E. BOROS AND Z. FÜREDI

THE NUMBER OF TRIANGLES COVERING THE CENTER OF AN n-SET

ABSTRACT. Let the points P_1, P_2, \ldots, P_n be given in the plane such that there are no three on a line. Then there exists a point of the plane which is contained in at least $n^3/27$ (open) $P_iP_jP_k$ triangles. This bound is the best possible.

1. Introduction

Let $n \ge 3$ be an integer and let $\mathscr{P} := \{P_1, P_2, \dots, P_n\}$ be a family of points of the Euclidean plane σ such that there are no three of them on a line (i.e. \mathscr{P} is independent). For all points $X \in \sigma$ let $f(\mathscr{P}, X)$ be defined as the number of triangles $P_i P_i P_k$ which contain X as an inner point.

Our problem is to investigate the function $f(\mathcal{P}) := \max_{X} f(\mathcal{P}, X)$. This problem was posed by Kárteszi [6] in 1955. Many authors (see [7, p. 9] or [4]) have shown that

(1)
$$f(\mathcal{P}) \leqslant \begin{cases} (n^3 - 4n)/24 & \text{if } n \text{ is even,} \\ (n^3 - n)/24 & \text{if } n \text{ is odd} \end{cases}$$

holds for all \mathcal{P} , and these bounds are best possible. (In this paper we prove (1) as a by-product.)

Our main result is the determination of min $f(\mathcal{P})$, where the minimization ranges over all independent *n*-point sets of the plane.

THEOREM 1.
$$\min_{\mathscr{D}} f(\mathscr{P}) = n^3/27 + O(n^2)$$
.

The proof consists of two parts. In Section 5 we prove that for each independent point-family \mathcal{P} one can choose a point $X_0 \in \sigma$ which is contained in at least $n^3/27$ triangles from \mathcal{P} . On the other hand, in Section 6 we give an n-point set \mathcal{P}_n , such that $f(\mathcal{P}_n, X) < n^3/27 + n^2$ holds for all $X \in \sigma$.

2. NOTATIONS AND LEMMAS

Let us denote by [X,A) the closed ray passing through the point A from the point X. Similarly, denote by (X,A) the straight line incident with the point X and $A(X \neq A)$. Let $\sigma(X,A)$ be the open half-plane bounded by the line (X,A) such that for any point $B \in \sigma(X,A)$ the triangle XAB has negative (i.e. clockwise) orientation. Set $\sigma[X,A) = \sigma(X,A) \cup [X,A)$. If C is a convex set b(C) denotes its boundary.

If the point X lies on some of the lines P_iP_j , $1 \le i \le j \le n$, then moving it inside a small enough circle the value of $f(\mathcal{P}, X)$ can be increased. Our aim is to determine $\max_X f(\mathcal{P}, X)$ so we can suppose that the system $\mathcal{P} \cup \{X\}$ is also independent.

Let η be a fixed half-plane, $\mathscr{P} \cap b(\eta) = \emptyset$, and let $X \in b(\eta)$ be a fixed point.

Suppose that $\{P_1, P_2, \dots, P_k\} = \mathcal{P} \setminus \eta$ and for any $P_s \in \mathcal{P} \setminus \eta$ define $a_s := |\mathcal{P} \cap \eta \cap \sigma[X, P_s)|$. We may suppose that $a_1 \leq a_2 \leq \dots \leq a_k$.

LEMMA 1.
$$f(\mathcal{P}, X) = \sum_{s=1}^{k} a_s (2s + n - 1 - 2k - a_s).$$

Proof. Any triangle which covers X has one or two vertices belonging to η . The number of triangles $P_sP_tP_i\ni X$ with s < t and $P_s, P_t\in \mathscr{P}\setminus \eta$ is a_t-a_s ; and the number of triangles $P_sP_iP_j\ni X$ with $P_s\in \mathscr{P}\setminus \eta$ and $P_i, P_j\in \eta$ is $a_s(n-k-a_s)$ by the definition of the numbers a_s . Then

(1)
$$f(\mathcal{P}, X) = \sum_{s=1}^{k} a_s (n - k - a_s) + \sum_{s < t} (a_t - a_s)$$

and from this the statement follows by an easy calculation.

