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Abstract. Let n > k > 1 be integers and let f(n, k) be the smallest integer for which the following
holds: If & is a family of subsets of an n-set X with || > f(n, k) then for every k-coloring of X there
exist A, Be #,A4 # B, A < Bsuch that B — A4 is monochromatic. Here it is proven that for a fixed k
there_exist_constants ¢, and d, such that c,(1 + o(1)) <f(nk}/n/2% < dy(1 + o(1)) and ¢,
= /kf2logk(l + o(1)) = d, as k — co. The proofs of both the lower and the upper bounds use
probabilistic methods.

1. Introduction, Preliminaries

Letn > k be positive integers and X be an n-element set. 2* denotes the power set of
X
X and < . ) is the family of all ¢-subsets of X. A k-coloring of X is a partition of X

= X, U---U X, into at most k parts. A family & < 2* has k-color Sperner property
for the coloring X, ..., X, iffor all 4, Be ¥ A # B, A = B, B— A is not mono-
chromatic. (Le., there exist i #j, X;N(B— A) # @, X;N(B ~ A4) # @.) Define
f(n, k) = max{|F|: F < 2%, F has k-color Sperner property}.

The 1-color Sperner families are just the usual Sperner families, in other words
antichains,ie., & < 2X,VF, F' € # one has F ¢ F'. An antichain has k-color Sperner

()= ()
Ln/21)| ~ \Lny21):

By Sperner’s theorem [ 16] no antichain of subsets of X contains more than

property for every k and every k-coloring, whence f(n,k) >

n
Ln/2]

members, whence

n
n1)= . 1
70 = (1)) O
For k = 2 Katona [8] and Kleitman [10] proved independently that f(n,2)

(I_n;z 1 although there are several 2-color Sperner families which are not anti-

chains. Very recently P.L. Erdds and Katona [3] described all the extremal families
(i.e, having f(n,2) members).

For k = 3 Katona [9] gave a simple example & having more than (Ln72 _I)

members.
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Example 1.1. Let X = X, UX,U X5, X; = n/3 (ie., | X;| = [n/3] or [n/3]) and &

X X X
= <|_n/2j>u<l_n/6_| B 1>U(f5n/6] + 1) Then & is a 3-color Sperner family.

Griggs and Kleitman [4], Griggs [5] and Katona [9] have found additional

conditions which imply that a 3-color Sperner family # fulfils | #| < Ln72 J)'

For fixed k it is not immediately clear that for all n f(n, k) is at most a constant

" > This was proved by Griggs [6] showing that
Ln/2]

f(nk) / <L"72 _|> < 22 for k > 2. Here the right hand side was decreased by Sali [3]

(depending only on k) times (

to k and later to 3\/12 [14]. Here we present a short proof due to Graham and Fan
Chung [2] which gives

< QIR = (1+o(0)( 7 )V @

Proposition 1.2. Let & be a k-color Sperner family withparts X, X,,..., X,k = 2and

let | X;| = n;. Then
EARIVINIAN LS )
Proof Forall T « X, U---UX,_, denote by #(T) =: {FeF: FN(X;U-- -U X,_,)
= T}. Then % (T) is an antichain hence by (1) its cardinality is at most L n;z 1)
ny

Using (1 + o(1))(2%/\/a)\/2/n (L ‘/’2 J> <(2°\/a)S/2/r we have |F|<

2|X.u-~-UX,_,1<L k/2J> n—m 2""/\/— \/ﬂ = 2n/\/_ \/z/_n\/-rm 1 + O
(l_n72 J) /n/n,. We can choose n, > n/k, hence (3) implies (2). O
The constant \/1? cannot be replaced by e.g. 0.6\/E without any further restric-
tion because f(k,k) = 2*"! (as it can be seen considering Z,,., = {F <« X:|F| =
k
even} orf Fo49=:{F < X:|F|=o0dd}), hence f(k,k)=(1+ o(1)) (Lk/2_l

\/E1 /n/8. But it can be improved whenever n is large compared to k. This paper
is devoted to obtain estimations for f(n, k) when k > 3 and n is large enough.

2. Results

Theorem 2.1. For every positive integer k there exist constants ck and d, depending only
on k such that ck2"/f 1+ 0o(1) < f(n k) < dif 2"/\/— 1 + o(1)) if n tends to infin-

ity. Moreover
e > /k/21log k(1 — o(loglog k/log k)), 4
d, < /k/2logk(1 + o(logloglog k/log k)). (5)
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Obviously, ¢,y > ¢, and the exact form of (4) (cf. (7)) implies f(n,4)

> 1.001 ( ) (1 + o(1)). The following result disproves a conjecture about f(n, 3).

