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AN EXTREMAL PROBLEM CONCERNING KNESER’S CONJECTURE

Z. FUREDI

Abstract

It is proved that if %, and 9, are k-uniform, intersecting set-systems over an n-element set
(FNF %0 for all F, F'¢ #, i=1,2) and n=6k then | F, UF,| é(g :}] % [gfl"] It is to be ex-
pected that the same holds for all n=2k+2.

1. Introduction

The well-known Kneser Conjecture [12], proved by Lovéasz [14] and Barany [1],
is equivalent to the following assertion. If %, %, ..., %, are k-uniform, intersecting
set-systems over an n-element set X (ie. |F|=k for all Fe% and FNF'#0
for all F, IF'e Z (1 ;—-’_-J'E-t)) and n=t+2k—1 then

o Uzl < (7).

In other words (1) means that Kneser’s graph Kf, 5. _,, obtained by connecting two
k-element subsets of X whenever they have empty intersection, cannot be coloured by
t colours. So the chromatic number y(KF, o, _,)=1+1.

However, Lovész’s and Barany’s nice proofs of (1), even Schrijver’s [16] interest-
ing generalization, which use deep geometrical tools, do not tell the true order of
magnitude of the left-hand side of (1). This geometrical method does not seem suitable
for estimating the distribution of sizes of colour classes of K, _;. The determina-
tion of max |U.%| is in fact a problem belonging to extremal hypergraph theory. More
than 10 years ago P. Erdés suggested [6] to attack the Kneser Conjecture in this way,
however no “real”, i.e. hypergraph theoretical proof is known. Essentially this paper
is concerned with the case 1=2.

2. Results

(3
Let us set f(n, k, fy=max {|U %|: % is a k-uniform, intersecting set-system
i=1

over the n-element set X' }. Henceforth we shall assume that the elements of X are the
integers from 1 to n. If n=t+2k—2 then

@ ok 0=(3).
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Indeed, let F={FcX: |F|=k, icF} for l=i=t—1 and .%Z{FCX: |F|=k,
Fo(x—{1, ..., t—i})}. As [ X—{l,..,t—1}|=2k—1, the set-system & is inter-
secting, too. For greater values of n one can replace % by the set-system whose
members have the common point 7, hence

%) fn, k, z);[}ij%%-[}ij]%. +(§:j]

Erd&s [6] conjectured that here equality holds for all n=1+42k—1. This would be a
substantial improvement of the Kneser Conjecture. The case k=1 Iis of no interest.
It is easy to see that the Erd8s conjecture holds for k=2.

- PROPOSITION 1. If n=(+3 then
o g i (h—1
) e 20=(3)-"2)-

The Erdds—Ko-—Rado [8] theorem states that the conjecture is true for /=1
and cach k:

) If n=2k then f(nk 1)= E:i]

However, A. J. W. Hilton [10] observed that the Erd8s conjecture is not true for
k=3, 1=2. Here we prove thatif k=2 and =1 then equality cannot hold in (3) for

n=t+2k—1, ie.
ProrosiTioN 2. [f k=3, t=2 then

(6) St+2k—1,k, 1) = Z(z:;]
i=1
This disproves the conjecture, but for the smallest admissible value of »n, namely
n=1+2k—1. Nevertheless, we believe that the conjecture is correct for any other

value of n:

CoNIECTURE. If n=(+2k then f(n, k, r}:z [E:;] Here equality holds iff

A i i=1
N, is nonempty for each /.
For n large enough this conjecture is supported by the following result of
P. Erdés [5].
G

0] If n=ny(k,1) then fln,k,t)y= > [E_’l]
i i=1

- His proof gives an exponentially large value for my(k, r). Later he, together
with Bollob4s and Daykin [3], proved that ny(k, 1)<2k3. (This bound was improved
to cktlog ¢ by P. Frankl and the author (unpublished) but our ¢ is very large.)
Below we consider the case =2,

TuroreM. If &, and F, are k-uniform intersecting set-systems over an n-element
underlying set X (n=6k) and the cardinality of #\UF, is maximal with respect
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to these assumptions, then there exist xy,x,€X such that x;¢ "%, i.e.,
®) ©if n=6k then f(nk,2)= (E: }] -+ [E:]z]
Thus there are several extremal families, but each of them is incident to two

points.

REMARK 1. In the theorem the assumption n=6k can be 1eplaced by
n=ry(k), where r, is the smallest number r satisfying (13). The conjectured value of
ro(k) is 3k—3 (see [9]).

~ RemARK 2. However, Proposition 2 does not disprove the following nice con-
jecture of P. Erdds [5]:

g(li" k, )= max{é’ [E:‘l] [ka— 1}},

i=1

where g(n, k, t)=:max {|#|: # is k-uniform set-system over an n-element set X,
and = F,, F,,.... F,;, pairwise disjoint}. This is a theorem of Erdés and Gallai
[7} for k=2. _

REMARK 3. Having learned Hilton’s counterexample Erdés modified his con-
jecture in the following way: If n=¢+2k—1 then

Jfn, k, ) < [}1:‘:]"" +(::;)+ ”;i?l]_

Here the right-hand side is less than [E] so this conjecture would imply (1). too.