For the given \mathscr{P} and X let us define the function $g:(\sigma \setminus \{X\}) \to \{0, 1, ..., n\}$ as follows:

$$g(A) := |\mathscr{P} \cap \sigma[X, A)|$$
 for all $A \in \sigma \setminus \{X\}$.

Reflect the points of \mathscr{P} with centre X and denote by \mathscr{P}' its image. List the points of $\mathscr{P} \cup \mathscr{P}'$ in cyclic order around X, say, in clockwise orientation, i.e. $\mathscr{P} \cup \mathscr{P}' = \{S_1, S_2, \ldots, S_{2n}\}$. Then S_i and S_{i+n} are an opposite pair, and one of them belongs to \mathscr{P} . This implies

$$(2) g(S_i) + g(S_{i+n}) = n$$

and

(3)
$$g(S_{i+1}) - g(S_i) = \begin{cases} 1, & \text{if } S_i \in \mathcal{P}', \\ -1, & \text{if } S_i \in \mathcal{P}. \end{cases}$$

LEMMA 2.
$$f(\mathcal{P}, X) = \frac{1}{24}(n^3 + 2n) - \frac{1}{4} \times \sum_{i=1}^{2n} \left(g(S_i) - \frac{n}{2}\right)^2$$

Proof. A triangle T with vertices from $\mathscr P$ contains, or does not contain, X. In the second case T has exactly one vertex $P \in \mathscr P$ such that $T \subseteq \sigma[X, P)$. For fixed $P \in \mathscr P$ the number of such triangles is $\binom{|\mathscr P \cap \sigma[X, P)| - 1}{2}$, and

from this follows:

(4)
$$f(\mathcal{P}, X) = \binom{n}{3} - \sum_{P \in \mathcal{P}} \binom{g(P) - 1}{2}.$$

Clearly, $f(\mathcal{P}, X) = f(\mathcal{P}', X)$; thus

$$f(\mathcal{P}, X) = \frac{1}{2}(f(\mathcal{P}, X) + f(\mathcal{P}', X)).$$

Hence the lemma follows from (4) by a simple calculation.

3. THE THICKNESS OF TRIANGLES IN THE pTH CORE OF THE CONVEX HULL

Let $p \ge 0$ be an integer. Denote by $\operatorname{Conv}_p(\mathscr{P})$ the *pth core* of the convex hull of \mathscr{P} , which is the intersection of the closed half-planes containing exactly $|\mathscr{P}| - p$ points of \mathscr{P} . It is clear that $\operatorname{Conv}_0(\mathscr{P})$ is just the convex hull of the pointset \mathscr{P} .

PROPOSITION 1. If $p \leq (n-1)/3$, then $Conv_p(\mathcal{P}) \neq \emptyset$.

Proof. Consider the family of closed half-planes containing $|\mathcal{P}| - p$ points of \mathcal{P} . Any three of them cover $3(n-p) \ge 2n+1$ times the points of \mathcal{P} , hence they have a common point of \mathcal{P} , i.e. the intersection of any three such half-planes is not empty. Therefore by the Helly theorem (see [5]) the intersection of the whole family is not empty.

Similarly, it is easy to prove that

PROPOSITION 2. If p > (n-1)/2, then $Conv_p(\mathcal{P}) = \emptyset$.

Moreover, if $\operatorname{Conv}_p(\mathscr{P}) \neq \emptyset$ holds for p = (n-1)/2, then it contains a single point only.

The Caratheodory theorem says (see [2], [5]) that if $X \in \text{Conv}(\mathcal{P})$, then there exists a closed triangle $P_i P_j P_k$ which covers X. In [3] Birch proved that there are at least n-2 such triangles. In other words, if $\mathcal{P} \cup \{X\}$ is independent, $X \in \text{Conv}(\mathcal{P})$, then $f(\mathcal{P}, X) \ge n-2$. Here we improve this result.

