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Abstract. Let n > k > 1 be integers and let f(n, k) be the smallest integer for which the following 
holds: Ifo ~ is a family of subsets of an n-set X with I~176 > f(n, k) then for every k-coloring of X there 
exist A, B s oj, A r B, A = B Such that B - A is monochromatic. Here it is proven that for a fixed k 
there exist constants ck and d~ such that c~(1 + o(1))<f(n,k).v/-n/2* <dk(1 + o(1)) and c~ 
-- ~ ( 1  + o(1)) = d k as k --* oo. The proofs of both the lower and the upper bounds use 
probabilistic methods. 

1. Introduction, Preliminaries 

Let n >_ k be positive integers and X be an n-element set. 2 x denotes the power  set of 

X a n d ( X )  is thefamilyofal l t -subsetsofX.  Ak -co lor ingo fX i sapar t i t i ono fX  

= X, U--- U Xk into at most  k parts. A family .~  c 2 x has k-color Sperner proper ty  
for the coloring X, . . . .  , Xk if for all A, B e ~ A ~ B, A c B, B -- A is not  mono-  
chromatic.  (I.e., there exist i ~ j, X~ f'l (B -- A) :~ 0 ,  Xj fl (B - A) ~ 0.)  Define 
f(n, k) =: max{ I~1:  ~ c 2 x, o~ has k-color Sperner property}. 

The 1-color Sperner families are just  the usual Sperner families, in other  words 
antichains, i.e., ~-  c 2 x, VF, F '  e ~-  one has F d/: F'. An antichain has k-color Sperner 

property for every k and every k-coloring, whence f(n, k) > [n/2J = l.n/2j ' 

By Sperner 's theorem [16] no antichain of  subsets of X contains more than [n/2J 

members,  whence 

f(n, 1) = [n/2J " (1) 

For  k - 2 Ka tona  [8] and Klei tman [10] proved independently that  f(n, 2) 

= [n/2J al though there are several 2-color  Sperner families which are not  anti- 

chains. Very recently P.L. Erd6s and K a t o n a  [3]  described all the extremal families 
(i.e., having f(n, 2) members). 

Fo r  k = 3 Ka tona  [9] gave a simple example ~ having more  than [n/2J 

members. 
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Example 1.1. Let X = X 1 U X 2 U X3, Xi ,~, n/3 (i.e., Ig~l = [n/3-1 or I'n/3-1 ) and 

( X ) U (  X ) ( X ) Then~- i s a3 -co lo rSpe rne r f ami ly .  
= Ln/2J [ n / 6 J -  1 U r5n /6 ]+  I " 

Griggs and Kleitman [4], Griggs [5] and Katona [9] have found addit ional (~ conditions which imply that a 3-color Sperner family o~ fulfils I~l  < [n/2J " 

For fixed k it is not immediately clear that for all n f(n, k) is at most a constant 

( n ) . T h i s w a s p r o v e d b y G r i g g s [ 6 , 1 s h o w i n g t h a t  (depending only on k) times [n/2J 

f(n, k [n/2 j < 2 k-2 for k > 2. Here the right hand side was decreased b y  Sali I-3] 

to k and later to 3v/'k [14,1. Here we present a short proof due to Graham and Fan 
Chung 1-2] which gives 

f(n,k) < (2"/v/-n) 2 x / ~  = (1 + o(1)) Ln/2J 

Proposition 1.2. Let ~ be a k-color Sperner family with parts X 1, X 2 . . . . .  Xk, k >_ 2 and 
let tXi[ = ni. Then 

I~[  < (2"/x/~k) 2 x / ~ .  (3) 

Proof. For all T c X 1U ""U Xk-1 denote by ~ ( T )  =: {F e~ ' :  FP(X  1U" "UXk-I) 

= T}. Then o~(T)is an antichain hence hy (1)its cardinality is at most [nJ2J " 

