AN EXTREMAL PROBLEM CONCERNING KNESER'S CONJECTURE

Z. FÜREDI

Abstract

It is proved that if \mathscr{F}_1 and \mathscr{F}_2 are k-uniform, intersecting set-systems over an n-element set $(F \cap F' \neq 0 \text{ for all } F, F' \in \mathscr{F}_i, i = 1,2)$ and n > 6k then $|\mathscr{F}_1 \cup \mathscr{F}_2| \leq \binom{n-1}{k-1} + \binom{n-2}{k-1}$. It is to be expected that the same holds for all $n \geq 2k+2$.

1. Introduction

The well-known Kneser Conjecture [12], proved by Lovász [14] and Bárány [1], is equivalent to the following assertion. If $\mathscr{F}_1, \mathscr{F}_2, ..., \mathscr{F}_t$ are k-uniform, intersecting set-systems over an n-element set X (i.e. |F|=k for all $F \in \mathscr{F}_i$ and $F \cap F' \neq \emptyset$ for all $F, F' \in \mathscr{F}_i (1 \leq i \leq t)$) and $n \geq t + 2k - 1$ then

In other words (1) means that Kneser's graph K_{t+2k-1}^k , obtained by connecting two k-element subsets of X whenever they have empty intersection, cannot be coloured by t colours. So the chromatic number $\chi(K_{t+2k-1}^k)=t+1$.

However, Lovász's and Bárány's nice proofs of (1), even Schrijver's [16] interesting generalization, which use deep geometrical tools, do not tell the true order of magnitude of the left-hand side of (1). This geometrical method does not seem suitable for estimating the distribution of sizes of colour classes of K_{t+2k-1}^k . The determination of max $|\bigcup \mathcal{F}_i|$ is in fact a problem belonging to extremal hypergraph theory. More than 10 years ago P. Erdős suggested [6] to attack the Kneser Conjecture in this way, however no "real", i.e. hypergraph theoretical proof is known. Essentially this paper

2. Results

Let us set $f(n, k, t) = \max \{ |\bigcup_{i=1}^{t} \mathscr{F}_i| : \mathscr{F}_i \text{ is a } k\text{-uniform, intersecting set-system over the } n\text{-element set } X \}$. Henceforth we shall assume that the elements of X are the integers from 1 to n. If $n \le t + 2k - 2$ then

(2)
$$f(n, k, t) = \binom{n}{k}.$$

is concerned with the case t=2.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 05C15; Secondary 05C65, 05A05. Key words and phrases. Graphs, colourings, hypergraphs.

Indeed, let $\mathscr{F}_i = \{F \subset X: |F| = k, i \in F\}$ for $1 \le i \le t-1$ and $\mathscr{F}_t = \{F \subset X: |F| = k, F \subset (X - \{1, ..., t-1\})\}$. As $|X - \{1, ..., t-1\}| \le 2k-1$, the set-system \mathscr{F}_t is intersecting, too. For greater values of n one can replace \mathscr{F}_t by the set-system whose members have the common point t, hence

(3)
$$f(n, k, t) \ge \binom{n-1}{k-1} + \binom{n-2}{k-1} + \dots + \binom{n-t}{k-1}.$$

Erdős [6] conjectured that here equality holds for all $n \ge t + 2k - 1$. This would be a substantial improvement of the Kneser Conjecture. The case k = 1 is of no interest. It is easy to see that the Erdős conjecture holds for k = 2.

PROPOSITION 1. If $n \ge t+3$ then

(4)
$$f(n,2,t) = \binom{n}{2} - \binom{n-t}{2}.$$

The Erdős—Ko--Rado [8] theorem states that the conjecture is true for t=1 and each k:

(5) If
$$n \ge 2k$$
 then $f(n, k, 1) = \binom{n-1}{k-1}$.

However, A. J. W. Hilton [10] observed that the Erdős conjecture is not true for k=3, t=2. Here we prove that if k>2 and t>1 then equality cannot hold in (3) for n=t+2k-1, i.e.

