Traces of Finite Sets

Z. Füredi and F. Quinn

ABSTRACT

Let X be an n-element set, $n \ge t \ge l$ non-negative integers. Sauer proved that if $\mathbb{F} \subset 2^X$ is a set-system with cardinality bigger than $\sum_{i \le t-1} \binom{n}{i}$ then there exists a subset $T \subset X$, |T| = t such that $\mathbb{F}|T = \{F \cap T : F \in \mathbb{F}\}$ contains all subsets of T, in particular all l-element subsets of T.

In this paper it is proved that this value is best in a stronger sense. That is, there exists a set-system $\mathbf{G} \subset 2^X$, $|\mathbf{G}| = \sum_{i \leq t-1} \binom{n}{i}$ such that for any $T \subset X$, |T| = t the set-system $\mathbf{G} \mid T$ does not contain all l-subsets of T.

Introduction, Results.

Let $n \ge l \ge l$ be non-negative integers, X an n-element set. 2^X denotes the set-system of all subsets of X, $\binom{X}{l}$ denotes the set-system of all l-element subsets of X. The complete hypergraphs 2^X and $\binom{X}{l}$ are denoted by \mathbf{P}_n , \mathbf{K}_l^n respectively.

Let **H** be a hypergraph with edge-set $E(\mathbf{H})$, vertex-set $V(\mathbf{H})$ and let **F** be a set-system on X. We say that $\mathbf{F} \to \mathbf{H}$ (i.e. **F** induces **H**) if **H** can be obtained as traces of members of **F**. That is, there exist $F_1, ..., F_m \in \mathbf{F}$ $(m = |E(\mathbf{H})|)$ and $T \subset X$, $|T| = |V(\mathbf{H})|$ such that $F_1 \cap T, ..., F_m \cap T$ form a hypergraph on T which is isomorphic to **H**. Otherwise, $\mathbf{F} \not\leftarrow \mathbf{H}$. Sauer [13] proved the following conjecture of Erdös: If $\mathbf{F} \subset 2^X$, $|\mathbf{F}| > \sum_{i \le t-1} {n \choose i}$ then there exists a $T \subset X$, |T| = t such that $\mathbf{F} \to 2^T$. The set-system $\mathbf{F} = \bigcup_{i \le t-1} {X \choose i}$ shows that this theorem cannot be improved without any further restriction.

Theorem 1. For all $n \ge t \ge l \ge 0$ there exists a set-system $\mathbf{F} = \mathbf{F}(n,t,l)$ on an n-element set such that $|\mathbf{F}| = \sum_{i \le t-1} \binom{n}{i}$ but $\mathbf{F} \not\leftarrow \mathbf{K}_l^t$.

This statement is trivial for l = 0 or l = t (see above). The case t = 2, l = 2 was proved by Anstee [1,2] and by Frankl (unpublished).

Proof. We have to give constructions for $n \geq t > l > 0$. Order the elements of X, e.g. $X = \{1,2,...,n\}$. For $x_1,x_2,...,x_i \in X$, $x_1 < x_2 < \cdots < x_i$, let $E(x_1,...,x_i) = \{x \in X : x = x_j \text{ for } j \leq l\} \cup \{x \in X : x > x_l \text{ but } x \neq x_j \text{ for any } j > l\}$ (see Fig. 1), $E(\emptyset) = \emptyset$. Let F(n,t,l) consist of all $E(x_1,...,x_i)$ where $i \leq t-1$. It is easy to check that if $T \subset X$, $T = \{y_1,...,y_t\}$, $y_1 < y_2 < \cdots < y_t$ then the subset $\{y_1,\ldots,y_l\}$ cannot be obtained as trace of a member of F on T. Thus, $F(n,t,l) \neq K_l^t$. Q.E.D.