THEOREM 2. Let $\mathscr{P} \cup \{X\}$ be an independent family of points in the plane $n = |\mathscr{P}|$. If $X \in \operatorname{Conv}_p(\mathscr{P})$, then

(5)
$$f(\mathcal{P},X) \geqslant \binom{p+2}{2} n - \frac{1}{2} \binom{2p+4}{3}.$$

Moreover, if $X \notin Conv_{n+1}(\mathcal{P})$, then

$$(6) \ f(\mathcal{P},X) \leqslant \begin{cases} \frac{1}{4} \binom{n}{3} - \binom{n+2p-2}{3} + \frac{(p+1)(n-p-2)}{2} & \text{if n is even,} \\ \frac{1}{4} \binom{n+1}{3} - \binom{n-2p-1}{3} \end{pmatrix} & \text{if n is odd.} \end{cases}$$

These bounds are best possible.

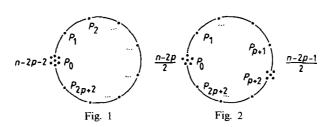
Proof. Let n be fixed. If $0 \le p \le (n-1)/2$, then the lower bound in (5) increase and the upper bounds in (6) decrease. Hence, we may suppose that $X \in \operatorname{Conv}_p(\mathscr{P}) \setminus \operatorname{Conv}_{p+1}(\mathscr{P})$. X is an inner point of this set, since $\mathscr{P} \cup \{X\}$ is independent.

Let η be a closed half-plane with $X \in b(\eta)$, containing $\operatorname{Conv}_{p+1}(\mathscr{P})$ such that $|\mathscr{P} \cap \eta| = n - p - 1$ and $b(\eta) \cap \mathscr{P} = \varnothing$. By the definition of the pth core such a half-plane exists. Then applying Lemma 1 for this half-plane and for k = p + 1 we have

(7)
$$f(\mathcal{P}, X) = \sum_{s=1}^{p+1} a_s (2s + n - 3 - 2p - a_s).$$

As $X \in \operatorname{Conv}_p(\mathscr{P})$ is an inner point, every half-plane passing through X with its boundary line contains at least p+1 and at most n-p-1 points of \mathscr{P} . Hence $n-p-1 \ge |\mathscr{P} \cap \sigma(X,P_s)| \ge p+1$ for every $P_s \in \mathscr{P} \setminus \eta$ and therefore $n-2p-3+s \ge a_s \ge s$ for $s=1,2,\ldots,p+1$. In this case the terms of the sum in (7) are minimal if $a_s=s$, and are maximal if their factors are close, i.e. if $a_s=s-p-1+(n-1)/2$ if n is odd and if $a_s=s-p-1+(n-2)/2$ if n is even. Thus (5) and (6) follow from (7) by simple calculation.

The sharpness of the bounds can be proved by constructions (see Figs. 1 and 2). Let us consider a regular (2p+3)-gon $P_0, P_1, \ldots, P_{2p+2}$ with center X. Suppose that $n \ge 2p+3$. Let the point set \mathscr{P}_1 consist of $P_0, P_1, \ldots, P_{2p+2}$ and a (n-2p-3)-element point set around P_0 . Let the point set \mathscr{P}_2 consist of $P_0, P_1, \ldots, P_{2p+2}$ and a [(n-2p-3)/2]-element point set around P_{p+2} and a [(n-2p-2)/2]-element point set around P_0 .



It is easy to see that \mathcal{P}_1 and \mathcal{P}_2 satisfy the conditions and equality holds in (5) for \mathcal{P}_1 and in (6) for \mathcal{P}_2 . (1) follows from Theorem 2 immediately with p = (n-1)/2 if p is odd and with p = (n-2)/2 if p is even.

4. The center of an n-set

We have to find an appropriate point X_0 for the given $\mathscr P$ such that $f(\mathscr P,X_0)\geqslant n^3/27$. By Proposition 1, $\operatorname{Conv}_{[n-1/3]}(\mathscr P)\neq 0$. Hence, if $X_0\in\operatorname{Conv}_{[(n-1)/3]}(\mathscr P)$, then Theorem 2 gives that $f(\mathscr P,X_0)\geqslant (n^3/27)\cdot(20/24)$ and the construction given by Figure 1 shows that this result is the best possible. Nevertheless, for the proof of Theorem 1, we shall choose X_0 from $\operatorname{Conv}_{[(n-1)/3]}(\mathscr P)$. We need an additional lemma.

Suppose that q is an integer such that $\operatorname{Conv}_q(\mathscr{P}) \neq \emptyset$ and either $\operatorname{Conv}_{q+1}(\mathscr{P}) = \emptyset$ or it contains only one point. By Propositions 1 and 2 we have $(n-1)/3 \leq q \leq (n-1)/2$. Suppose q < (n-2)/2.

