SET SYSTEMS WITH THREE INTERSECTIONS

Z. FÜREDI

Received 15 April 1983 Revised 29 October 1983

Let X be a finite set of n elements and \mathscr{F} a family of 4a+5-element subsets, $a \ge 6$. Suppose that all the pairwise intersections of members of \mathscr{F} have cardinality 0, a or 2a+1. We show that $c_1 n^{4/3} < \max |F| < c_2 n^{4/3}$ for some positive c_i 's. This answers a question of P. Frankl.

1. Introduction

Let $0 \le l_1 < l_2 < ... < l_s < k < n$ be integers, and X be a finite set of cardinality n. Denote by $\binom{X}{k}$ the system of all k-subsets of X. We say that the family $\mathscr{F} \subset \binom{X}{k}$ is an $(n, k, \{l_1, ..., l_s\})$ -system if for every $F_1, F_2 \in \mathscr{F}, F_1 \ne F_2$ we have $|F_1 \cap F_2| \in \{l_1, ..., l_s\} = L$. Let us denote by m(n, k, L) the maximum cardinality of an (n, k, L)-system. This function has been investigated by many authors, but to determine its exact value or even its correct order of magnitude appears to be hopeless. Ray-Chaudhuri and Wilson [8] proved that

(1)
$$m(n, k, \{l_1, ..., l_s\}) \leq {n \choose s}.$$

Deza, Erdös and Singhi [2] proved that

(2)
$$m(n, k, \{0, a\}) \leq \frac{n}{k} \frac{n-a}{k-a},$$

moreover if a does not divide k then

(3)
$$m(n, k, \{0, a\}) \leq n.$$

The next results of Babai and Frankl [1] generalize (3): If g.c.d $(l_1, ..., l_s)$ does not divide k then

(4)
$$m(n, k, \{l_1, ..., l_s\}) \leq n.$$

28 z. füredi

However if $l_1=0$ and there exist non-negative integers $\alpha_1, ..., \alpha_s$ such that $k=\sum_{i=1}^{s} \alpha_i l_i$ then

(5)
$$m(n, k, \{l_1, ..., l_s\}) \ge n^2/4k^2$$
.

Generalizing an earlier result of Frankl [6] the author [7] gave necessary and sufficient conditions for m(n, k, L) = O(n). We need a definition to recall this. A set-system \mathcal{M} is closed under intersection if $M \cap M' \in \mathcal{M}$ holds for all $M, M' \in \mathcal{M}$. We say that the numbers $l_1 < ... < l_s < k$ satisfy the condition (*) if

(*) there exists a set-system \mathcal{M} which is closed under intersection, $|\bigcup \mathcal{M}| = k$ and $|M| \in \{l_1, ..., l_s\}$ for all $M \in \mathcal{M}$.

Now, the following statement is proved in [7]:

(6) If the numbers $l_1, ..., l_s$ and k satisfy the condition (*) then $m(n, k, L) > c_k n^{k/(k-1)}$, otherwise $m(n, k, L) \le c'_k n$.

2. Set-systems with ≤ 3 intersections

We write $f(n) \approx g(n)$ if there exist positive constants c_1 , c_2 such that $f(n) \le c_1 g(n)$ and $g(n) \le c_2 f(n)$ hold for $n > n_0$. It is easy to prove that (see [5])

$$m(n, k, \{l_1, ..., l_s\}) \approx m(n, k-l_1, \{0, l_2-l_1, ..., l_s-l_1\}).$$

Therefore from now on we always assume $l_1=0$. Trivially $m(n, k, \{0\})=\lfloor n/k\rfloor \approx n$. For s=2 from (2), (3) and (5) we deduce

$$m(n, k, \{0, a\}) \approx \begin{cases} n^2 & \text{if } a | k \\ n & \text{if } a \nmid k. \end{cases}$$

In [6] Frankl investigated the case s=3. He proved the following theorem:

(7a) If either there exist non-negative integers α , β such that $\alpha a + \beta b = k$ or b-a divides k-a then $m(n, k, \{0, a, b\}) \ge n^2/4k^2$.