Figure 1

2. Problems, Remarks.

Let $F(n, \mathbb{H}) = \max\{|\mathbb{F}| : \mathbb{F} \subset 2^X, |X| = n, \mathbb{F} \not\sim \mathbb{H}\}$ and call a set-system \mathbb{F} \mathbb{H} -extremal if $|\mathbb{F}| = F(n, \mathbb{H})$ and $\mathbb{F} \not\sim \mathbb{H}$. E.g. $F(n, \mathbb{K}_l^t) = \sum_{i \leq t-1} \binom{n}{i}$ and the set-system $\mathbb{F}(n, t, l)$ is \mathbb{K}_l^t -extremal by the Theorem 1 and the theorem of Sauer. It is natural to ask how one can characterize all \mathbb{H} -extremal set-systems. We deal with the case $\mathbb{H} = \mathbb{K}_l^t$ only. The cases l = 0 or t are trivial. If $0 < l < t \geq 3$ one can construct \mathbb{K}_l^t -extremal families different from the example of §1. However, the following conjecture seems to be true:

Conjecture 1. If \mathbf{F} is a \mathbf{K}_{l}^{t} -extremal family and \mathbf{F}_{j} denotes the set of its j-element members, then $|\mathbf{F}_{j}| = |\mathbf{F}(n,t,l)_{j}|$.

That is $|\mathbb{F}_j| = \binom{n}{j}$ for j < l or j > n-t+l, otherwise $|\mathbb{F}_j| = \sum_a \binom{j+t-2l}{j-l+1+2a} \binom{n-j-t+2l}{l-1-a}$. We can prove Conjecture 1 for l=1 and (taking the complements) for l=t-1.

Theorem 2. If $\mathbf{F} \subset 2^X$, |X| = n, $|\mathbf{F}| = \sum_{i \le t-1} \binom{n}{i}$ and $\mathbf{F} \not\sim \mathbf{K}_l^t$ then $|\mathbf{F}_j| = \binom{j+t-2}{t-2}$ for $j \le n-t+1$ and $\binom{n}{j}$ otherwise.

(The proof of this statement is given in §3.) Anstee [1,3] proved this statement for t=3, l=2 together with the following structure theorem [4]: If \mathbf{F} is \mathbf{K}_2^3 -extremal then $\mathbf{F} \not\sim \mathbf{C}_k$ for any k (\mathbf{C}_k denotes the circle of length k, that is a hypergraph on k points with k 2-element edges). Further, if $\mathbf{F}_0 \subset 2^X$ and $\mathbf{F}_0 \not\sim \mathbf{C}_k$ for every k, then \mathbf{F}_0 can be extended to be \mathbf{K}_2^3 -extremal. (That is, there exists a set-system $\mathbf{G} \subset 2^X$, $\mathbf{F}_0 \subset \mathbf{G}$, $|\mathbf{G}| = 1 + n + \binom{n}{2}$, $\mathbf{G} \not\sim \mathbf{K}_2^3$). Hence the number of the \mathbf{K}_2^3 (and \mathbf{K}_1^3)-extremal families is greater than the number of trees, i.e. its order of magnitude is exponential.

Remark 1. Following Ryser [12], Anstee used linear algebraic tools. However, it seems to be likely that linear spaces play an important role in this topic, e.g. a theorem due to Frankl and Pach [10] says: If $\mathbf{F} \subset 2^X$, |X| = n and the rows of the matrix $M(\mathbf{F}, \leq t-1)$ are linearly dependent then $\mathbf{F} \to \mathbf{P}_t$. Here the definition of $M(\mathbf{F}, \leq t-1)$ is the following. Let $\mathbf{F} = \{F_1, ..., F_m\}$ and let $A_1, ..., A_r$ denote all at most (t-1)-element subsets of X. Then $M = (M_{ij})$ $1 \leq i \leq m$, $1 \leq j \leq r$ an m by r = 0-1 matrix where $M_{ij} = 1$ if $A_j \subset F_i$ and 0 otherwise.

