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ABSTRACT

Let X be an n-element set, n = { = [ non-negative
integers. Sauer proved that if F C 2% is a set-system with

cardinality bigger than J; 51_1(?’) then there exists a subset

TCX,|T| =t such that F|T = {F N T: F € F} contains
all subsets of T', in particular all [-element subsets of T'.

In this paper it is proved that this value is best in a
stronger sense. That is, there exists a set-system G C 2X,

|G| = ZiSt—l(?) such that for any T C X, |T| = ¢ the
set-system G| T does not contain all [-subsets of T.

1. Introduction, Results.
Let n =t = [ be non-negative integers, X an n-element set. oX
denotes the set-system of all subsets of X, (‘1{) denotes the set-system of all

l-element subsets of X. The complete hypergraphs 2% and (Jf) are
denoted by P, K" respectively.
Let H be a hypergraph with edge-set E(H), vertex-set V(H) and let F

be a set-system on X. We say that F - H (i.e. F induces H) if H can be
obtained as traces of members of F. That is, there exist F,,...F,, € F
(m = |EH)]) and TeX, |T| = | v(H)| such that
F,NT,. F, NT form a hypergraph on T which is isomorphic to H.
Otherwise, F #H. Sauer [13] proved the following conjecture of Erdds: If

Fc2X |F| > E'-Et_l(?) then there exists a T C X, |T| =t such
that F » 27, The set-system F = | iSt—l()f() shows that this theorem
cannot be improved without any further restriction.
Theorem 1. For all n =t =120 there exists a set-eystem

= _ n
F =TF(nt,l) on an n-clement set such that |F| = Fise—(}) but
F 4K}

This statement is trivial for [ = 0 or [ = ¢ (see above). The case

t = 2,1 = 2 was proved by Anstee [1,2] and by Frankl (unpublished).
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Proof. We have to give constructions for n =2 ¢t > [ > 0. Order the ele-
ments of X, eg X =1{12,..,n} For z,2,,..2; € X,
LIRS E il < let E(zy..z)={z €X:2 = z; for
F=i}U{z € Xz >z but 7' z; for any Jj > 1} (see Fig. 1),
E(D )= @. Let F(n,t,l) consist of all E(z,,...,z;) where i < t—1. It is
easy to check that if T C X, T = {y,,.. 4}, y; <y, < - <y then
the subset {l"p s ,y;} cannot be obtained as trace of a member of F on
T. Thus, F(n,t,l) #K}. QED.

©
(M
O

Y R

- X

2 L A XE x8+1 L i

Figure 1

2. Problems, Remarka.

Let F(n,H) = max{|F|:F C 2%, | X| = n, F #H} and call a set-
system F H-eztremal if |F| =F(nH) ad F#AH Eg.
F(n K/) = Zist-l(?) and the set-system F(n,t,l) is K -extremal by the
Theorem 1 and the theorem of Sauer. It is natural to ask how ome can
characterize all H-extremal set-systems. We deal with the case H = K/
only. The cases | = 0 or ¢ are trivial. If 0 <[ <t = 3 one can con-
struct Kf—extremal families different from the example of §1. However, the
following conjecture seems to be true:

Conjecture 1. If F is ¢ Kf-eztrema! family and F; denotes the set of
its j-element members, then |FJ-| = |F[n,t,!]1-|.

That is |F;] = (") for j <! or j>n—t+i, otherwise
_ jHt=2l \in=j=t+2l

IF;l = Zal;l 11420 C 121-¢

! = 1 and (taking the complements) for | = ¢ —1.

). We can prove Conjecture 1 for
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Theorem 2. If FC 2%, [X| =n, |F| = I;<,,(}) and F 4K/
then |FJI = (J:.f_gzj for j S n—t+1and (’;) otherwise.

(The proof of this statement is given in §3.) Anstee [1,3] proved this
statement for ¢ = 3, [ = 2 together with the following structure theorem
[4]: If F is K3-extremal then F 4C; for any k (C; denotes the circle of
length k, that is a hypergraph on k points with k 2-element edges).
Further, if F, C 2X and F, #C, for every k, then F; can be extended to
be Kg—extremal. (That is, there exists a set-system G C ax, F, C G,

|G| = 1+n+(g), G #KJ). Hence the number of the K5 (and K})

-extremal families is greater than the number of trees, i.e. its order of
magnitude is exponential.

Remark 1. Following Ryser [12|, Anstee used linear algebraic tools.
However, it seems to be likely that linear spaces play an important role in
this topic, e.g. a theorem due to Frankl and Pach [10] says: If F C oX
| X| = n and the rows of the matrix M(F, = ¢t—1) are linearly depen-
dent then F - P,. Here the definition of M(F, = t—1) is the following.
Let F = {F,,...,F,} and let A,,.,A denote all at most (¢ —1}-element
subsets of X. Then M = (M;;) 1=i=m,1SjsSranmbyr0-1
matrix where M;; = 1if A; C F; and 0 otherwise.

Problem 1. If F is a Ki-extremal set-system then IF," is independent
from n by Theorem 2. Let f;(n) be the greatest integer m such that
there exists a k-uniform set-system E = {E,,..E_} which E 4K}
Clearly, {k :_i;z) =< fi(t). This problem was posed by Frankl and Pach,
too. They pointed out that (k/t)!™! = T(k+t—1tt—1)= f.(t)

= (kgt:f]), where  T(n,,l}) is the  Turabn-number, ie.
T(n,t,) =: max{|H|:H C (]I()’ |X| =nHIKf Moreover,

So(t) = [(t?=1Y2] = T(t+1,t,t —1) holds.