( )  a 

Using (1 + o(1))(2"/x/ 'a)x/~ [a/2J < (2"/x/~)x/~-/rc we have I~1-< 

2,x,o...ox._.,( n, < = = (1 + o(1))  
\ [ n ~ 2 J /  

Ln/2J nv/-n-~k" We can choose n k ~ n/k, hence (3)implies (2). []  

The constant v /k  cannot be replaced by e.g. 0.6.v/k without any further restric- 
tion because f(k,k) = 2 k-x (as it can be seen considering ~ , e ,  =: {F c X: IFI = 

even} or ~ d d = : { F c X : [ F I  =odd}) ,  hence f (k ,k)=(1 +o(1))  [k/2J 

x/~x/rc/8. But it can be improved whenever n is large compared to k. This paper 
is devoted to obtain estimations for f(n, k) when k > 3 and n is large enough. 

2. Results 

Theorem 2.1. For every positive integer k there exist constants Ck and dk depending only 
on k such that ckEn/x/~(1 + O(1)) _< f(n, k) <_ dk(2n/x/~)(1 + o(1)) if n tends to infin- 
ity. Moreover 

c~ > ~ k ( 1  - o(loglogk/logk)), (4) 

d k < ~ ( 1  + o(logloglogk/logk)). (5) 
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Obviously, ck+, _> ck and the exact form of (4)(cf .  (7))implies f(n,4) 

> 1.001 In/2] 1 + o(1)). The following result disproves a conjecture aboutf(n, 3). 

l(n) Theorem 2.2. l fn  is large enough thenf(n, 3) > 1.0 8 Ln/2J " 

We have to remark that similar results were obtained independently by Griggs, 
Odlyzko and Shearer 1"7]. Their proofs are different. The upper bound in (5) is 
slightly better. But they can prove that for fixed k lim f(n, k)/(2~/,,//-n) exists and 
c3 > 1.036. 

3. Constructions 

Now k is fixed and n tends to infinity. We are going to apply some wellknown 
properties of binomial coefficients (see e.g. Spencer 115]). For every integer m and 
real x > 0 we have 

E m j~,/2+x ( j )<2mexp( - -2x2 /m)"  (6) 

Proof of (4). We improve the idea of Example 1.1. Let IXI = n, X = X t U "" U Xk 
a partition into almost equal parts (JX~I = In/kJ or [n/k]) and t a positive integer. 
Set ~ = : { F c X : I I F R X ~ I - - I X ~ I / 2 1 < t / 2  for all l<_i<_k}, and ~,~=: 
{ F e ~ ' :  IFI = r(modt)} where 0 _ r <  t. Obviously, ~-; is a k-color Sperner 
family. 

Proposition 3.1. For t ,~, ~//-n~/2(1 + e)logk/k (e > 0 is an arbitrary constant) we 
have I~-'1 > 2n(1 - 2k-~)(1 + o(1)). 

Proof. Choose  F c 2 x randomly. Then by (6) we have Prob( IF  N gll > IX, l/2 + t/2) 
,,-ix,J,--" {ix, r~ exp(_t2/2lx, t) (1 + o(1))k-l-L Similar inequality = 

holds for P r o b ( I F n X J  < l X i l / 2 - t / 2 ) .  Because of the independence of the 
events we have 1~-'12 -" = I - [ l ~ , ~ P r o b ( l l F n S J -  IX, I/21 < t/2) >_ (1 + o(1)) 
(1 -- 2k-'-') k >_ (1 + o(1))(1 - 2k-'). [] 

Proposition 3.2. We can choose t and r such that for the family ~ the inequality (4) 
holds. 

