefore $|\mathcal{F}| < |\mathcal{F}'| \le (r+1)$, contradicting the maximality of \mathcal{F} . \square

Corollary 3. Let \mathcal{F} be a set-system of rank r, $\mathcal{F} \not\rightarrow K^{t+1}_{\leq 1}$. If B(F) is not uniquely determined for some $F \in \mathcal{F}$, |F| < r, then $|\mathcal{F}| < {r \choose t}$.

Proof. If B(F) and B'(F) are two different t-element transversals of $\mathcal{F} \setminus F$, then the number of sets $F' \in \mathcal{F}$, $F \subset F'$, |F'| = |F| + 1, is at least $|B(F) \cup B'(F)| > t$. \square

To prove Theorem 2, we proceed by induction on r and t. The statement is trivially true when r = 1 or t = 1.

If $\mathscr{F} \not\to K_{\leq 1}^{t+1}$ and \mathscr{F} is maximal then $\emptyset \in \mathscr{F}$. It follows from Lemma 2 that $\{x\} \in \mathscr{F}$ for some point x. (There are exactly t such points.) Set

$$\mathcal{F}_1 = \{F \setminus \{x\}: x \in F \in \mathcal{F}\}, \qquad \mathcal{F}_2 = \{F \in \mathcal{F}: x \notin F\}.$$

Then \mathcal{F}_1 has rank r-1 and $t(\mathcal{F}_1) \leq t$, therefore $|\mathcal{F}_1| \leq {r+t-1 \choose t}$. Also, \mathcal{F}_2 has rank

r and $t(\mathcal{F}_2) \leq t-1$, so $|\mathcal{F}_2| \leq \binom{r+t-1}{t-1}$. Since $|\mathcal{F}_1| + |\mathcal{F}_2| = \binom{r+t}{t}$, \mathcal{F}_1 is (r-1, t)-extremal and \mathcal{F}_2 is (r, t-1)-extremal. Consequently, the inductive hypothesis can be used for \mathcal{F}_1 and \mathcal{F}_2 , therefore

$$|\mathcal{F}(i)| = |\mathcal{F}_1(i-1)| + |\mathcal{F}_2(i)| = \binom{i-1+t-1}{t-1} + \binom{i+t-2}{t-2} = \binom{i+t-1}{t-1}. \quad \Box$$

Acknowledgment

The authors would like to express their thanks to J. Lehel for the fruitful discussions.

References

- [1] R.P. Anstee, Properties of (0, 1)-matrices with no triangles, J. Combin. Theory Ser. A 29 (1980) 186-198.
- [2] R.P. Anstee, Hypergraphs with no special cycles, Combinatorica 3 (1983) 141-146.
- [3] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar 16 (1965) 447-452.
- [4] B. Bollobás, see Problem 13.10(b) in: L. Lovász, Combinatorial Problems and Exercises (North-Holland, Amsterdam, 1979). 78.
- [5] A. Bondy, Problem 5 in: C. Berge and D.K. Ray-Chaudhuri, eds., Hypergraph Seminar, Lecture Notes in Math. 411 (Springer, Berlin, 1974) 279.
- [6] P. Frankl, An extremal problem for two families of sets, European J. Combin. 3 (1982) 125-127.
- [7] P. Frankl, On the trace of finite sets, J. Combin. Theory Ser. A 34 (1983) 41-45.
- [8] P. Frankl and J. Pach, On disjointly representable sets, Combinatorica 4 (1984) 39-45.
- [9] Z. Füredi, Traces of finite sets, Ars Combin. (to appear).
- [10] J. Lehel, Covers in hypergraphs, Combinatorica 2 (1982) 305-309.
- [11] N. Sauer, On the density of families of sets, J. Combin. Theory Ser. A 13 (1972) 145-147.
- [12] Zs. Tuza, Helly-type hypergraphs and Sperner families, European J. Combin. 5 (1984) 185-187.
- [13] Zs. Tuza, Critical hypergraphs and intersecing set-pair systems, J. Combinatorial Theory Ser. B (to appear).