3. Proofs

For the proo_fs' of (1), (2), (3), (5) and (7) see the references. The proof of (4) is
extremely easy.
“ LemmMA 1./ f F is a Z-uniform, intersecting sei-system, then either (1F #0
(ie., F is astar) or F is a triangle. [

This lemma contains the case f=1. We use induction on r. If in the case /=1
cach set-system 7, ..., Z is a triangle then

U = 2|#| = 31 < (g]_(uz—r}

and we are ready. So we can suppose that some % is a star, say 1€ (1.%;. Then we
can use the induction hypothesis for the members of %, %, ..., % lyingin X—{1}. O

The proof of (6) is a construction It is enough to give this construction for the
case (=2, because for all n, k and ¢ :

ki) = (E:”Jrf(n— 1, k, t—1).
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So [X|=n=2k+1, and let X=AUB, |4|=3, |B|=2k—2 and choose some
beB. Let #={FCX: |F|=k, |[FNA|=2)}, and #={FCB: |F|=k}U{FCX:
|F|=k, |FN\B|=k~—1, b€ F}. Then # and % are two disjoint set-systems and each
of them is intersecting. Moreover

; -3 n—3 -3 -4

_[n—1 n—2} 2k—3 n—1 n—2
=lk—1)Tlk-1) & )7 k—1)Ftlk—1)-
PRrooF of the Theorem. Let % and %, be two k-uniform, intersecting set-systems
over X, X={1.2,...,n}, without common member (% N%=0). Suppose that

i n—1 n—2
A+ % = [k—l)Jr[k“l ’

It is enough to show that % #0. Use the following operation P;; which was
first applied by Erd6s, Ko and Rado for the proof of the theorem (5). However,
here we are using this P;; for ordering two set-systems at the same time. For 1=/<
=j=n and Fe#F1JF#, we have

FU{i}-{j} if Fe#,i4F,jcF and
FU{i}—{j} ¢
Pij(F)u—--lFU{j}—{f} if FeZ,,jGF,icF and

FU{j} - {i}4 %,
F otherwise.
Let
Py(F) = {P;(F): FEF} (s=1,2).

So we have got two new set-systems. Clearly, |%|=|P;;(#,)|, and with the aid
of [8] it can be shown that P;;(#,) and P;;(%,) are two disjoint, intersecting set-
systems, too. Applying each P;; for all 1=/=j=n (perhaps several times) after fi-
nitely many steps we get two (disjoint and intersecting) set-systems .% and % which
are pushed to the left and to the right, respectively, i.e.,

) If L, i<j, i¢L, jeL then LU {i}—{j}c2.
Similarly,
If RER,i<j, i€R, j¢R then R—{i}U {j}€%. Denote by
Z(1,n)=:{LeZ: 1€L, nel},
LA,n) =:{LeP: 1cL,n¢ L}, etc.

Now we give an upper estimation for the cardinalities of these parts of . and
2. Clearly,

(10) 2 (1, n)+12(1, n)| = [;j:;z,]
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L5 .
LemMA 2. | -2 (1, n)|= [; . 1], Surthermore if here equality holds, then
1eNZ (so LA, n)=0 and L(1,7)=0).

Proor of Lemma 2. Let us write |Z(1, i)|=m. The case m=0 is trivial, so
suppose m=1. Then

(1) 2@ D)=

n—k+1"°

In fact, using (9) to each Le#(I,n) there corresponds n—k+1 members of
Z (1, A), namely, the sets L—{n}U {i} 2=i=n—1,i¢L). Moreover, in this way we
can get each member of # (1, i) at most k times.

(12) If n=>6k then m= [};:;] - (nfgjz).

In fact, the set-system % (1, A1) is 2-intersecting, i.e., if 4, BEZ (1, i) then |ANB|=2.
(This follows from the fact that 4NB={x} implies (4—{x}U{1})NB=0). So
we can apply the sharper form of the Erdés—Ko—Rado theorem which is due to
P. Frankl [9]:

If 2 is a k-uniform, 2-intersecting set-system over an r-element set and r=6k—1
then

r—2
(13) |o#] = k—Z)'
Now the cardinality of % (1, i7) will be estimated by an upper bound depending on m.
The main idea of the following argument is due to Daykin [4], who gave an original
proof for theorem (5) in this way. We need the Kruskal-—Katona theorem [11], [13].

We use a weaker but much more simple form of this theorem which is due to Lovész
[15]:

If o is an arbitrary a-uniform set-system and

a4 > - [jj] then |dy(sf)| = [g] .

Here a=b=0 are integers, x=a is a real number,

X 1
[a] =.E~!-x(x—1)...(x—a—i—1)
and
Ay () =:{B: |B| = b, 34€ s/ BC A}.
Denote by & the set of the complements of the members of % (1, 1) with respect

to X—{1, n}. }.ef|=m=[n_£_“2], where x=n—k—2. If |B|=k—1, BCAcy
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then BU{l}¢ £ (1, n)., because & is intersecting. Hence

n—2 n—2 :
as) 2m = (02 lertonl = (122 5)-
Now (12) gives that x=n—4, so applying (11) we get
= = g n+1
g(l, ?1)!+|.9,9{1, H)I = mm =

(16)
x n+l x] n+1 % ) o
n—k—2)7—k+1 — \k—2) g—k+1 _ \k=1)

Finally, summing-(15) and (16) we obtain Lemma 2. Moreover here equallty can
hold only if m=0, so Z(I,A)=0, Z(I,n)=0 and L(1,n)={LcX: |L|=k,
1€L, n¢l}. O

Returning to the proof of the Theorem we can get an estimation for 2, 51m1—
larly to Lemma 2. Hence together with (10) we have: :

n—2 n—2 n—1 n—2
e =223+ (:53) = (:23) + ()
Finally, it is easy to check that if N.¥#={1} and NZ%={n} then before carrying
out the operations P;; N##0, too. O

Added in proof. Further new results are in P. Frankl and Z. Fiiredi ..Extremal
problems concerning Kneser-graphs” (submitted to J. Combinatorial Tkeory Ser. B).

Especially, it is proved that (8) is true for n>——(3 + l/_)k 2. 62k and it does not
hold for n<2k+ o(}k) disproving my conjecture. :
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