Proof. Let 0 < r < t such that I~-;I is maximal. Clearly I~';I > I~'l/t. Choose t as 
in Proposition 3.1 then we have I~;I  > (1 + o ( 1 ) ) ( 2 n / v / ~ ) ~ k ( 1 -  2k-')/ 
~/1 + e. For k > 20 one can choose 0 < ~ _< 1 such that (1 - 2k-')/~/1 + e > 1 
- loglog k/log k. (e ~ (loglog k + o(1))/log k.) [] 

Proof of Theorem 2.2. Instead of (6) we can use the Moivre-Laplace formula (see 
[11]) to improve Proposition 3.1. This yields that for t = x/'nx/2(1 + e)log k/k we 
have 
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1EI.~,~ j ~> (1 + o ( 1 ) ) ( 2 " A f n ) ~  
t r  

(7) 
x (-- 1 + 2tp(2(1 + e)logk))k/v/1 + e. 

We remark that for large k (7) does not give an essentially better lower bound  for ck 

0 ( n ) f~ than (4). Optimizing (7) for k = 3 we obtain ~ I~;I > .97 Ln/2J 

1.01( large. I f the average of I~',tl is so large we can hope that max,[~,~l > n ] .  
\Lnl2J) 

This is true. To prove this let t ,~ 1.2v/-n and r = [n/2J (mod t). Then o~; consists of 3 
levels of 2 x, more precisely if F s o~ then I FI = [n/2J + t, Ln/2J or Ln/2J - t. More 
exactly 

( - ) ( -  ) ( - )  
~,+x2+x3=o Lnl/2J + xt [n2/2J + x2 [n3/2J + x 3 

[xd <t/2, integers 

( - ) ( -  ) ( - )  
x,+~2+x3=t Lnl/2J + xl [n2/2J + x2 [na/2J + x3 " 

Ixd<t/2,integers 

Use the following equality which holds for Ixl < C x / ~  (see ['11]). 

(ram~2 + x)  = ( 2 " / ~ , e x p ( - 2 x 2 / m ) ( l  + O(1/m))" 

We obtain 

I~t'l/(l_n72J) (l+~ f f  exp( -12(x2+xy+y2) )dxdy  
Izl < a 
lyt<a 

Ix+yl~a 

+ 26"v/3r~ f f  exp(--6(x2 + y2 + (2a- -x- -y)2) )dxdy .  

Ixl~a 
lyl<a 

[ 2 a - x - y l ~ a  

Here a = 0.6 (~  t/2x//-n). Using a computer one can show that for this value of a the 
~ r  

right hand side equals to 1.0189-... []  

4. The P r o o f  o f  the Upper Bound 

We begin with a technical lemma. 

L e m m a  4.1. (1 - e x p ( -  l/x))(1 - e x p ( -  i/y)) _< (1 - exp( -2 / (x  + y)))2 holds in 
the following cases 
(a) 0 < x, y <_ c, where 0 < c < 1 such that e -1/c = 1 - 1/2c. (c = 0.627--.) 
(b) 0 < y < 0.251, c < x < 4/re. 
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Proof (a) The  function f(x) = log(1 - exp(- -  l /x ) ) i s  concave (convex)ifO < x < c 
(x > c, resp.) as it can be shown by derivations. The  case (b) follows from (a) and the 
fact that (f(Yo) + f(4/n))/2 = f((Yo + 4/n)/2) for Yo = 0 .2513- . . .  [ ]  

Moreover  we will use the following est imation which holds for every m and t. (See 
[113 pp. 151-152.) 

((~ ( L m / 2 /  - Lm/21 - t/2 In~21 = (1 + oO/m))(1 - e x p ( - t 2 / 2 m ) ) .  (8) 

Now let ~ = 2 x be a k-color Sperner family with respect to the coloring Xx . . . . .  Xk, 

IX, l = n , .  Let  t ~ / n 2 ( 1 - e ) l o g k / k  where 0 < e _ l  is a fixed small real 
(e = 0(log log log k/log k)) 

Lemma 4.2. If  some n, > (4(1 - e)log k/Tck)n then I~'1 -< dk 2"/x//-~, where d k is 9iven 
by (5). 