PROPOSITION 2. If $k \ge 3$, $t \ge 2$ then

(6)
$$f(t+2k-1, k, t) > \sum_{i=1}^{t} {n-i \choose k-1}.$$

This disproves the conjecture, but for the smallest admissible value of n, namely n=t+2k-1. Nevertheless, we believe that the conjecture is correct for any other value of n:

Conjecture. If $n \ge t + 2k$ then $f(n, k, t) = \sum_{i=1}^{t} {n-i \choose k-1}$. Here equality holds iff $\cap \mathcal{F}_i$ is nonempty for each i.

For n large enough this conjecture is supported by the following result of P. Erdős [5].

(7) If
$$n > n_0(k, t)$$
 then $f(n, k, t) = \sum_{i=1}^{t} {n-i \choose k-1}$.

His proof gives an exponentially large value for $n_0(k, t)$. Later he, together with Bollobás and Daykin [3], proved that $n_0(k, t) < 2k^3t$. (This bound was improved to $ckt \log t$ by P. Frankl and the author (unpublished) but our c is very large.) Below we consider the case t=2.

Theorem. If \mathcal{F}_1 and \mathcal{F}_2 are k-uniform intersecting set-systems over an n-element underlying set X (n>6k) and the cardinality of $\mathcal{F}_1 \cup \mathcal{F}_2$ is maximal with respect

to these assumptions, then there exist $x_1, x_2 \in X$ such that $x_i \in \cap \mathcal{F}_i$, i.e.,

(8) if
$$n > 6k$$
 then $f(n, k, 2) = \binom{n-1}{k-1} + \binom{n-2}{k-1}$.

Thus there are several extremal families, but each of them is incident to two points.

REMARK 1. In the theorem the assumption n>6k can be replaced by $n>r_0(k)$, where r_0 is the smallest number r satisfying (13). The conjectured value of $r_0(k)$ is 3k-3 (see [9]).

REMARK 2. However, Proposition 2 does not disprove the following nice conjecture of P. Erdős [5]:

$$g(n, k, t) = \max \left\{ \sum_{i=1}^{t} {n-i \choose k-1}; {kt+k-1 \choose k} \right\},$$

where $g(n, k, t) = \max \{ |\mathcal{F}| : \mathcal{F} \text{ is } k\text{-uniform set-system over an } n\text{-element set } X,$ and $\exists F_1, F_2, \dots F_{t+1}$ pairwise disjoint}. This is a theorem of Erdős and Gallai [7] for k=2.

REMARK 3. Having learned Hilton's counterexample Erdős modified his conjecture in the following way: If $n \ge t + 2k - 1$ then

$$f(n, k, t) < \binom{n-1}{k-1} + \dots + \binom{n-t}{k-1} + \binom{n-t-1}{k-1}.$$

Here the right-hand side is less than $\binom{n}{k}$, so this conjecture would imply (1), too.

3. Proofs

For the proofs of (1), (2), (3), (5) and (7) see the references. The proof of (4) is extremely easy.

Lemma 1. If
$$\mathscr{F}$$
 is a 2-uniform, intersecting set-system, then either $\cap \mathscr{F} \neq \emptyset$ (i.e., \mathscr{F} is a star) or \mathscr{F} is a triangle. \square

This lemma contains the case t=1. We use induction on t. If in the case t>1 each set-system $\mathcal{F}_1, ..., \mathcal{F}_t$ is a triangle then

$$|\bigcup \mathscr{F}_i| \leq \Sigma |\mathscr{F}_i| = 3t < \binom{n}{2} - \binom{n-t}{2}$$

and we are ready. So we can suppose that some \mathscr{F}_i is a star, say $1 \in \cap \mathscr{F}_1$. Then we can use the induction hypothesis for the members of \mathscr{F}_2 , \mathscr{F}_3 , ..., \mathscr{F}_t lying in $X - \{1\}$. \square