LEMMA 3. There exists an inner point $X \in \text{Conv}_q(\mathcal{P})$ and three closed half-planes η_1, η_2, η_3 such that X lies on their boundaries, η_1, η_2 and η_3 cover the plane and $|\eta_i \cap \mathcal{P}| = n - q - 1$ for i = 1, 2, 3. Call such a point X the center of \mathcal{P} .

Proof. For the proof we are going to introduce a function on the set of closed half-planes.

Let α be an arbitrary closed half-plane with $e = b(\alpha)$. Now let $\alpha_0 \supseteq \alpha_1 \supseteq \cdots \supseteq \alpha_r$ be the set of closed half-planes with $e_i = b(\alpha_i)$, such that the line e_i is parallel to e and passes through at least one of the points of \mathscr{P} . Then define $\mu(\alpha)$ as follows:

$$\mu(\alpha) := \begin{cases} 0 & \text{if } \alpha \supseteq \alpha_0 \\ (n-1-|\alpha_i \cap \mathcal{P}|) + |e_i \cap \mathcal{P}| + \frac{d(e,e_i)}{d(e_i,e_{i+1})} |e_{i+1} \cap \mathcal{P}| & \text{if } \alpha_i \supseteq \alpha \supseteq \alpha_{i+1} \\ n-1 & \text{if } \alpha_r \supseteq \alpha \end{cases}$$

where d(e, f) denotes the Euclidean distance between lines e and f.

It is clear that if α is moved over the plane parallel to a fixed position, then the function $\mu(\alpha)$ changes continuously; and if the boundary line of α contains exactly one point of \mathcal{P} , then $\mu(\alpha) = n - |\alpha \cap \mathcal{P}|$. As the point set \mathcal{P} is finite the distances $d(e_i, e_{i+1})$ in the definition of μ are bounded by a certain

real D from above. Hence, if $\alpha_0 \supset \alpha \supset \beta \supset \alpha_r$ and $d(b(\alpha), b(\beta)) = \varepsilon$, then

(8)
$$\mu(\beta) \geqslant \mu(\alpha) + \varepsilon/D$$
.

In this proof we shall consider only those half-planes with boundary lines parallel to the lines formed by the point of \mathcal{P} . Actually this restriction does not change our statements, but the proof becomes clearer.

For every real $x, 0 \le x \le n-1$ let $\operatorname{Conv}_x(\mathscr{P}) := \bigcap \{\alpha | \alpha \text{ is a closed half-plane}, b(\alpha) \text{ is parallel to some } (P_i P_j) \text{ and } \mu(\alpha) = x\}.$

It is easy to prove that $\operatorname{Conv}_{x}(\mathscr{P})$ is a convex, closed polygon in the plane and for an integer $x = k \operatorname{Conv}_{x}(\mathscr{P})$ is just the kth core of \mathscr{P} ; moreover, if $\operatorname{Conv}_{y}(\mathscr{P}) \neq \emptyset$, then $\operatorname{Conv}_{x}(\mathscr{P}) \supset \operatorname{Conv}_{y}(\mathscr{P})$ for 0 < x < y.

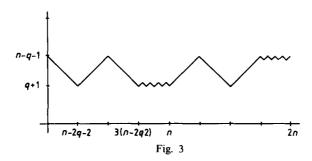
From these facts it follows that there is a greatest real x_0 for which $\operatorname{Conv}_{x_0}(\mathcal{P}) \neq \emptyset$. It is clear that $q = [x_0]$. Using (8) it can be proved that $\operatorname{Conv}_{x_0}(\mathcal{P})$ has no inner point. We state that it contains only one point, say X, otherwise $q \ge (n-2)/2$ would follow, contradicting our assumption.

Let us consider the finitely many opened half-planes $\hat{\alpha}$ for which $\mu(\hat{\alpha} \cup b(\hat{\alpha})) = x_0$. Then the intersection of these half-planes is empty by the definition of x_0 . Hence there are three such half-planes $\hat{\eta}_1, \hat{\eta}_2, \hat{\eta}_3$ which have empty intersection by the Helly theorem. Let η_1, η_2, η_3 be the closure of these half-planes. Then $X \in b(\eta_1) \cap b(\eta_2) \cap b(\eta_3)$ by its definition; η_1, η_2 and η_3 cover the plane and $|\eta_i \cap \mathcal{P}| = n - q - 1$.

