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Let X be a finite set of # elements and % a family of 4a+ 5-clement subsets, a=6. Suppose
that all the pairwise intersections of members of & have cardinality 0, a or 2a-+1. We show that
o3 <max |Fl<c,n*® for some positive ¢;s, This answers a question of P. Frankl.

1. Introduction

Let 0=/, <ly<...<l,<k-<n be integers, and X be a finite set of cardinality ».
. X
Denote by [{] the system of all k-subsets of X. We say that the family & C( k)

is an (n, k, {1, ..., 1.})-system if for every F,, Fo€ &, Fy# F; we have |F(Fl¢

e{ly, ..., 1 } L. Let us denote by m(n, k, L) the maximum cardinality of an

(n, k, L) -system. This function has been 1nvest1gated by many authors, but to deter-

mine its exact value or even its correct order of magnitude appears to be hopeless.
Ray-Chaudhuri and Wilson [8] proved that

(1) m(n, k, {ly, ... 1}) = (;’]
Deza, Erdés and Singhi [2] proved that
nn—
@) m(n, k, {0, a}) = T
moreover if a does not divide & then
3) m(n, k, {0, a}) = n.

The next results of Babai and Frankl [1] generalize (3): If g.cd (41, ..., 1)) does not
divide k then

4 mn, k, {l, .., L)) =n.
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However if /,=0 and there exist non-negative integers o, ..., ®, such that k=
S
= > o;l; then

i<
&) m(n, k, {ly, ..., 1;}) = n®4k>

Generalizing an earlier result of Frankl [6] the author [7] gave necessary and suffi-
cient conditions for m(n, k, LY=0(n). We need a definition to recall this. A set-
system .# 1s closed under intersection if M{(\M’'e.# holds for all M, M’'c.#. We
say that the numbers [, <...</,<k satisfy the condition (*) if

(") there exists a set-system 4 which is closed under intersection, |U#|=k and
M€, ..., 1Y for all Mec.4.

Now, the following statement is proved in [7]:

(6) If the numbers Iy, ..., I, and k satisfy the condition (*) then m(n, k, L)=c,n¥/* =1,
otherwise m(n, k. LYy=cin.

2. Set-systems with :==3 intersections

We write f(n)~g(n) if there exist positive constants ¢;, ¢, such that f(n)=
=c,g(n) and g(n)=c,f(n) hold for n=>n,. It is easy to prove that (see [5])

m(n, k, {l, ... 1) == m(n, k=1, {0, L—1Iy, ..., ,—1}}).

Therefore from now on we always assume /,,=0. Trivially m(n, k, {0})=|n/k|~n.
For s=2 from (2), (3) and (5) we deduce

2 i alk
m(n, k, {0, a})x{ﬁ if a‘{k.

In [6] Frank! investigated the case s=3. He proved the following theorem:

(7a) If either there exist non-negative integers o, f§ such that aa+-fb=k or b—a
divides k —a then m(n, k, {0, a, b})=n*/4k>

(7b) If (7a) does not hold but (*) holds then n**=Y<m(n, k, {0, a, b})<c,n¥>
(7¢) If (*) does not hold then m(n, k, {0, a, b})~n.

Suppose that the numbers 0, a, b and k satisfy the condition (*), i.e. there
exists a set-system {4y, ..., A¢, By, ..., Bj}=.# such that |4;|=q, |B|=b, A4;N
NA4;=90, [4,NB;]=0 or a and lUJl[—k Let I={i: 1=i=f, 4; is contamed
in at least two B s} and Bj={i€l: A,CB;}, finally define ¥={B}: 1=j=g}. We
say that the numbers a, b and k satlsfy the condition (**) if

(") there exists a set-system 4 on points {1, 2, ..., k} satisfying the condition (*)
such that € is a 2-design on I. (Le., each pair of I is contained in exactly one C<%.)

In [6] Frankl gave a better lower bound than (7b):
8) If (**) holds for the numbers a, b and k and there exists an embedding ¢ of €
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into the system of lines of a pro,ective plane over a finite field then m(n, k, {0, a, b})=
=it

In [6] Frankl and Frost posed the question whether m(u, k, {0, a, b}) ~ n®*
holds in the case (7b) or not. We give a negative answer by showing that this problem
is rather complicated.

3. Results and constructions

Theorem 1. If (**) does not hold (consequently (72) does not hold either) then
m(n, k, {0, a, bY)=c;n*>.

Example 1. Let g, 4, & be positive integers with k=4a+54. For # large enough we
have m(n, 4a+5d {0, @, 2a+d})=n"3/10d% Let ¢ be a positive integer (the value of

t will be about Vn/4c) and Al A2 (O*/p,q<t) A3 AL, (O=r,s,u,0<()
pairwise disjoint ¢-sets and D}%,, D2, . DI, ., D2, and p#. ., disjoint d-sets
O=u, v, w<t). The ﬂround-set X of F 1s the union of all A’s and D’s. Hence
1X|= 2at+2ar*+dt*+4dr®.  For integers 0=p,q,r,s<t let us denote by

F(p,q,r,5)
= ALUAIUAS UAS,,  UDR UDE, UDY . UD® UDH¥,. ..
Herc the indices are considered mod ¢ Clearly |F|=1'=»n*3/10d*> if (=

—|_]/n/4d_| and n 1s large enough. It is easy to check that F(p,q,r,s)
NFp,q,r',5)=0 or 4 or A {UAIUDY je. F is a {0, a, 2a+d}-system.