Ln/2]

Theorem 2.2. If n is large enough then f(n, 3) > 1.018 (L /2_l>

We have to remark that similar results were obtained independently by Griggs,
Odlyzko and Shearer [7]. Their proofs are different. The upper bound in (5) is

slightly better. But they can prove that for fixed k lim f(n, k)/(2"//n) exists and
c3 > 1.036.

3. Constructions

Now k is fixed and n tends to infinity. We are going to apply some wellknown
properties of binomial coefficients (see e.g. Spencer [15]). For every integer m and
real x > 0 we have

y ('j") < 2™exp(—2x?/m). (6)
jzm{2+x

Proof of (4). We improve the idea of Example 1.1. Let | X| =n, X = X, U ---UX,
a partition into almost equal parts (|X;| = Ln/k] or [n/k1]) and t a positive integer.
Set F'=:{FcX:||[FNX,|~|X\2<t/2 for all 1<i<k}, and F'=
{FeZ"|F| =r(modt)} where 0 <r <t Obviously, #f is a k-color Sperner
family.

Proposition 3.1. For t ~ \/l /2(1 + e)logk/k (¢ > 0 is an arbitrary constant) we

have | F*| > 27(1 — 2k™)(1 + o(1)).

Proof. Choose F < 2* randomly. Then by (6) we have Prob(|F N X;| > | X,|/2 + t/2)
X; .. . .

=27y e (l jl|> < exp(—12/21X;]) = (1 + o(1))k™* 7= Similar inequality

holds for Prob(|FNX;| <|X;|/2 —1/2). Because of the independence of the
events we have [F'|27" =], i< Prob(J|FNX;| — | X;l/2] < t/2) > (1 + o(1))
(1= 27179 > (1 + o(1))(1 — 2k79). O

Proposition 3.2. We can choose t and r such that for the family F} the inequality (4)
holds.

Proof. Let 0 < r < t such that |#]| is maximal. Clearly |FH = |F*\/t. Choose ¢ as
in Proposition 3.1 then we have |#}| > (1 + o(1 2"/\/_ k/2log k(1 — 2k™%)/
1+ ¢ For k> 20 one can choose 0 <& <1 such that (1 — 2k“‘)/./1 +e>1
— loglogk/logk. (¢ ~ (loglogk + o(1))/logk.) O

Proof of Theorem 2.2. Instead of (6) we can use the Moivre-Laplace formula (see

[11]) to improve Proposition 3.1. This yields that for t = \/-r;., /2(1 + ¢)log k/k we
have
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—2|5«"; > (1 + 0(1))(2"/+/n)/*/21ogk
x (=1 +29(2(1 + e)logk))/ /1 + e.

We remark that for large k (7) does not give an essentially better lower bound for ¢,

(7)

than (4). Optimizing (7) for k = 3 we obtain - Z |#| > 097 (L P J) for nsufficiently
large. If the average of | #/| is so large we can hope that max, |#}| > 1.01 ] 72 1)
n

This is true. To prove thislet t = 1.2\/; andr = | n/2|(mod t). Then & consists of 3
levels of 2%, more precisely if F e #} then |F| = [n/2] + t, [n/2] or Ln/2| — t. More
exactly

o ny n; ns
Z= (Lnl/zJ 4 xl) <an/2J n x;) (Lns/ZJ + xa)

|xil<t/2,integers

ny ny ny
*2 x1+xzz+x;=r (L"1/2.| + xl) (an/ZJ + xz) (L"s/z.] + x3>'

|xii<t/2,integers

Use the following equality which holds for |x| < C ﬂ (see [11]).

( . > (2 /rm/2)exp(— 2x*/m)(1 + O(1/m)).

m/2 + x
We obtain
n
Iﬁ}l/( >1+o = J‘J‘ exp(—12(x* + xy + y*))dxd
Ix|sa
Iyisa
Ix+yl<a
6./3
+ 2-;{—_— J] exp(—6(x? + y* + (2a — x — y)?))dx dy.
x| <a
lylsa
12a=x~yl<a
Herea = 0.6 (~ t/2\/—r;). Using a computer one can show that for this value of a the
right hand side equals to 1.0189---. O

4. The Proof of the Upper Bound
We begin with a technical lemma.

Lemma 4.1. (1 — exp(—1/x))(1 — exp(—1/y)} < (1 — exp(—2/(x + y)))* holds in
the following cases