Problem 1. If **F** is a \mathbf{K}_1^t -extremal set-system then $|\mathbf{F}_j|$ is independent from n by Theorem 2. Let $f_k(n)$ be the greatest integer m such that there exists a k-uniform set-system $\mathbf{E} = \{E_1, ..., E_m\}$ which $\mathbf{E} \not\sim \mathbf{K}_1^t$. Clearly, $\binom{k+t-2}{t-2} \leq f_k(t)$. This problem was posed by Frankl and Pach, too. They pointed out that $(k/t)^{t-1} \leq T(k+t-1,t,t-1) \leq f_k(t) \leq \binom{k(t-2)}{t-1}$, where T(n,t,l) is the Turán-number, i.e. $T(n,t,l) =: \max\{|\mathbf{H}|: \mathbf{H} \subset \binom{X}{l}, \quad |X| = n, \mathbf{H} \supset \mathbf{K}_l^t\}$. Moreover, $f_2(t) = [(t^2-1)/2] = T(t+1,t,t-1)$ holds.

Remark 2. Let n,k,m,s denote integers. The symbol $(n,k) \rightarrow (m,s)$ means that whenever $\mathbb{F} \subset 2^X$, |X| = n, $|\mathbb{F}| \geq k$ then we can find an m-element subset Y of X such that among the intersections $Y \cap F$, $F \in \mathbb{F}$ there are at least s different sets. So Sauer's theorem says that $(n,1+\sum_{i\leq t-1}\binom{n}{i}) \rightarrow (t,2^t)$. It is clear that $(n,\sum_{i\leq t-2}\binom{n}{i}+T(n,t,t-1)) \rightarrow (t,2^t-1)$, and Frankl [9] proved that $(n,1+\sum_{i\leq t-2}\binom{n}{i}+T(n,t,t-1)) \rightarrow (t,2^t-1)$. Here the left hand side is much smaller than (t,n) for great values of n. However, this result suggested that Theorem 1 may not be

true (which turned out to be wrong).

More results can be found in Bondy [6] $((n,k) \rightarrow (n-1,k))$ for $k \leq n$, Bollobás [5] $((n,k) \rightarrow (n-1,k-1))$ for $k \leq (3n/2)$ and Frankl [8,9].

Problem 2. The degree of a point x in a set-system \mathbb{F} is denoted by $d_{\mathbb{F}}(x)$ or simply $d(x) =: |\{F: x \in F \in \mathbb{F}\}|$. Let a hypergraph \mathbb{H} be given and let $d(n,\mathbb{H}) = \max\{\min_{x \in X} d_{\mathbb{F}}(x): \mathbb{F} \subset 2^X, |X| = n, \mathbb{F} \neq \mathbb{H}\}$. This means (in human language) that if the degree of every point is greater than $d(n,\mathbb{H})$ then $\mathbb{F} \to \mathbb{H}$. This problem was posed (for special \mathbb{H}) by Cunningham [7]. The set-system $\bigcup_{|i| \geq n - t + 1} {X \choose i}$ shows that $d(n,\mathbb{P}_t) = \sum_{|i| \leq t - 1} {n-1 \choose i}$. So $d(n,\mathbb{P}_t) = F(n-1,\mathbb{P}_t)$, and in general $|F(n,\mathbb{H})/n| \leq d(n,\mathbb{H}) \leq F(n-1,\mathbb{H})$. Here equality can hold in left hand side, too, e.g. $d(n,\mathbb{K}_1^2) = 1 = [(n+1)/n] \ (n \geq 2)$.

The hypergraph $\mathbf{H} = (V(\mathbf{H}), E(\mathbf{H}))$ is called r-partite if there exist $Y_1, Y_2, ..., Y_r \subset V(\mathbf{H}), \ \cup Y_j = V(\mathbf{H})$ such that $|E \cup Y_j| = 1$ for all $e \in E(\mathbf{H}), \ 1 \leq j \leq r$.

Proposition 1. Given a hypergraph **H**, let $\mathbf{H}' = \{\overline{E} : E \in E(\mathbf{H})\}$. If \mathbf{H}' is not (t-1)-partite, then $d(n,\mathbf{H}) > n^{t-1}/(t-1)^{t-1} - 0(n^{t-2})$.

