
E. BOROS AND Z. FOREDI 

T H E  N U M B E R  O F  T R I A N G L E S  C O V E R I N G  

T H E  C E N T E R  O F  AN n-SET 

ABSTRACT. Let the points PI, P2 . . . .  , P~ be given in the plane such that there are no three on a 
line. Then there exists a point of the plane which is contained in at least n3/27 (open) P~P~Pk 
triangles. This bound is the best possible. 

1. INTRODUCTION 

Let n ~> 3 be an integer and let ~ :  = (P1, P2 . . . . .  Pn} be a family of points of the 
Euclidean plane tr such that there are no three of them on a line (i.e. ~ is 
independent). For all points Xeo- let f ( ~ , X )  be defined as the number of 
triangles PiPjPk which contain X as an inner point. 

Our problem is to investigate the function f (~ ) :=maxx f (~ ,X  ). This 
problem was posed by Khrteszi [6] in 1955. Many authors (see [7, p. 9] or [4]) 
have shown that t':: 4n,  4  niseven 

(1) f (~)  ~< n)/24 if n is odd 

holds for all ~ ,  and these bounds are best possible. (In this paper we prove (1) 
as a by-product.) 

Our main result is the determination of min f(~),  where the minimization 
ranges over all independent n-point sets of the plane. 

THEOREM 1. minf(~)  = na/27 + O(n2). 

The proof consists of two parts. In Section 5 we prove that for each 
independent point-family ~ one can choose a point Xo ca  which is contained 
in at least na/27 triangles from ~.  On the other hand, in Section 6 we give an 
n-point set ~n, such that f(~n, X) < n3/27 + n 2 holds for all Xea. 

2. NOTATIONS AND LEMMAS 

Let us denote by IX, A) the closed ray passing through the point A from 
the point X. Similarly, denote by (X, A) the straight line incident with the 
point X and A(X ~ A). Let tr(X, A) be the open half-plane bounded by the 
line (X, A) such that for any point B~tr(X, A) the triangle XAB has negative 
(i.e. clockwise) orientation. Set tr[X, A)= tr(X, A)u [X, A). If C is a convex 
set b(C) denotes its boundary. 
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If the point X lies on some of the lines PiPs, 1 <~ i <~ j ~ n, then moving it 
inside a small enough circle the value off(3~, X) can be increased. Our aim is 
to determine maxx f (~ ,  X) so we can suppose that the system ~ u  {X} is 
also independent. 

Let ~/ be a fixed half-plane, 3~nb(r/)= ~ ,  and let Xeb(~l) be a fixed 
point. 

Suppose that {P1,P2 .. . . .  Pk}=~\~/ and for any Pse~\t /  define 
as:= I ~  n~lc~tr[X, Ps)l. We may suppose that al <~ a2 ~ " ' "  ~ ak. 

k 

LEMMA 1. f(3 ~, X) = ~ a~(Es + n - 1 - 2k - as). 
s = l  

Proof. Any triangle which covers X has one or two vertices belonging 
to ~/. The number of triangles P~PtP~X with s < t and Ps, Pte~\r / i s  at - as; 

and the number of triangles P~P~Ps~X with P~e~\~/ and P~,Pse~/ is 
a~(n-  k -  as) by the definition of the numbers as. Then 

k 

(1) f ( ~ , X ) =  ~ a s ( n - k - a ~ ) +  ~ ( a t - a s )  
2 = 1  s < t  

and from this the statement follows by an easy calculation. 

For the given ~ and X let us define the function g: (a \{X})~ {0,1,..., n} as 
follows: 

g(A):=l~no-KX, A)l for all Aea\ {X} .  

Reflect the points of ~ with centre X and denote by ~ '  its image. List the 
points of ~ u ~ '  in cyclic order around X, say, in clockwise orientation, 
i.e. ~ u ~ ' - - { $ 1 , S 2  .... ,Sz,}. Then S~ and S~+, are an opposite pair, and 
one of them belongs to ~.  This implies 

(2) g(Si) + g(S,+.) = n 

and 

1, ifS~e~', 
(3) g(S,+ ~ ) -  g(S,) = _ l, ifS~e~. 

LEMMA 2. f (~ ,  X) = 2-~(n 3 + 2n) - ~ x g(Si) - 
i = l  

Proof. A triangle T with vertices from ~ contains, or does not contain, 
X. In the second case T has exactly one vertex P e ~  such that T_ a[X,P). 