Example 2. For nlarge enough and k =35a+8d we have m(n, Sa+84, {0, a, 2a+d))=
3 QU —
=n"3/20d% Let ¢ be a positive odd integer (¢x|Vn/Td]) and A} A% A} ;, A},

i,j»
and A4} ; disjoint g-sets (0=i,j-<t). Define eight sequences D* (l=a<f=5
except o',lif35 45)  of d-sets, D}"J, D% s DV ks DI o D% s D3y s DY
and D¥;, (0= =1 ],k<t) Each D | corresponds to the pair A;’,A” . The
ground-set of F consists of the A% and D*s. (So |X|=2at+3at?+di>+7dr3)

A1 A2 A3 A* DL D8 D2 D14 D24

p p q p q
D q ro|\p+r| q ) r |ptr{ip+r
s g+s s s q+s| g+s

Example 1

As AL A? A3 A4 Dz Dls D25 D13 D14 D2 D'M D84.

utvlutv o o |utv|utov|utouto|uto
wta|vta|lut+pf| B B |utalu+fluta]|vtalutn
u+plo+p viBlutBlotBlutB|lora|v+flo+pf| vta

™ R

Example 2
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Let
F(o, B, u,v) = AinAﬁmUAiw,quAﬁ+u,a+uuAg,ﬂ UDﬁﬂ,vaDﬁp,uﬂ.aﬂ
UD g uro, 246 UD 5 2 s U DE g yiv,a+u I D g wteais I D2 g0, U D3 atatoe
Theorem 1 and Example 1 yield (with d=1)

Corollary. If a=6 then m(n, da+S5, {0, a, 2a+1})~n* e.g. m(n, 29, {0, 6, 13})~
~n'? |

4. Proof of the upper bound

4.1. Lemmas and definitions. The sets F, ..., F, form a t-star with kernel A if
F,NF;=A4 for all 1=i<j=¢ The k-uniform set-system ¥ is k-partite with parts
X1, ..., X, if these sets are disjoint and |GNX;|=1 holds for every G¢¥, 1=i=k.
Erd&s and Kleitman [3] proved that one can choose a k-partite subgraph % from any
k-uniform set-system & such that |¢]=(k!/k¥)|#|. The following theorem (see [7])
is a generalization of the theorem of Erd6s and Kleitman and 4 theorem of Erdds
and Rado [4] about 7-stars.

Lemma. For any positive integers k and t, there exists a positive real number c=c(k, t)
with the following property: If F is a k-graph then we can choose a subsystem F*CF
such that

W |F=c|#|

()  F* is k-partite with parts X1, ..., X;

(iii)  every intersection is a kernel of a t-star in F* (ie., VF, FFEF*IF, ..,
veey F€F* such that FNF'=F,NF; for all 1=i<j=t).

(iv)  there exists a set-system A on the elements {1,2, ..., k} such that A is isomor-
phic (in the nmatural way) to the intersection-system of each FeF* (ie.
M= M(F, FY={FNF': F'¢F*} for each FEF*).

(V) For t=k+1 M is closed under intersection. |

4.2, Proof of Theorem 1. Suppose first a|b. Since (7a) does not hold, afk.
Then (4) yields |#|=n. From now on we may suppose af{b. Let & be an
(n, k, {0, a, b})-system, and let F*CF be chosen according to the Lemma with
t=k+1. We are going to estimate |F*|. Let o ={4: |4d|=a, IF, F'¢F*
FNF'=A} and #={B: |B|=b, 3F, F'¢#* FNF =B}. By the Lemma we have
ANA =0 for every A4, A'¢s, hence ||=[nfaj=n. Similarly, BNB'c U {0}
for every B, B’€¢#. So & is an (n, b, {0, a})-system. Hence |B|=n by (3).

Let #FH=F"*. Let us define sub-systems HOFD...0% and subsets
C,, Cy, ... C;E/UZ in the following way. If there exists a C;,c £ UB—{C,, ...,

..., C;)} such that |{FEZ: C;,,CF}|<Vn then let F,,=F—{F¢#F: C,,CF).
When our procedure stops we get #,. Clearly

©) |F*—F| = |4 UB|Vn < 20",

The number of members of %, containing a given CcHUZ is either at least
a

ﬁor 0.
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Now we show that [F[=51"%. Let us denote by o7, the set of members of
which are contained In at least ;/’; members of #. Obviously, we have
(10)
EAE

=5

L > Bew: acB) = -

Ih
‘\

_2 CB)| = %tzlb/aj = bn¥?,

yase ¥

Vn
Let Fy€#, be chosen arbitrarily, and = {Cc/UB: CCF}. (If #=0 then
we are ready.) The condition (**) does not hold, hence there exist two dlstmct a-

sets A, and A, in ., which are contained in at lcast two b-sets, A,=B,MNB; and
Ay=By(1B; (B;,BZ,B’ Bjc. /Zro) but there is no BE€A such that A,UA,CB.

A E

B is contained in at least V n members of &,. The set-systems A (F'€%,
B, F’) are isomorphic to .. Hence each of them contains a set Bi(F)CF’
such that B3] (F)=4,, BI(F")’ #. So we have A,¢o7,. Similarly, AZEJJO
holds. The union of 4; and A, is contained only in F, from the members of &, (if
Fi€F,, (4,Udgp)c FyNF, then FINFe®, but A,UA, is not contained in any
BeA). So the pair {4, 45} uniquely determines F,. Hence

= [l ’%Zo'] — b3,

by (10). This and (9) yield
WF| = (Yelk, K+ D)F* = ek, k+1))2+b6)n*. |}
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