(7b) If (7a) does not hold but (*) holds then $n^{k/(k-1)} < m(n, k, \{0, a, b\}) < c_k n^{8/2}$.

(7c) If (*) does not hold then $m(n, k, \{0, a, b\}) \approx n$.

Suppose that the numbers 0, a, b and k satisfy the condition (*), i.e. there exists a set-system $\{A_1, ..., A_f, B_1, ..., B_g\} = \mathcal{M}$ such that $|A_i| = a, |B_i| = b, A_i \cap A_j = \emptyset$, $|A_i \cap B_j| = 0$ or a and $|\bigcup \mathcal{M}| = k$. Let $I = \{i: 1 \le i \le f, A_i \text{ is contained in at least two } B_j$'s and $B_j' = \{i \in I: A_i \subset B_j\}$, finally define $\mathscr{C} = \{B_j': 1 \le j \le g\}$. We say that the numbers a, b and k satisfy the condition (**) if

- (**) there exists a set-system \mathcal{M} on points $\{1, 2, ..., k\}$ satisfying the condition (*) such that \mathcal{C} is a 2-design on I. (I.e., each pair of I is contained in exactly one $C \in \mathcal{C}$.)
- In [6] Frankl gave a better lower bound than (7b): (8) If (**) holds for the numbers a, b and k and there exists an embedding φ of $\mathscr C$

into the system of lines of a projective plane over a finite field then $m(n, k, \{0, a, b\}) \ge \le c'_k n^{3/2}$.

In [6] Frankl and Frost posed the question whether $m(n, k, \{0, a, b\}) \approx n^{3/2}$ holds in the case (7b) or not. We give a negative answer by showing that this problem is rather complicated.

3. Results and constructions

Theorem 1. If $\binom{**}{}$ does not hold (consequently (7a) does not hold either) then $m(n, k, \{0, a, b\}) \leq c_k'' n^{4/3}$.

Example 1. Let a, d, k be positive integers with k=4a+5d. For n large enough we have $m(n, 4a+5d, \{0, a, 2a+d\}) \ge n^{4/3}/10d^2$. Let t be a positive integer (the value of t will be about $\sqrt[3]{n/4d}$) and A_p^1, A_q^2 $(0 \le p, q < t)$, $A_{r,s}^3, A_{u,v}^4$ $(0 \le r, s, u, v < t)$ pairwise disjoint a-sets and $D_{u,v}^{12}, D_{u,v,w}^{13}, D_{u,v,w}^{12}, D_{u,v,w}^{23}$ and $D_{u,v,w}^{24}$ disjoint d-sets $(0 \le u, v, w < t)$. The ground-set X of \mathscr{F} is the union of all A's and D's. Hence $|X| = 2at + 2at^2 + dt^2 + 4dt^3$. For integers $0 \le p, q, r, s < t$ let us denote by

$$=A_p^1 \cup A_q^2 \cup A_{p,s}^3 \cup A_{p+r,q+s}^4 \cup D_{p,q}^{12} \cup D_{p,r,s}^{13} \cup D_{p,p+r,q+s}^{14} \cup D_{q,r,s}^{23} \cup D_{q,p+r,q+s}^{24}.$$

Here the indices are considered mod t. Clearly $|\mathcal{F}| = t^4 > n^{4/3}/10d^2$ if $t = = \lfloor \sqrt[3]{n/4d} \rfloor$ and n is large enough. It is easy to check that $F(p, q, r, s) \cap F(p', q', r', s') = \emptyset$ or $A^i \cup A^j \cup D^{ij}$ i.e. \mathcal{F} is a $\{0, a, 2a+d\}$ -system.

