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ARRANGEMENTS OF LINES 
WITH A LARGE NUMBER OF TRIANGLES 

Z. FUREDI AND I. PALASTI 

ABSTRACT. An arrangement of lines is constructed by choosing n diagonals of the 
regular 2n-gon. This arrangement is proved to form at least n(n - 3)/3 triangular 
cells. 

1. Introduction. We shall use the terminology of Grunbaum [5]. By an arrange- 
ment -Wof lines we mean a finite family of lines L1,... , Ln in the real projective plane 
H. The number of lines in -is denoted by n(s/). If no point belongs to more than 
two of these lines Li, the arrangement is called simple. With an arrangement _1there 
is associated a 2-dimensional cell-complex into which the lines of _1decompose H. It 
is well known that in a simple arrangement d the number of cells (or polygons) of 
that complex is (n2 - n + 2)/2 (n = n(s/)). We shall denote bypj () the number 
of j-gons among the cells of (the complex associated with) -S. 

2. Constructions. Let us denote by P(O) a fixed point on the circle le with centre 
C. For any real a, let P(a) be the point obtained by rotating P(O) around C, with 
angle a. Further denote by L(a) the straight line P(a) P(T - 2a). In case a -T - 

2 a (mod 2 r), L(a) is the line tangent to W at P(a). (See Figure 1.) 
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FIGuRE 2 

FIGURE 3 
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EXAMPLE 1. Given any integern > 3,putfn = {L((2i + 1)wf/n): i = 0,1,...,n - 

1}. (See Figure 2.) 
EXAMPLE 2. Given any integer n > 3, put n = {L(2ik/n): i = 0,1,.. .,n - 1). 

(See Figure 3.) 
Remark that our set of lines {L(a): 0 < a < 21r) may be regarded as a set of 

tangents to the arcs of a hypocycloid of third order, drawn in a circle of centre C 
and radius 3. The line L(a) is tangent to the arc of the cycloid at the ath point. (See 
Figure 4.) However, we shall not rely upon this fact in what follows. 

FIGuREu 4 

LEMMA. The lines L(a), L ) and L(y) are concurrent if and only if a + 86 + y 0 
(mod 2wr). 

PROOF. If a + ,B + y 0 (mod 2w), then the sum of lengths of (directed) arcs 
(P(a), P(y)) and (P(,B), P(sf - 2y)) is equal to -r. This implies that L(y) is 
perpendicular to the line P(a) P(13). Hence, the lines L(a), L(,B) and L(y) are the 
altitudes of the triangle P(a) P(13) P(y) (see Figure 1), consequently they meet at 
one point. 

The reverse can be proved similarly. 

3. Triangles in a simple arrangement. Grunbaum [5] (cf. Theorem 2.21) pointed 
out that the maximal number of triangles in a simple arrangement p'(n)= 
max{ p3(): n(-V) = n, sis simple} can be estimated byp'(n) < Ln(n - 1)/3J for 
even n, and p'(n) <Ln(n - 2)/3J if n is odd. Moreover, he conjectured that this 
latter inequality holds for all n, n i 4 (mod 6). The exact value of ps(n) is known 
only for some small values of n. (Cf., e.g., Simmons [15, 16] for the case n = 15, 
Grunbaum [5] for n = 20 and Harborth [8] for n = 17.) 
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As far as we know, the best lower bound by now, p'(n) > (5/16 + o(l))n2, was 
due to Furedi and J. Pach (unpublished). We are now in a position to establish a 
sharper lower bound. 

PROPERTY 1- P3( sn) > n(n - 3)/3; hence p'(n) = n2/3 + (5(n). 
PROOF. Let (Li, L>) denote the intersection point of lines 

Li= L((2i+ 1) l/n) and L= L ((2j+ 1)l/n). 

Using the Lemma, we obtain that only L((2n - 2i - 2] - 2)r/n) may cross L, and 

Lj at (Li, L>). But this line does not belong to n by definition. Therefore, the lines 
Li, Lj, Ln-i-j- 1 and Li, L> LnL i -j- 2 resp., necessarily form triangular cells. 

4. Quadrangles in a simple arrangement. Grunbaum conjectured that p4(s) >> 1 

for any simple arrangement with n(.s) > 16. (See 2.12 in [5], cf. [15, 16].) As far as 

we know one cannot find in the literature any example of a simple arrangement 

containing < o(n 2) quadrangles. In view of this, Grunbaum's conjecture is surpris- 

ingly modest. It is easy to prove that 

PROPERTY 2. The simple arrangement .fn contains only 3 or 5 quadrangles for odd n, 

andp4(Wn ) = 0(n) is valid for all values of n. 
The results of ??3 and 4 are collected in Table 1. (We remark that pj (.sn) = 0 for 

j 7.) 