Remark 2. Let n,k,m,s denote integers. The symbol (n,k) = (m,s)
means that whenever F C 2X, | X| = n, |F| = k then we can find an
m-element subset Y of X such that among the intersections Y N F, F € F
there are at least s different sets. So Sauer's theorem says that

n .
(n 1+ Disi (7)) = (,2°). 1t is clear that (n, 5 <, —o(})+T(n t t —1))
~(t,2°=1), and Frankl [9] proved that (n,l+£is!_2(?)+T[u,t,t-1))
- (t,2*—1). Here the left hand side is much smaller than (tﬁl) for great
values of n. However, this result suggested that Theorem 1 may not be
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true (which turned out to be wrong).

More results can be found in Bondy [6] ((n,k) = (n=1,k) for k = n),
Bollobas [5] ((n,k) = (n—1,k—1) for k = [3n/2|) and Frankl [8,9].

Problem 2. The degree of a point z in a set-system F is denoted by
dg(z) or simply d(z) =: |{F: z € F € F}|. Let a hypergraph H be given
and let d(n,H) = max{min, ¢ydp(z): F C 2%, | X| = n, F 4H}. This
means (in human language) that if the degree of every point is greater than
d(n,H) then F -~ H. This problem was posed (for special H) by Cunning-

ham  [7]. The  set-system U ;2p—¢+1(;)  shows - that

d(n,P) = Sig1(" 7). So d(n,P;) = F(n=1P,), and in general
[F(n,HYn] < d(n,H) = F(n—1H). Here equality can hold in left hand
side, too, e.g. d(n,K{)=1= [(n+1)n](n = 2).

The hypergraph H = (V(H),E(H)) is called r-partite if there exist
Y, Y,,...Y, CV(H), UY; =V(H) such that |[EUY,;| =1 for all
e €EH),1<j=r.

Proposition 1. Given a hypergraph H, let H' = {E: E € E(H)}. If H'is
not (t —1)-partite, then d(n,H) > n' "t =1)' "1 = o(n*72).

It is enough to give a construction. Let X be the disjoint union of
the sets XXy —q where | X;| ~ n/(t=1) and
F={FCX:F=UU,;=t-; (X;—1{z;}), z; € X;}. The condition of
Proposition 1 is satisfied by almost all hypergraph, e.g. d(n ,Kf) ~nt”l
foralll = t—2.

Proposition 2. If | <t—1 then .d(n,l(f) ~ nt7l ezcept for t = 2,

| = 1. Moreover d(n K{) = Z;‘s:—z(n:l)-

The second part of the statement is obvious. The only missing case
is | =t—1= 2. Arrange the elements of X along a circle and let
G(2y,Zy—q) ={z €X:2= :cj,-} Uiz € Xizpp=< 2 =< B}
(The sign — < stands for a direction, say, for the clockwise one.) Finally,
let G = {G(z(,--Zy—~y): Ty =< 2y =< '+ "z, and z,,..,T;—, can be
covered by an arc of length at most n/3}. Then G "'K:—x and
dg(z) > nt 713 7Yt =1 "1+0(n' ") forallz € X. QED.

This example, similarly to Theorem 1, can be extended to all [.
Hence the coefficient in Proposition 1 can be improved a little. Remark,
that the idea of arranging the points along a circle is due to Frankl.
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3. Proof of Theorem 2.

We use induction on { and, for a fixed ¢, induction on n. In the case
=2,if F,F, € F and F &Kf, then one of F; and F, contains the other.
Thus, there exists only one Kf-extrema! family G and |G.—| = 1. Hence,

we may suppose t = 3. For any K:—extrema! F |FJ| = [r;)
(j = n—t+2) holds, obviously. So we get |F<,_,4,| = (tfl)‘ It is
easy to check the case n = {. From now on we follow the idea of Sauer.

Let £ € X and F(z)=:{F € F:z ¢ F}. The traces of the sets
belonging to F — F(z) are pairwise different on (X — {z}) Smce

)| (X = {z}) 4P, we have |F — F(z)| = 3 g, 1( ] by
the theorem of Sauer. Moreover F(z) #P,_, (F(z) ~P,_, would imply
F - P,) and we obtain |F(z)| = Z,’st—z(n:ll- The sum of the right-
hand sides of these two inequalities is just Eis:-q(?] = |F|. So we
have |F(z)| = 3, 5:-42(“?1)- Since F contains all at most (n—t+2)
element subsets we get |F(z)<y —¢ 41| = t—2)

Next we show that |F1| =t—=1. We clearly have |F,| =1,
because & € F. Count up the pairs (F,F') where FF € F<, _; 4, F' € F,

|FI| = |F| +1, FC F'. Since F 4K}, there are at most (t—1) pairs
for any fixed F. Hence
(t—-g) = Z:EXlF(x)En i'.+1| = FF’)S (t_l)lFSn-l‘Fil
= (-1, "))

Since the left-hand side and right-hand side are equal, we have that each
F € Fo, 4+, belongs to exactly (t—1) (F,F') pairs. In particular, for
F = (@, this yields |F,| = t=1.

Now, we can suppose that {y} € F. Then {F € F: y ¢ F} JoKf_l.
Using the fact that |F(y)| = F(n—l,Kf_l) and F(y) C{F € F: y ¢ F},
we get that F(y) = {F € F:y ¢ F}. In other words, this means that
y € F for every FF € F — F(y) So, applying the induction hypothesis for

F(y) and (F = F(y))| (X —{y} we have |F,| = |F(n—1¢t-1,1); |
+ |P(n—1¢,1);,] —(J*‘ 5+ jii'% (.. QED.
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