The proof of (6) is a construction It is enough to give this construction for the case t=2, because for all n, k and t

$$f(n, k, t) \ge {n-1 \choose k-1} + f(n-1, k, t-1).$$

So |X|=n=2k+1, and let $X=A\cup B$, |A|=3, |B|=2k-2 and choose some $b\in B$. Let $\mathscr{F}_1=\{F\subset X\colon |F|=k,\ |F\cap A|\ge 2\}$, and $\mathscr{F}_2=\{F\subset B\colon |F|=k\}\cup \{F\subset X\colon |F|=k,\ |F\cap B|=k-1,\ b\in F\}$. Then \mathscr{F}_1 and \mathscr{F}_2 are two disjoint set-systems and each of them is intersecting. Moreover

$$|\mathscr{F}_{1}| + |\mathscr{F}_{2}| = 3\binom{n-3}{k-2} + \binom{n-3}{k-3} + \binom{n-3}{k} + 3\binom{n-4}{k-2} =$$

$$= \binom{n-1}{k-1} + \binom{n-2}{k-1} + \binom{2k-3}{k} > \binom{n-1}{k-1} + \binom{n-2}{k-1}.$$

PROOF of the Theorem. Let \mathscr{F}_1 and \mathscr{F}_2 be two k-uniform, intersecting set-systems over X, $X = \{1, 2, ..., n\}$, without common member $(\mathscr{F}_1 \cap \mathscr{F}_2 = \emptyset)$. Suppose that

$$|\mathscr{F}_1| + |\mathscr{F}_2| \ge {n-1 \choose k-1} + {n-2 \choose k-1}.$$

It is enough to show that $\cap \mathscr{F}_1 \neq \emptyset$. Use the following operation P_{ij} which was first applied by Erdős, Ko and Rado for the proof of the theorem (5). However, here we are using this P_{ij} for ordering two set-systems at the same time. For $1 \leq i < j \leq n$ and $F \in \mathscr{F}_1 \cup \mathscr{F}_2$ we have

$$P_{ij}(F) = \begin{cases} F \cup \{i\} - \{j\} & \text{if} \quad F \in \mathscr{F}_1, \ i \notin F, j \in F \quad \text{and} \\ F \cup \{i\} - \{j\} \notin \mathscr{F}_1 \end{cases}$$

$$F \cup \{j\} - \{i\} & \text{if} \quad F \in \mathscr{F}_2, \ j \notin F, \ i \in F \quad \text{and} \\ F \cup \{j\} - \{i\} \notin \mathscr{F}_2 \end{cases}$$

$$\text{otherwise.}$$

Let

$$P_{ij}(\mathscr{F}_s) = \{P_{ij}(F) \colon F \in \mathscr{F}_s\} \qquad (s = 1, 2).$$

So we have got two new set-systems. Clearly, $|\mathscr{F}_s| = |P_{ij}(\mathscr{F}_s)|$, and with the aid of [8] it can be shown that $P_{ij}(\mathscr{F}_1)$ and $P_{ij}(\mathscr{F}_2)$ are two disjoint, intersecting set-systems, too. Applying each P_{ij} for all $1 \le i < j \le n$ (perhaps several times) after finitely many steps we get two (disjoint and intersecting) set-systems \mathscr{L} and \mathscr{R} which are pushed to the left and to the right, respectively, i.e.,

(9) If
$$L \in \mathcal{L}$$
, $i < j$, $i \notin L$, $j \in L$ then $L \cup \{i\} - \{j\} \in \mathcal{L}$.

Similarly,

If $R \in \mathcal{R}$, i < j, $i \in R$, $j \notin R$ then $R - \{i\} \cup \{j\} \in \mathcal{R}$. Denote by

$$\mathcal{L}(1, n) =: \{L \in \mathcal{L}: 1 \in L, n \in L\},\$$

$$\mathcal{L}(1, \bar{n}) =: \{L \in \mathcal{L}: 1 \in L, n \notin L\}, \text{ etc.}$$

Now we give an upper estimation for the cardinalities of these parts of $\mathscr L$ and $\mathscr R$. Clearly,

$$(10) |\mathcal{L}(1,n)| + |\mathcal{R}(1,n)| \leq {n-2 \choose k-2}.$$

Lemma 2. $|\mathscr{L}-\mathscr{L}(1,n)| \leq \binom{n-2}{k-1}$, furthermore if here equality holds, then $1 \in \cap \mathscr{L}$ (so $\mathscr{L}(\overline{1},n) = \emptyset$ and $\mathscr{L}(\overline{1},\overline{n}) = \emptyset$).