Example 2. For *n* large enough and k=5a+8d we have $m(n, 5a+8d, \{0, a, 2a+d\}) \ge n^{4/3}/20d^2$. Let t be a positive odd integer $(t \approx \lfloor \sqrt[3]{n/7d} \rfloor)$ and A_i^1 , A_i^2 , $A_{i,j}^3$, $A_{i,j}^4$ and $A_{i,j}^5$ disjoint a-sets $(0 \le i, j < t)$. Define eight sequences $D^{\alpha\beta}$ $(1 \le \alpha < \beta \le 5$ except $\alpha\beta \ne 35, 45)$ of d-sets, $D_{i,j}^{12}$, $D_{i,j,k}^{13}$, $D_{i,j,k}^{14}$, $D_{i,j,k}^{15}$, $D_{i,j,k}^{23}$, $D_{i,j,k}^{24}$, $D_{i,j,k}^{25}$, and $D_{i,j,k}^{34}$ $(0 \le i, j, k < t)$. Each $D_{i,j,k}^{\alpha\beta}$ corresponds to the pair A_i^{α} , $A_{j,k}^{\beta}$. The ground-set of \mathscr{F} consists of the A^{α} -s and $D^{\alpha\beta}$ -s. (So $|X| = 2at + 3at^2 + dt^2 + 7dt^3$.)

A^1	A^2	A^3	A^4	D^{12}	D^{13}	D^{23}	D^{14}	D^{24}
p	q	r S	$\begin{vmatrix} p+r \\ q+s \end{vmatrix}$	$p \ q$	p r s	q r s	$\begin{vmatrix} p \\ p+r \\ q+s \end{vmatrix}$	$\begin{vmatrix} q \\ p+r \\ q+s \end{vmatrix}$

Example 1

A^5	A^1	A^2	A^3	A^4	D^{12}	D^{15}	D^{25}	D^{13}	D^{14}	D^{23}	D^{24}	D^{34}
β	$u+\beta$	$v+\beta$	$u+v$ $u+\alpha$	$\begin{vmatrix} u+v \\ v+\alpha \end{vmatrix}$	$\begin{vmatrix} u+\beta\\v+\beta \end{vmatrix}$	$\begin{bmatrix} \alpha \\ \beta \\ u+\beta \end{bmatrix}$	$\begin{bmatrix} \alpha \\ \beta \\ v + \beta \end{bmatrix}$	$\begin{vmatrix} u+v \\ u+\alpha \\ u+\beta \end{vmatrix}$	$\begin{vmatrix} u+v \\ u+\beta \\ v+\alpha \end{vmatrix}$	$\begin{vmatrix} u+v \\ u+\alpha \\ v+\beta \end{vmatrix}$	$\begin{vmatrix} u+v \\ v+\alpha \\ v+\beta \end{vmatrix}$	$\begin{vmatrix} u+v \\ u+\alpha \\ v+\alpha \end{vmatrix}$

Example 2

30 Z. FÜREDI

Let

$$F(\alpha, \beta, u, v) = A_{u+\beta}^{1} \cup A_{v+\beta}^{2} \cup A_{u+v,\alpha+u}^{3} \cup A_{u+v,\alpha+v}^{4} \cup A_{a,\beta}^{5} \cup D_{u+\beta,v+\beta}^{12} \cup D_{u+\beta,u+v,\alpha+u}^{13} \cup D_{u+\beta,u+v,\alpha+v}^{14} \cup D_{u+\beta,u+v,\alpha+v}^{14} \cup D_{v+\beta,u+v,\alpha+v}^{15} \cup D_{v+\beta,\alpha,\beta}^{15} \cup D_{u+v,\alpha+u,\alpha+v}^{14} \cup D_{v+\beta,u+v,\alpha+v}^{15} \cup D_{v+\beta,\alpha,\beta}^{15} \cup D_{u+v,\alpha+u,\alpha+v}^{15} \cup D_{v+\beta,\alpha,\beta}^{15} \cup D_{v+\beta,\alpha,\beta}^{15} \cup D_{v+\beta,\alpha,\alpha+v}^{15} \cup D_{v+\beta,\alpha,\beta}^{15} \cup D_{v+\beta,\alpha,\beta}^{15} \cup D_{v+\beta,\alpha,\alpha+v}^{15} \cup D_{v+\beta,\alpha+v}^{15} \cup$$

Theorem 1 and Example 1 yield (with d=1)

Corollary. If $a \ge 6$ then $m(n, 4a+5, \{0, a, 2a+1\}) \approx n^{4/3}$, e.g. $m(n, 29, \{0, 6, 13\}) \approx n^{4/3}$.