It is enough to give a construction. Let X be the disjoint union of the sets $X_1,...,X_{t-1}$ where $|X_i| \sim n/(t-1)$ and $\mathbb{F} = \{F \subset X : F = \bigcup_{i \leq t-1} (X_i - \{x_i\}), x_i \in X_i\}$. The condition of Proposition 1 is satisfied by almost all hypergraph, e.g. $d(n, \mathbb{K}_l^t) \sim n^{t-1}$ for all $l \leq t-2$.

Proposition 2. If $l \le t-1$ then $d(n, \mathbb{K}_l^t) \sim n^{t-1}$ except for t = 2, l = 1. Moreover $d(n, \mathbb{K}_l^t) = \sum_{i \le t-2} \binom{n-1}{i}$.

The second part of the statement is obvious. The only missing case is $l=t-1\geq 2$. Arrange the elements of X along a circle and let $G(x_1,...,x_{t-1})=\{x\in X\colon x=x_j\}\cup\{x\in X\colon x_{t-2}-< x-< x_{t-1}\}.$ (The sign -< stands for a direction, say, for the clockwise one.) Finally, let $\mathbf{G}=\{G(x_1,...,x_{t-1})\colon x_1-< x_2-< \cdots x_{t-1} \text{ and } x_1,...,x_{t-1} \text{ can be covered by an arc of length at most } n/3\}.$ Then $\mathbf{G} \neq \mathbf{K}_{t-1}^t$ and $d_{\mathbf{G}}(x)>n^{t-1}/3^{t-1}(t-1)^{t-1}+0(n^{t-2})$ for all $x\in X$. Q.E.D.

This example, similarly to Theorem 1, can be extended to all l. Hence the coefficient in Proposition 1 can be improved a little. Remark, that the idea of arranging the points along a circle is due to Frankl.

3. Proof of Theorem 2.

We use induction on t and, for a fixed t, induction on n. In the case t=2, if $F_1,F_2\in \mathbb{F}$ and $\mathbb{F} \not\sim \mathbb{K}_1^2$, then one of F_1 and F_2 contains the other. Thus, there exists only one \mathbb{K}_1^2 -extremal family \mathbb{G} and $|\mathbb{G}_i|=1$. Hence, we may suppose $t\geq 3$. For any \mathbb{K}_1^t -extremal \mathbb{F} $|\mathbb{F}_j|=\binom{n}{j}$ $(j\leq n-t+2)$ holds, obviously. So we get $|\mathbb{F}_{\leq n-t+1}|=\binom{n}{t-1}$. It is easy to check the case n=t. From now on we follow the idea of Sauer.

Let $x \in X$ and $\mathbf{F}(x) =: \{F \in \mathbf{F}: x \notin \mathbf{F}\}$. The traces of the sets belonging to $\mathbf{F} - \mathbf{F}(x)$ are pairwise different on $(X - \{x\})$. Since $(\mathbf{F} - \mathbf{F}(x)) | (X - \{x\}) \not\sim \mathbf{P}_t$ we have $|\mathbf{F} - \mathbf{F}(x)| \leq \sum_{i \leq t-1} \binom{n-1}{i}$ by the theorem of Sauer. Moreover $\mathbf{F}(x) \not\sim \mathbf{P}_{t-1}$ ($\mathbf{F}(x) \rightarrow \mathbf{P}_{t-1}$ would imply $\mathbf{F} \rightarrow \mathbf{P}_t$) and we obtain $|\mathbf{F}(x)| \leq \sum_{i \leq t-2} \binom{n-1}{i}$. The sum of the right-hand sides of these two inequalities is just $\sum_{i \leq t-1} \binom{n}{i} = |\mathbf{F}|$. So we have $|\mathbf{F}(x)| = \sum_{i \leq t-2} \binom{n-1}{i}$. Since \mathbf{F} contains all at most (n-t+2)-element subsets we get $|\mathbf{F}(x)| \leq n-t+1 = \binom{n-1}{t-2}$.

