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Let r, t be positive integers, 9 a set-system of rank r (i.e., lFl<r for every FE 9). If 
jpl>(‘:‘), then there exist F,,F,, . , FC+l~ 9 and points p,.. . . , P~+~ forming a ‘star’, i.e., 
pi E Fi but pi E Fi for i # j. 

1. Introduction and results 

1.1. Hypergraphs without a large star 

Let X be a hypergraph (i.e., a finite set-system, @E X is allowed). The rank of 
2f is r if maxHEX )H\ = r. The hypergraph 2 is an r-graph (an r-uniform hyper- 
graph) if each member of 2’ has exactly r elements. The complete hypergraph 
consisting of all the I-element (all the at most I-element) subsets of an n-element 
set is denoted by KY (K!&). 

A set-system {A,, . . . , A,} is strongly representable if every Ai has an own point 
(its strong representative), i.e., there exist a,, . . . , a, such that q EAi\(Ui~i A,), 
1 <i < t. (The other name of a strongly representable system is t-star.) 

Frank1 and Path [8] proved that if an r-graph 9 does not contain a 3-star as 
subsystem then 1.91 ~[r*/4]+ r + 1. (The extremal 9 can be obtained from the 
complement of the Turin graph on r+2 points.) They conjecture that an r-graph 
without a t-star can have at most T(r + t - 1, t, t - 1) members, where T(n, k, l) is 
the Turin number, i.e., max{lXI: 2’~ KY, K:$ 2). This conjecture seems to be 
hopeless now because there is almost nothing known on the Tur6n numbers if 
1 z= 3. The following result, concerning hypergraphs of rank r instead of r-uniform 
ones, settles the problem apart from a constant factor. 

Theorem 1. Let 9 be a set-system of rank r without a (t + 1)-star. Then ISI s (‘F). 

Remark. Since T(n, t + 1, t)>$(y) (see [lo]), for the maximal number m = m(r, t) 
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of edges in an r-uniform hypergraph without a (t+ 1)-star we have $(‘t’) < m G 
(‘3 

1.2. Extremal families 

There is a great number of extremal families (except for the trivial cases when 
r = 1 or t = 1). That is, if r, t > 1, there exist a lot of non-isomorphic set-systems 9 
of rank r without a (t + 1)-star and having (‘:I) members. Now we give two 
examples. The notation (T) stands for the set-system consisting of all the i- 
element subsets of X. 

Example 1. Let X = {x,, . . . , x,+~-~}, Xi = {x,, . . . , xi}, X, = 0. Set 4 = (x~:~~l) and 
s=9-0l-J. * * U sr. Then 9 is a set-system of rank r without a (t + 1)-star, and 
pq= (‘T’). 

Example 2. Let ts2, Y={y,, . . . , y,} and Xi as in Example 1 (OSiGr+t-2). 
Set 

and 9= U siTi where i, ja0 and i+jGr. 

These examples can be found in [9] concerning a related problem. We could 
not describe all the extremal families, even for t = 2, but the following holds. 

Theorem 2. If 9 is a set-system of rank r without a (t+ l&star, and ]9]= (‘:I), 
then IS(i)\ = (i:Ly’) where 9(i) = {FE 9: IFI = i} (0 s is r). 

Another property of extremal families will be given later in Lemma 2. 

1.3. Traces of finite sets 

Let 9 and %‘={(H,, . . . , H,,,} be two set-systems. We write 9+ %’ (9 implies 
X) if there exist F,, . . . , F,,, E 9 and a set Y such that the set-system {E n Y: 1 G 
i < m} is isomorphic to If: otherwise Z+ %‘. E.g., Theorem 1 can be formulated 
as follows. If 9 has rank r and ]@I> (‘T’) then 9+K;+l. 

One of the first results of this type was given by Sauer [ 111 who proved that if 
9 c K&, (%I> (:) + (7) + * * * + (y), then 9+ Kg!+,. One could think that 9+ K;“’ 
even if 9 is smaller. However, for t = 2 Frank1 (unpublished) and Anstee [ 11, and 
later Fiiredi [9] showed the existence of set-systems 

9n.t = Kin with ]sCt]= (:) +. . * + (y) and $,,, + Ki”‘. 

Corollary 1 ([9], for t = 2 [ 11). If 9 = KZ,, ISI = (0”) + * * * + (7) and 9+Ki+‘, then 
IS(i)1 = (‘TL;‘) whenever 0 s i =S n - t + 1. 



Hypergraphs without a large star 319 

For further results see Bollobk [4], Bondy [S], Frank1 [7]. Instead of Theorem 
1, we prove the following slightly stronger result. ’ 

Theorem 3. Ler 9 be a set-system of iank r and \S(>(T:‘). Then P+K$+,‘. (That 
is, there exist F,, F1, . . . , F,,, E 9 and a set Y = {yl, . . . , ytcl} such rhat Y n F,, = @ 
and YnFi={yi} if lGiGt+l.) 

We mention that, for K;“’ -extremal families, one cannot expect a statement 
similar to Theorem 2 because e.g. K:+* is K:+,‘-extremal. 