Proof It is a trivial consequence of (3). [ ]  

F rom now on we can suppose that  for each i (2nJt 2) < 4/re. 
A f a m i l y o f  sets cg = {C~, Ci+x . . . . .  C,,} = 2 r is called a symmetric chain if it is 

linearly ordered by inclusion and ICjl = j ,  m = I YI - i, [cg I = m - i + 1. deBruijn, 
Kruijswijk and Tengbergen [1] proved that  there exists a chain decomposi t ion of 

2r = U c~i into ( [ ~ 2 j )  pairwise disjoint symmetric  chains (I YI = Y). The number  of 

chainsoflengthtinthisdecomposit ionequalsto([(y Y_t)/2j)-(L(y Y_t)/2] ) .  

Fix this decomposi ton  and permute the elements of Y. Then  every F ~ 2 r belongs to 

achainoflengthatleasttatleasty!([(y Yt)/21)/([y~21)times. Inotherwords, 

using (8) we get 

Prob(F~rff ,  lcg[ < t) < 1 -- - - t ) /2J  
(9) 

= (1 + o(1/y))(1 - exp(--t2/2y)).  

Now fix a chain decomposi t ion of 2 x' for all 1 < i _< k, Choose a chain rg~ = 2 x, for 
aU l  < i < k. The family ~ = 2x,,~ = ~g~ x rg 2 x ... x rgk =: {C1U...U Ck: Ciscgi} 
is called a block. 

The chain decomposit ions of 2 x' define a block decomposi t ion of 2 x. 

Lemma 4.3. I~= N 81 < [~l/maxi I~r 

Proof Suppose I~r = maxi I~l- Split ~ according to the traces on X 2 U - "  0 Xk, i.e., 
= U {~(T):  Te~r x - . -  • ~fk} where ~ ( T )  =: { B e ~ :  B -- X 1 = T}. Then  each 

~ ( T )  is a chain in 2 x of length I~xl and I~" N ~ (T) [  < 1 because ~- is a k-color 
Sperner family. [ ]  

A block ~ = ~fx • "'" x ~r is small if max, l~il < t. Fix a member  Fe2  x and 
consider all the permutat ions of X which are the products  of the permutat ions  of the 
X,'s. The  inequality (9) implies 
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P r o b ( F  e small  block) = 1-[ P r o b ( F  N Xi belongs to a small  chain in 2 x ' )  
l~i~k (10) 

< (1 + o(1/x/~)) [-I (1 - exp(-t2/2n,)). 
1 5~i<k 

L e m m a  4.4. I f  k _> 50 then 1-11 ~,~k (1 -- exp ( - -  tZ/Enl)) <_ (1 - e x p ( -  t2k/2n)) k. 

Proof. i f  each (2nJt 2) <_ c ( ,~0.6275. - . )  then we can apply L e m m a  4.1 (a) and  the 
Jensen's  inequality. If  for some i c < (2nJt2)(<4/n) then there exists a j s u c h  tha t  
2njt 2 is at mos t  0.251 and first we can app ly  (possibly repeatedly) L e m m a  4. l(b). 

[ ]  

Hence  the right hand  side of  (10)is a t  mos t  (1 - k -1 +~)k < exp(_k~).  "Thus we 
have obta ined  an upper  bound  for the mean  value 

E ( #  F ~,,~-: F belongs to a small  block) ~ f~-I/exp(k').  

This  implies that  there exists a block decompos i t ion  in which >_(i - e x p ( - k ~ ) )  
p ropor t ion  of ~-  belongs to a large (that is not  a small) block. 

Apply  L e m m a  4.3 

I~'1(1 - exp ( -k~) )  < ~ I ~ n ~ l  < Y'. I ~ l / m a x  ICr 
~ large block �9 large block (11) 

< ~ I~l/t < 2~/t. 
Rearranging  (11) we get (5). [ ]  

Finally we remark  that  an a rgumen t  similar  to the one giving (5) can be f o u n d  in 
R f d l  [12"1. 
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