We note that an analogous statement also holds in higher dimensions.

5. The proof of the lower bound in theorem 1

Let $X = X_0$ be the center of \mathscr{P} given by Lemma 3. Suppose that $g(S_1) = n - q - 1$. By Lemma 3 we have that there exist indices i, j (1 < i < j < n) such that $g(S_i) = q + 1$, $g(S_j) = n - q - 1$, $g(S_{n+1}) = q + 1$ holds by (2). According to (2) and (3) we get that $\sum_{i=1}^{2n} (g(S_i) - n/2)^2$ is maximal with respect to these constraints, e.g. for the function g given in Figure 3. Hence



we have, using (2),

$$\sum_{i=1}^{2n} \left(g(S_i) - \frac{n}{2} \right)^2 = \sum_{i=1}^{2n} g^2(S_i) - \frac{n^3}{2}$$

$$\leq 3 \sum_{i=q+2}^{n-q-1} i^2 + 3 \sum_{i=q+1}^{n-q-2} i^2 + (3q+3-n)$$

$$\times ((q+1)^2 + (q+2)^2 + (n-q-1)^2 + (n-q-2)^2) - \frac{n^3}{2}$$

$$= \frac{1}{3}(n-2q-2)(n-2q-4)(4q+6-n) + n.$$

By Propositions 1 and 2 we have $(n/3) - 1 \le q \le (n/2) - 1$. The last expression increases in this interval. Hence, we get

$$\sum_{i=1}^{2n} \left(g(S_i) - \frac{n}{2} \right)^2 \leq \frac{n^3}{54} + \frac{n}{3}.$$

Then $f(\mathcal{P}, X) \ge n^3/27$ follows by Lemma 2.

6. A CONSTRUCTION FOR THE PROOF OF THE UPPER BOUND IN THEOREM 1

We now define \mathscr{P}_n . Let C be the unit circle, with center O, and let Q be a point on its circumference. Let $\mathscr{P}_n := \mathscr{A} \cup \mathscr{B} \cup \mathscr{C}$, with

$$\mathcal{A} = \{A_i | \not \in QOA_i = i/n^2, \quad 1 \le i \le \lfloor n/3 \rfloor \};$$

$$\mathcal{B} = \{B_j | \not \in QOB_j = (2\pi)/3 + n^{-j}, \quad 1 \le j \le \lfloor (n+1)/3 \rfloor \}$$

and

$$\mathscr{C} = \{C_k | \nleq QOC_k = (4\pi)/3 - n^{-k}, \quad 1 \leqslant k \leqslant \lfloor (n+2)/3 \rfloor \},$$

where the points of \mathcal{P}_n also belong to the circumference of C.

PROPOSITION 3. For all X we have $f(\mathcal{P}_n, X) < n^3/27 + n^2$.

Proof. If X is covered by every triangle $A_iB_jC_k$, then $f(\mathcal{P}_n, X) = \lfloor n/3 \rfloor \lfloor (n+1)/3 \rfloor \lfloor (n+2)/3 \rfloor \leq n^3/27$.

If X belongs to the convex hull of two groups of \mathscr{P}_n , say that $X \in \text{Conv}(\mathscr{A} \cup \mathscr{B})$, but it is not contained in any triangle $A_i A_j A_k$ or $B_i B_i B_k$, then Lemma 1 can be applied.

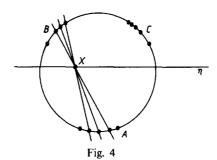
Consider the half-plane η which separates \mathscr{A} from $\mathscr{B} \cup \mathscr{C}$ with X on its boundary line and apply Lemma 1 with this half-plane and with $k = \lfloor n/3 \rfloor$. It is easy to prove that there is an index $t \le k$ such that $a_s = a_1$

for all $1 \le s \le t$, and $a_s = k$ for $k \ge s \ge t + 2$. Hence by Lemma 1 we obtain

$$\begin{split} f(\mathcal{P}_n, X) &= \sum_{s=1}^t a_1 (2s - 2k + n - 1 - a_1) \\ &+ \sum_{s=t+3}^k k (2s - 2k + n - 1 - k) \\ &+ a_{t+1} (2t + 1 - 2k + n - a_{t+1}) \\ &+ a_{t+2} (2t + 3 - 2k + n - a_{t+2}) \\ &\leqslant t \cdot a_1 (k + t - a_1) + k(k - t)(k + t) \\ &+ \left(t - k + \frac{n+1}{2}\right)^2 + \left(t - k + \frac{n+3}{2}\right)^2. \end{split}$$