Next we show that $|\mathbb{F}_1| = t-1$. We clearly have $|\mathbb{F}_0| = 1$, because $\emptyset \in \mathbb{F}$. Count up the pairs (F,F') where $F \in \mathbb{F}_{\leq n-t+1}$, $F' \in \mathbb{F}$, |F'| = |F| + 1, $F \subset F'$. Since $\mathbb{F} \not\sim K_1^t$, there are at most (t-1) pairs for any fixed F. Hence

$$n\binom{n-1}{t-2} = \sum_{x \in X} |\mathbf{F}(x)| \leq n-t+1 = \#(F,F') \leq (t-1) |\mathbf{F}| \leq n = t+1 = (t-1)\binom{n}{t-1}.$$

Since the left-hand side and right-hand side are equal, we have that each $F \in \mathbb{F}_{\leq n-t+1}$ belongs to exactly (t-1) (F,F') pairs. In particular, for $F = \emptyset$, this yields $|\mathbb{F}_1| = t-1$.

Now, we can suppose that $\{y\} \in \mathbb{F}$. Then $\{F \in \mathbb{F}: y \notin F\} \not\sim \mathbb{K}_1^{t-1}$. Using the fact that $|\mathbb{F}(y)| = F(n-1,\mathbb{K}_1^{t-1})$ and $\mathbb{F}(y) \subset \{F \in \mathbb{F}: y \notin F\}$, we get that $\mathbb{F}(y) = \{F \in \mathbb{F}: y \notin F\}$. In other words, this means that $y \in F$ for every $F \in \mathbb{F} - \mathbb{F}(y)$. So, applying the induction hypothesis for $\mathbb{F}(y)$ and $(\mathbb{F} - \mathbb{F}(y))|(X - \{y\})$ we have $|\mathbb{F}_j| = |\mathbb{F}(n-1,t-1,1)_j| + |\mathbb{F}(n-1,t,1)_{j-1}| = \binom{j+t-3}{j} + \binom{j-1+t-2}{j-1} = \binom{j+t-2}{j}$. Q.E.D.

References

- R.P. Anstee, Properties of (0,1)-matrices with no triangles, J. Combin. Th. Ser. A 29 (1980), 186-198.
- R.P. Anstee, Properties of (0,1)-matrices with forbidden configurations, Proc. Joint Canada-France Combin. Colleg. 1979. Annals of Discrete Math. 9 (1980), 177-179.
- [3] R.P. Anstee, Properties of (0,1)-matrices without certain configurations. J. Combin. Th. Ser. A 31 (1981), 256-269.
- [4] R.P. Anstee, Hypergraphs with no special cycles, Combinatorica 3 (1983), 141-146.
- [5] B. Boliobás, See [11] Problem 13.10(b).
- [6] A. Bondy, Problem 5, in C. Berge and D.K. Ray-Chaudhuri eds. Hypergraph Seminar, Colombus, Ohio 1972, Lecture Notes in Math. 411, Springer-Verlag 1974, p. 279.
- [7] B. Cunningham, Private communication.
- [8] P. Frankl, On a problem of Bondy and Hajnal, Colloq. Intern. C.N.R.S. No. 260. Problems combin. et théorie des graphes, (Orsay, France, 1976).
- [9] P. Frankl, On the trace of finite sets, J. Combin. Th. A. 34 (1983), 41-45.
- [10] P. Frankl, J. Pach, On the number of sets in a null t-design, in European J. Comb. 4 (1983), 21-23.
- [11] L. Lovász, Combinatorial problems and exercises, Akadémiai Kiado-North Holland Publ., Budapest-Amsterdam 1979. p. 78.
- [12] H.J. Ryser, A fundamental matrix equation for finite sets, Proc. Amer. Math. Soc. 34 (1972), 332-336.
- [13] N. Sauer, On the density of families of sets, J. Combin. Th. A. 13 (1972), 145-147.

Mathematical Institute of the Hungarian Academy of Sciences Budapest 1364 Pf. 127 Hungary

Department of Mathematics Massachussetts Institute of Technology Cambridge, MA 02139 U.S.A.