PROOF of Lemma 2. Let us write $|\mathcal{L}(\overline{1}, \overline{n})| = m$. The case m=0 is trivial, so suppose $m \ge 1$. Then

(11)
$$|\mathcal{L}(\overline{1}, n)| \leq m \frac{k}{n - k + 1}.$$

In fact, using (9) to each $L \in \mathcal{L}(\bar{1}, n)$ there corresponds n-k+1 members of $\mathcal{L}(\bar{1}, \bar{n})$, namely, the sets $L - \{n\} \cup \{i\}$ ($2 \le i \le n-1$, $i \notin L$). Moreover, in this way we can get each member of $\mathcal{L}(\bar{1}, \bar{n})$ at most k times.

(12) If
$$n > 6k$$
 then $m \le \binom{n-4}{k-2} = \binom{n-4}{n-k-2}$.

In fact, the set-system $\mathcal{L}(\overline{1}, \overline{n})$ is 2-intersecting, i.e., if $A, B \in \mathcal{L}(\overline{1}, \overline{n})$ then $|A \cap B| \ge 2$. (This follows from the fact that $A \cap B = \{x\}$ implies $(A - \{x\} \cup \{1\}) \cap B = \emptyset$). So we can apply the sharper form of the Erdős—Ko—Rado theorem which is due to P. Frankl [9]:

If \mathcal{H} is a k-uniform, 2-intersecting set-system over an r-element set and $r \ge 6k-1$ then

$$|\mathscr{H}| \le \binom{r-2}{k-2}.$$

Now the cardinality of $\mathcal{L}(1, \bar{n})$ will be estimated by an upper bound depending on m. The main idea of the following argument is due to Daykin [4], who gave an original proof for theorem (5) in this way. We need the Kruskal—Katona theorem [11], [13]. We use a weaker but much more simple form of this theorem which is due to Lovász [15]:

If A is an arbitrary a-uniform set-system and

(14)
$$|\mathscr{A}| = {x \choose a}, \text{ then } |\Delta_b(\mathscr{A})| \ge {x \choose b}.$$

Here $a \ge b > 0$ are integers, $x \ge a$ is a real number,

$$\binom{x}{a} = : \frac{1}{a!} x(x-1)...(x-a+1)$$

and

$$\Delta_b(\mathscr{A}) =: \{B \colon |B| = b, \exists A \in \mathscr{A} \ B \subset A\}.$$

Denote by \mathscr{A} the set of the complements of the members of $\mathscr{L}(\overline{1}, \overline{n})$ with respect to $X - \{1, n\}$. $|\mathscr{A}| = m = \binom{x}{n-k-2}$, where $x \ge n-k-2$. If |B| = k-1, $B \subseteq A \in \mathscr{A}$

340 Z. FÜREDI

then $B \cup \{1\} \notin \mathcal{L}(1, \bar{n})$, because \mathcal{L} is intersecting. Hence

(15)
$$\mathscr{L}(1,\bar{n}) \leq \binom{n-2}{k-1} - |\Delta_{k-1}(\mathscr{A})| \leq \binom{n-2}{k-1} - \binom{x}{k-1}.$$

Now (12) gives that $x \le n-4$, so applying (11) we get

$$|\mathcal{L}(\bar{1},n)| + |\mathcal{L}(\bar{1},\bar{n})| \le m \frac{n+1}{n-k+1} =$$

$$\binom{x}{n-k-2} \frac{n+1}{n-k+1} \le \binom{x}{k-2} \frac{n+1}{n-k+1} < \binom{x}{k-1}.$$