This is maximal, if $t = a_1 = k(= \lfloor n/3 \rfloor)$, thus $f(\mathcal{P}_n, X) \le n^3/27 + n^2/2 + 2n + \frac{5}{2}$ in this case, too.

Finally, if X belongs to the convex hull of one group of \mathcal{P}_n , say to $\operatorname{Conv}(\mathcal{A})$, then there is a nearest line (A_iA_j) which separates it from the points of \mathcal{B} and \mathcal{C} . Then moving X through this line, $f(\mathcal{P}_n, X)$ increases at least by $\lfloor n/3 \rfloor$; hence X does not maximize the function f.



7. A REMARK ON THE HIGHER DIMENSIONAL CASE

Let $\mathscr{P} \subset \mathbb{R}^d$ be an *n*-element set, and $X \in \mathbb{R}^d$ a point. We can define $f^d(\mathscr{P}, X)$ as the number of (open) *d*-simplices covering *X* with vertices from \mathscr{P} . It is easy to see that

$$f^d(\mathscr{P},X) \leqslant \frac{1}{2^d} \binom{n}{d+1}.$$

(Bárány [2] determined exactly the value of max $f^d(\mathcal{P}, X)$.) Similarly, using Tverberg's theorem [8] and a generalization of Caratheodory's theorem, Bárány proved the following in [2]:

For each independent $\mathscr{P} \subset \mathbb{R}^d$, there exists an $X \in \mathbb{R}^d$ such that

(9)
$$f^{d}(\mathcal{P}, X) \ge n^{d+1}/(d+1)! (d+1)^{d+1} - O(n^{d}).$$

His proof is suitable to obtain a d-dimensional version of Theorem 2, proving that

(10)
$$f^d(\mathcal{P}, X) \ge n \cdot k^d / d! d^d$$

holds for $X \in \operatorname{Conv}_{k}(\mathcal{P})$.

This generalizes a result of Baker [1]: $f^d(\mathcal{P}, X) \ge n - d$ holds for all $X \in \text{Conv}(\mathcal{P})$. Formulas (9) and (10) give the best possible bounds, apart from a constant factor, but the determination of the exact values is an open problem.

REFERENCES

- Baker, M. J. C.: 'Covering a Polygon with Triangles: A Caratheodory-type Theorem', J. Austral. Math. Soc. (A) 28 (1979), 229-234.
- 2. Bárány, I.: 'A Generalization of Caratheodory's Theorem', Discrete Math. 40 (1982), 141-152.
- 3. Birch, B. J.: 'On 3n Points in a Plane', Proc. Cambridge Phil. Soc. 55 (1959), 289-293.
- 4. Boros, E. and Füredi, Z.: Su un teorema di Kárteszi nella geometria combinatoria' (in Italian), *Archimede* 2 (1977), 71–76.
- Danzer, L., Grünbaum, B., and Klee, V.: 'Helly's Theorem and Its Relatives', in V. Klee (ed.), Proc. Symp. in Pure Math. Vol. 7, Amer. Math. Soc., Providence, R. I., 1963.
- Kárteszi, F.: 'Extremalaufgaben über endliche Punktsysteme', Publ. Math. Debrecen 4 (1955), 16-27
- 7. Moon, J. W.: Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.
- 8. Tverberg, H.: 'A Generalization of Radon's Theorem', J. London Math. Soc. 41 (1966), 123-128.

Authors' addresses:

E. Boros,
Computer and Automation
Institute of the Hungarian
Academy of Sciences,
H 1111, Budapest,
Kende u. 13-17,
Hungary

Z. Füredi, Mathematical Institute of the Hungarian Academy of Sciences, H-1364, P.O.B. 127, Hungary