4. Proof of the upper bound

4.1. Lemmas and definitions. The sets $F_1, ..., F_t$ form a *t-star* with kernel A if $F_i \cap F_j = A$ for all $1 \le i < j \le t$. The k-uniform set-system \mathcal{G} is k-partite with parts $X_1, ..., X_k$ if these sets are disjoint and $|G \cap X_i| = 1$ holds for every $G \in \mathcal{G}$, $1 \le i \le k$. Erdős and Kleitman [3] proved that one can choose a k-partite subgraph \mathcal{G} from any k-uniform set-system \mathcal{F} such that $|\mathcal{G}| \ge (k!/k^k) |\mathcal{F}|$. The following theorem (see [7]) is a generalization of the theorem of Erdős and Kleitman and a theorem of Erdős and Rado [4] about t-stars.

Lemma. For any positive integers k and t, there exists a positive real number c = c(k, t) with the following property: If \mathcal{F} is a k-graph then we can choose a subsystem $\mathcal{F}^* \subset \mathcal{F}$ such that

- (i) $|\mathcal{F}^*| > c |\mathcal{F}|$
- (ii) \mathscr{F}^* is k-partite with parts $X_1, ..., X_k$
- (iii) every intersection is a kernel of a t-star in \mathscr{F}^* (i.e., $\forall F, F' \in \mathscr{F}^* \exists F_1, ..., ..., F_i \in \mathscr{F}^*$ such that $F \cap F' = F_i \cap F_i$ for all $1 \le i < j \le t$).
- (iv) there exists a set-system \mathcal{M} on the elements $\{1, 2, ..., k\}$ such that \mathcal{M} is isomorphic (in the natural way) to the intersection-system of each $F \in \mathcal{F}^*$ (i.e. $\mathcal{M} \cong \mathcal{M}(F, \mathcal{F}^*) =: \{F \cap F' : F' \in \mathcal{F}^*\}$ for each $F \in \mathcal{F}^*$).
- (v) For $t \ge k+1$ M is closed under intersection.
- **4.2. Proof of Theorem 1.** Suppose first a|b. Since (7a) does not hold, $a \nmid k$. Then (4) yields $|\mathcal{F}| \leq n$. From now on we may suppose $a \nmid b$. Let \mathcal{F} be an $(n, k, \{0, a, b\})$ -system, and let $\mathcal{F}^* \subset \mathcal{F}$ be chosen according to the Lemma with t=k+1. We are going to estimate $|\mathcal{F}^*|$. Let $\mathcal{A} = \{A : |A| = a, \exists F, F' \in \mathcal{F}^* F \cap F' = A\}$ and $\mathcal{B} = \{B : |B| = b, \exists F, F' \in \mathcal{F}^* F \cap F' = B\}$. By the Lemma we have $A \cap A' = \emptyset$ for every $A, A' \in \mathcal{A}$, hence $|\mathcal{A}| \leq [n/a] \leq n$. Similarly, $B \cap B' \in \mathcal{A} \cup \{\emptyset\}$ for every $B, B' \in \mathcal{B}$. So \mathcal{B} is an $(n, b, \{0, a\})$ -system. Hence $|\mathcal{B}| \leq n$ by (3).

Let $\mathscr{F}_0 = \mathscr{F}^*$. Let us define sub-systems $\mathscr{F}_0 \supset \mathscr{F}_1 \supset ... \supset \mathscr{F}_i$ and subsets $C_1, C_2, ..., C_i \in \mathscr{A} \cup \mathscr{B}$ in the following way. If there exists a $C_{i+1} \in \mathscr{A} \cup \mathscr{B} - \{C_1, ..., ..., C_i\}$ such that $|\{F \in \mathscr{F}_i : C_{i+1} \subset F\}| < \sqrt[3]{n}$ then let $\mathscr{F}_{i+1} = \mathscr{F}_i - \{F \in \mathscr{F}_i : C_{i+1} \subset F\}$.

When our procedure stops we get \mathcal{F}_r . Clearly

$$|\mathscr{F}^* - \mathscr{F}_r| \leq |\mathscr{A} \cup \mathscr{B}| \sqrt[3]{n} < 2n^{4/3}.$$

The number of members of \mathscr{F}_r containing a given $C \in \mathscr{A} \cup \mathscr{B}$ is either at least $\sqrt[n]{n}$ or 0.