TABLE 1 

n > 5 P3(-/n) P4(s/n) P5(s/n) P6( -2) 

n-0 (mod 6) 4(n2-3n) n/2 + 6 n- 6(n2-6n + 6) 

n- ?1 (mod6) l(n2-3n + 5) 5 2n-9 1(n2-9n + 20) 

n- ?+2(mod6) 4(n2-3n + 8) n/2 n-2 1(n2-6n + 2) 

n-3 (mod 6) 3(n2-3n +9) 2n-9 (n2-9n + 24) 

5. Triangles in arbitary arrangements. Grunbaum conjectures that for any 

arrangement V of n lines, p3(') < n(n - 1)/3 holds. (See [5].) Let p3(n) = 

max{ p3(s9'): n( s&) = n). The best upper bound was given by Purdy [11, 12], who 
proved that 

P3 (n) < 1 n (n - ) + 3 for n >. 6. 

The best lower bound, p3(n) > 4 + n(n - 3)/3, is due to Strommer [18]. His result 

uses a construction of Burr, Griinbaum and Sloane [1]. 

PROPERTY 3. p3 (an) ,> 4 + n(n - 3)/3. 
More exactly P3(an) = n(n - 3)/3 + 6- 2E/3, where E = 0,2, 2 according to 

whether n 0,1,2 (mod 3). Further, p4() =n - 6 + e, and pJ(an) = 0 forj> 5. 

The proof is easy. 

6. The orchard problem. Given a vertex V in an arrangement -X, denote by 

t(V, Vi) the multiplicity of V, i.e. the number of lines of .sincident to V. Further, let 

tj( W) denote the number of vertices of multiplicity j (2 < j < n). We use the 
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notation tj(n) = max{tj(-V): n(-V) = n}. The "orchard problem" has been 
investigated for about 150 years. It can be formulated as follows: find the value of 
t3(n). Significant progress has been made by Burr, Grunbaum and Sloane [1]. They 
proved that t3(n) > 1 + ,n(n - 3)/6, by construction using elliptic integrals. More- 
over, they conjectured that this result is sharp if n is large enough. (Confer [1] for a 
complete (historical) bibliography of the subject.) Our construction (see Example 2) 
is much simpler, but this is only a special case of their idea. (The equation of the 
poles of L(a)'s is (x2 + y2)(3x - 1) = 4x3. This can be transformed into the form 

Y2 = 4x3 - (1/12)x - (1/216). Cf. [1].) 
PROPERTY 4. t2(2) = n - 3 + e, t3(an) = 1 +,n(n - 3)/6, and tj(n) = O for 

j > 4. 
It should be noted that recently Szemeredi and Trotter [19] proved that there exist 

c and c' positive real numbers such that cn2/k3 < maxeEi>k t() < c'n2/k3 for 
all n > k2. 

7. Two-coloring of arrangements. It is easy to prove by induction that the cells of a 
(not necessarily simple) arrangement dVin the Euclidean plane can be colored by two 
colors (e.g., black and white) so that any two regions with a common side get 
different colors. Let b = b(dV) and w = w(-V) denote the numbers of black and 
white polygons. Without loss of generality we can assume that b > w. L. Fejes Toth 
[3] raised the following question: What is the maximum of the ratio b/w? Palasti [10] 
proved that b/w < 2 for n(-V) < 9. Upper bounds were given by Grunbaum [6], 
Simmons and Wetzel [17] and for higher dimensions by Purdy and Wetzel [13]. 
However, the exact value of max b/w is known only for some small values of n with 
n < 16. 

Grunbaum proved that b < 2w - 2 for all arrangements _'with n(_) > 3. For 
n = 3, 5, 9 and 15 equality holds. Our Example 1 shows 

PROPERTY 5. The number of black regions b(s&n) = (n2 + E)/3, where E = 0, 2,2 if 
n 0, 1, 2 (mod 3). So we get b(&'n) = 2w(Vn) )-(n + 2 - E)- 

8. Gallai points. Let _'be an arrangement of n lines of the projective plane such 
that it does not contain a common point (i.e., tn(-V) = 0). T. Gallai [4] proved that 
in this case there exist two lines from _'whose intersection point has multiplicity 2. 
This statement was improved by Kelly and Moser [9] (t2() > 3n/7) and recently 
by S. Hansen [7] (t2() > Ln/2J). 

The following question was posed by P. Erdos [2]. Let us suppose that the 
arrangement sV does not contain a point with multiplicity more than 3. Then does 
there exist a Gallai triangle, i.e. three lines from _' such that their three intersection 
points have multiplicity 2, or not? Our construction n shows that the answer is 
negative for n > 4, n - 0 (mod 9). Another problem on Gallai points can be found 
in [2]. 

9. Acknowledgements. The authors are indebted to J. Pach for his helpful 
suggestions. 
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