1.4. More examples for r = 2 

Let C, denote the cycle of length k (i.e., a 2-uniform connected hypergraph 
with k points and k edges). Anstee [l] proved that if 8 is K$extremal on n 
points, then .9+C, (whenever k >3) and Is(i)l=n-i+l, lGi<n. (Then 
)$I= 1+ n + (3.) On the other hand, he proved that if 9$, C, for any k 5 3, then 
9 can be completed to a K$extremal family (see [2]). From these results we 
obtain: 

Example 3. Let 9 be a Kz-extremal family on an n-element set X (n 2 r + 1). Set 
%=CY(n)U* . * U 9(n - r) where 9(i) = {X\F: FE 9, (F( = i}. Then 59 has rank r, 
+I = (‘;‘), 9?+ K:. 

These examples show that the number of K:-extremal families is not smaller 
than the number of trees on r vertices, that is, at least exponential in r. 

2. Proof of Theorem 3 

The following result of Frank1 [6] is an improvement of a theorem of Bollobis 
[3]. (For other developments and applications see [12] and [13].) 

Theorem 4 (Frank1 [6]). Let Al, . . . , A,,, be at most r-element, B,, . . . , B, at most 
t-element sets with Ai n Bi = 8. Suppose that Ai f~ Bi # $I for i > j. Then m 6 (‘T?. 

For a set-system % and a set X define XI, = {H nX: HE %‘} and X\X = 
{H\X: HE X}. The set B is called transversal of X if B rl H# fl holds for every 
HE %‘, H# 8. Set ~(%‘)=rnin{JBI: B is transversal of X}. Finally, let t(x)= 
max{r: there exist H,, . . . , I-& E X strongly representable subsystem}. 

The following lemma can be found in [8] as well. 

Lemma 1. For every set-system 9, ~(.9) G t(s). Therefore 7(9\X) s t(s) and 
d~lx) s wx 
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Proof. Let B be a minimal transversal of %, then [B~z=T(~). For every b EB 
there exists an Fb E 9 such that Fb tl B = {b}. Therefore t(9) 3 1BI. 0 

Corollary 2. If %-,4 K::’ and FE 9, then T(S\F)G t. 

Proof. Indeed, T($\ F) C t(g\ F) d t(a) s t. 17 

Now we are ready to prove Theorem 3. Let 9 be a set-system of rank r and 
9+ K!&l. Using Corollary 2, for every FE 9 choose a B(F) such that B(F) n F = 
8, lB(F)j=~t and B(F)nF’#@ whenever F’E% and F’$F. 

Without loss of generality we can suppose that 9 = {F,, . . . , F,} and IFi I s 14 I if 
i <j. In this case Theorem 4 can be applied for {fi, B(e)}, implying m s (‘;“). Cl 

3. Proof of Theorem 2 

Lemma 2. Let 9 be a set-system of rank r such that 9+ KI=,‘, 19(= (‘:I), and let 
FE 9, JFJ < r. Then there exist exactly t different sets F’ E 9 for which Fc F’ and 
IF’1 = IFI + 1. 

Proof. Clearly, the number of such sets F’ is at most t. We prove that if FE 9, 
IFJ < r, then FU{x} E 9 holds for every x E B(F), where B(F) is as defined in the 
proof of Theorem 3. 

Suppose that this is not true for 6 E 9. We can assume IFiJ < 141 for every j > i. 
Let F’= Fi U{x}$P for some x E B(Fi). Lemma 1 guarantees the existence of 
B (F’), a transversal of S\ F’, (B(F’)l s t. Now B(F’) n 4 # pI if j > i, 5 E 9, 
because 1412 IF’I. Let 9’~ .tFU {F’}. NOW the sets F,, . . . , Fip F’, Fi+l, . . . , F, 
and B(F,), . . . , BUT), B(F’), B(F,+J, . . . , B(F,,) satisfy the assumptions of 
Theorem 4, therefore IPI< 19’1 G (T:‘), contradicting the maximality of 9. Cl 

Corollary 3. Let 9 be a set-system of rank r, Pj+KZ:. If B(F) is not uniquely 
determined for some FE 9, IFI < r, then \91<(‘:‘). 

Proof. If B(F) and B’(F) are two different t-element transversals of 9\F, then 
the number of sets F’ E 9, Fc F’, (F’J = IFI + 1, is at least IB(F) U B’(F)\ > t. Cl 

To prove Theorem 2, we proceed by induction on r and t. The statement is 
trivially true when r= 1 or t= 1. 

If .9+ K::’ and 9 is maximal then @ E 5% It follows from Lemma 2 that {x} E 9 
for some point x. (There are exactly t such points.) Set 

&={F\{x}: XEFE~}, &={FE$: x$F}. 

Then 9, has rank r - 1 and t(s,) =G t, therefore 19,) G (‘+:-‘). Also, 9; has rank 
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r and t(gA < t - 1, so j921 < (‘:1-;‘). S ince jS,l+ lLF21 = (‘:I>, 9, is (r - 1, t)-extremal 
and g2 is (r, t - l)-extremal. Consequently, the inductive hypothesis can be used 
for 2F1 and P2, therefore 

IS(i)l=IS,(i-l)l+I~~(i>(= (i-:+~-1)+(i:t~2)= (i:‘,‘). •i 
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