(@) 0<x,y<c,where0 <c<1suchthate " =1—1/2c.(c = 0.627---)

(b) 0 <y<025l,c <x<4/n
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Proof. () The function f(x) = log(1 — exp(— 1/x)) is concave (convex)if 0 < x < ¢
(x > c, resp.) as it can be shown by derivations. The case (b) follows from (a) and the
fact that (f(yo) + f(4/7))/2 = f((yo + 4/m)/2) for yo = 0.2513---. ]

Moreover we will use the following estimation which holds for every m and . (See
[11] pp. 151-152))

((Lm72J> - (Lm/ZJm— :/2)) (Lm"/lz J)_l = (1 + o(t/m))(1 — exp(—t*/2m)). (8)

Now let # < 2% be a k-color Sperner family with respect to the coloring X;,..., X,

|X;| =n; Let t~./n2(1 —¢)logk/k where 0<e<1 is a fixed small real
(¢ = O(logloglog k/log k))

Lemma 4.2. [f some n; > (4(1 — &)log k/nk)n then | F| < d, 2"/\/;, where d, is given
by (5). :
Proof. It is a trivial consequence of (3). O

From now on we can suppose that for each i (2n,/t?) < 4/x.

A family.of sets € = {C;, Ciyy, ..., Cp} = 2Y is called a symmetric chain if it is
linearly ordered by inclusion and |C}| = j,m = Y| — I, || = m — i + 1. deBruijn,
Kruijswijk and Tengbergen [1] proved that there exists a chain decomposition of

2" = | )% into ( pairwise disjoint symmetric chains (| Y| = y). The number of

y
Ly/2]

. . . .- ] y y

chains of length ¢ in this decomposition equals to ( ) — ( )
P 1 Ly —o21) ~ \L(y — 9]
Fix this decompositon and permute the elements of Y. Then every F € 2 belongs to
. y y -
a chain of length at least ¢ at least y!( ) / < ) times. In other words,
® Ly — 0721)/ \Lyz2
using (8) we get

y y \*
Prob(Fe%,|4| <t)<1 — ( )
(Fe®l61<) (L(y - t)/21> Ly/2] o)
= (1 + o(1/¥))(1 — exp(—1t?/2y)).
Now fix a chain decomposition of 2% for all 1 < i < k. Choose a chain %, < 2** for
all i<k Thefamily B <2, B =%, x €, x - x €, = {C,U---UCy C;e¥}

is called a block.
The chain decompositions of 2% define a block decomposition of 2*.

Lemma 4.3. | N 8| < |#|/max;|¥|.

Proof. Suppose |%,| = max;|%;|. Split # according to the traceson X, U---U X}, i.e,
B=|){B(T): Te¥, x - x 4} where #(T) =: {Be #: B~ X, = T}. Then each
#A(T) is a chain in 2% of length |%,| and |# N #(T)| < 1 because F is a k-color
Sperner family. a

A block # =%, x -+ x &, is small if max;|%,| < t. Fix a member Fe2* and
consider all the permutations of X which are the products of the permutations of the
X;'s. The inequality (9) implies
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Prob(F esmall block) = [] Prob(F N X; belongs to a small chain in 2*Y) (10)
1si<k

< (U+o{1/y/m) TI (1 - exp(~3/2m)).

1<i<k
Lemma 4.4. If k > 50 then [ [, .« (1 — exp(—t%/2n)) < (1 — exp(—t2k/2n))~.

Proof. If each (2n;/t?) < ¢ (~0.6275--+) then we can apply Lemma 4.1 (a) and the

Jensen’s inequality. If for some i ¢ < (2n,/t?) (<4/n) then there exists a j such that

2n;/t? is at most 0.251 and first we can apply (possibly repeatedly) Lemma 4.1(b).
O

Hence the right hand side of (10) is at most (1 — k™***} < exp(—k*). Thus we
have obtained an upper bound for the mean value

E (#F e % F belongs to a small block) < | # |/exp(k*).

This implies that there exists a block decomposition in which >(1 — exp(—k?))
proportion of & belongs to a large (that is not a small) block.

Apply Lemma 4.3
IZ|(1 —exp(—k)< T IFNB< T |Blmax|%,l
@ large block 4 large block (l 1)
<Y |®B|t <2
Rearranging (11) we get (5). O

Finally we remark that an argument similar to the one giving (5) can be found in
Radl [12].
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