Finally, summing (15) and (16) we obtain Lemma 2. Moreover here equality can hold only if m=0, so $\mathcal{L}(\bar{1},\bar{n})=\emptyset$, $\mathcal{L}(\bar{1},n)=\emptyset$ and $\mathcal{L}(1,\bar{n})=\{L\subset X\colon |L|=k, 1\in L, n\notin L\}$. \square

Returning to the proof of the Theorem we can get an estimation for \mathcal{R} , similarly to Lemma 2. Hence together with (10) we have:

$$|\mathcal{L}|+|\mathcal{R}|\leq 2\binom{n-2}{k-1}+\binom{n-2}{k-2}=\binom{n-1}{k-1}+\binom{n-2}{k-1}.$$

Finally, it is easy to check that if $\cap \mathcal{L} = \{1\}$ and $\cap \mathcal{R} = \{n\}$ then before carrying out the operations $P_{ij} \cap \mathcal{F}_s \neq \emptyset$, too. \square

Added in proof. Further new results are in P. Frankl and Z. Füredi "Extremal problems concerning Kneser-graphs" (submitted to J. Combinatorial Theory Ser. B). Especially, it is proved that (8) is true for $n > \frac{1}{2}(3+\sqrt{5})k \sim 2.62k$ and it does not

hold for $n < 2k + o(\sqrt{k})$ disproving my conjecture.

REFERENCES

- BÁRÁNY, I., A short proof of Kneser's conjecture, J. Combin. Theory Ser. A 25 (1978), 325—326.
 MR 81g: 05056.
- [2] BERGE, C., Graphs and hypergraphs, North-Holland Mathematical Library, Vol. 6, North-Holland Publ. Co., Amsterdam—London; American Elsevier Publ. Co., Inc., New York, 1973. MR 50 #9640.
- [3] BOLLOBÁS, B., DAYKIN, D. E. and ERDŐS, P., Sets of independent edges of a hypergraph, Quart. J. Math. Oxford Ser. (2) 27 (1976), 25—32. MR 54 #159.
- [4] DAYKIN, D. E., A simple proof of the Kruskal—Katona theorem, J. Combinatorial Theory Ser. A 17 (1974), 252—253. MR 54 # 4994.
- [5] Erdős, P., A problem on independent r-tuples, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.
- 8 (1965), 93—95. MR 41 #5223. Zbl. 136, 213.
 [6] ERDŐS, P., Problems and results on finite and infinite combinatorial analysis, Infinite and finite sets (Colloq. Keszthely, 1973), Vol. I, Colloq. Math. Soc. J. Bolyai, 10, North-Holland, Amsterdam, 1975, 403—424. MR 52 #10438.
- [7] ERDŐS, P. and GALLAI, T., On maximal paths and circuits of graphs, Acta. Math. Acad. Sci.
- Hungar. 10 (1959), 337—356. MR 22 # 5591.
 [8] ERDŐS, P., Ko, C. and RADO, R., Intersection theorems for systems of finite sets, Quart. J. Math.

Oxford Ser. (2) 12 (1961), 313—320. MR 25 # 3839.

[9] FRANKL, P., The Erdős—Ko—Rado theorem is true for n=ckt, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, Colloq. Math. Soc. János Bolyai, Vol. 18, Ed. by A. Hajnal and V.T. Sós, North-Holland, Amsterdam, 1978, 365—375. MR 80c: 05014.

[10] HILTON, A. J. W., unpublished, see [6].

[11] KATONA, G. O. H., A theorem of finite sets, Theory of graphs (Proc. Colloq., Tihany, 1966), Ed. by P. Erdős and G. Katona, Academic Press, New York, 1968, 187—207. MR 45 # 76.

[12] KNESER, M., Aufgabe 300, Jber. Deutsch. Math. Ver. 58 (1955).

(Received January 15, 1982)

MTA MATEMATIKAI KUTATÓ INTÉZETE REÁLTANODA U. 13—15 H—1053 BUDAPEST HUNGARY