Now we show that $|\mathscr{F}_r| \leq b^2 n^{4/3}$. Let us denote by \mathscr{A}_0 the set of members of \mathscr{A} which are contained in at least $\sqrt[3]{n}$ members of \mathscr{B} . Obviously, we have

(10)

$$|\mathscr{A}_0| \leq \frac{1}{\sqrt[3]{n}} \sum_{A \in \mathscr{A}} |\{B \in \mathscr{B} \colon A \subset B\}| = \frac{1}{\sqrt[3]{n}} \sum_{B \in \mathscr{B}} |\{A \in \mathscr{A} \colon A \subset B\}| \leq \frac{1}{\sqrt[3]{n}} n \lfloor b/a \rfloor \leq b n^{2/3}.$$

Let $F_0 \in \mathscr{F}_r$ be chosen arbitrarily, and $\mathscr{M}_{F_0} = \{C \in \mathscr{A} \cup \mathscr{B} \colon C \subset F_0\}$. (If $\mathscr{F}_r = \emptyset$ then we are ready.) The condition (**) does not hold, hence there exist two distinct asets A_1 and A_2 in \mathscr{M}_{F_0} which are contained in at least two b-sets, $A_1 = B_1 \cap B_1'$ and $A_2 = B_2 \cap B_2'$ $(B_1, B_2, B_1', B_2' \in \mathscr{M}_{F_0})$, but there is no $B \in \mathscr{B}$ such that $A_1 \cup A_2 \subset B$.

 B_1 is contained in at least $\sqrt[8]{n}$ members of \mathscr{F}_r . The set-systems $\mathscr{M}_{F'}$ $(F' \in \mathscr{F}_r, B_1 \subset F')$ are isomorphic to \mathscr{M}_{F_0} . Hence each of them contains a set $B_1'(F') \subset F'$ such that $B_1 \cap B_1'(F') = A_1$, $B_1'(F') \in \mathscr{B}$. So we have $A_1 \in \mathscr{A}_0$. Similarly, $A_2 \in \mathscr{A}_0$ holds. The union of A_1 and A_2 is contained only in F_0 from the members of \mathscr{F}_r (if $F_1 \in F_r$, $(A_1 \cup A_0) \subset F_1 \cap F_0$ then $F_1 \cap F_0 \in \mathscr{B}$, but $A_1 \cup A_2$ is not contained in any $B \in \mathscr{B}$). So the pair $\{A_1, A_2\}$ uniquely determines F_0 . Hence

$$|\mathscr{F}_r| \leq {|\mathscr{A}_0| \choose 2} < b^2 n^{4/3},$$

by (10). This and (9) yield

$$|\mathscr{F}| \leq (1/c(k, k+1))|\mathscr{F}^*| \leq (1/c(k, k+1))(2+b^2)n^{4/3}.$$

References

- 1] L. Babai and P. Frankl, Note on set intersections, J. Combin. Theory A, 28 (1980), 103—105. [2] M. Deza, P. Erdős and N. M. Singhi, Combinatorial problems on subsets and their intersec-
- tions, Advances in Math. Suppl. Stud., 1 (1978), 259—265.
- [3] P. Erdős and D. J. Kleitman, On coloring graphs to maximize the proportion of multicolored k-edges, J. Combinatorial Th., 5 (1968), 164—169.
- [4] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc., 35 (1960), 85—90.
- [5] P. FRANKL, Families of finite sets with prescribed cardinalities for pairwise intersections, Acta Math. Acad. Hungar., 35 (1980), 351—360.
- [6] P. Frankl, Families of finite sets with three intersections, Combinatorica, 4 (1984), 141-148.
- [7] Z. FÜREDI, On finite set-systems whose every intersection is a kernel of a star, *Discrete Math.* 47 (1983), 129—132.
- [8] D. K. RAY-CHAUDHURI and R. M. WILSON, On t-designs, Osaka J. Math., 12 (1975), 737-744.

Z. Füredi

Mathematical Institute of the Hungarian Academy of Sciences Budapest, P.O.B. 127 1364, Hungary