For fixed Pe3~ the number of such triangles is (13°ntr[X'P)( - l ) ,  and 
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from this follows: 

(4) f ( ~ ' X ) = ( ~ )  - ~ (g(P)-l~'e~.\ 2 / 

Clearly, f (~ ,  X) = f (~ ' ,  X); thus 

f (~ ,  X) = ½(f(~, X) + f (~ ' ,  X)). 

Hence the lemma follows from (4) by a simple calculation. 

3. T H E  THICKNESS OF TRIANGLES IN THE pTH 

CORE OF THE CONVEX HULL 

Let p ~> 0 be an integer. Denote by Convp(~) the pth core of the convex 
hull of ~,  which is the intersection of the closed half-planes containing exactly 
I ~ 1 - P  points of ~. It is clear that Convo(~ ) is just the convex hull of the 
pointset ~. 

PROPOSITION 1. If p <<. (n - 1)/3, then Convp(~) ~ J~. 
Proof. Consider the family of dosed half-planes containing I ~ l - p  

points of ~.  Any three of them cover 3(n - p) i> 2n + 1 times the points of ~,  
hence they have a common point of~,i.e, the intersection of any three such half- 
planes is not empty. Therefore by the Helly theorem (see I-5]) the intersection of 
the whole family is not empty. 

Similarly, it is easy to prove that 

PROPOSITION 2. If p > (n - 1)/2, then Convp(~) = ~ .  

Moreover, if Convp(~ )~O holds for p=(n-1)/2, then it contains 
a single point only. 

The Caratheodory theorem says (see [2], [5]) that if XeConv(~), then there 
exists a closed triangle PiPiP k which covers X. In I-31 Birch proved that there 
are at least n -  2 such triangles. In other words, if ~ w {X} is independent, 
XEConv(~), then f (~ ,  X) 1> n - 2. Here we improve this result. 

THEOREM 2. Let ~w{X}  be an independent family of points in the 
plane n = I~1. If gefonvp(~) ,  then 

+ 2  (5, f(~,X,>~(P 2 )n 1~2p+4~ 
3 j 

Moreover, if X~Convp+l(~), then 
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(6) ,((n+,) 
These  bounds are best  possible. 

i f  n is even, 

i f  n is odd. 

Proof.  Let n be fixed. If  0 ~< p <~ ( n -  1)/2, then the lower bound in (5) 

increase and the upper bounds in (6) decrease. Hence, we may suppose that 

X~Convp(2) \Convp+ 1(2). X is an inner point of this set, since 2 w  {X} is 

independent. 

Let t /be a closed half-plane with X~b(rl),  containing Convp ÷ t (2)  such that 

12 c~ r/[ = n - p - 1 and b(r/) c~ 2 = ~ .  By the definition of the pth core such a 

half-plane exists. Then applying Lemma 1 for this half-plane and for k = p + 1 

we have 
p+l.  

(7) f ( ~ ,  X) = ~ a~(2s + n - 3 - 2p - as). 
s = l  

As X~Convp(~)  is an inner point, every half-plane passing through X with 

its boundary line contains at least p + 1 and at most  n - p - 1 points of 2 .  

Hence n - p - 1 >/12 c~ tr(X, Ps) l/> P + 1 for every Ps~2 \~ l  and therefore 

n - 2p - 3 + s >i as >~ s for s = 1, 2 . . . .  , p + 1. In this case the terms of the sum 

in (7) are minimal if a, = s, and are maximal if their factors are close, i.e. if 

a, = s - p - 1 + (n - 1)/2 if n is odd and if as = s - p - 1 + (n - 2)/2 if n is 

even. Thus (5) and (6) follow from (7) by simple calculation. 

The sharpness of the bounds can be proved by constructions (see Figs. 1 

and 2). Let us consider a regular (2p + 3)-gon Po, P1 . . . .  , P2p+ 2 with center 

X. Suppose that  n >/2p + 3. Let the point set 21  consist of Po, P I , - - . ,  P2p+ 2 
and a (n - 2p - 3)-element point set around Po- Let the point set 22  consist 

of Po ,P1  . . . . .  P2p+2 and a [ ( n - 2 p - 3 ) / 2 J - e l e m e n t  point set around Pp+2 

and a [ ( n -  2 p -  2)/2J-element point set around Po- 

Fig. 1 

f . - - - - . . ~  
/ Pl ' " ~  

: . j. 
\ .  R Pp.2;" 

Fig. 2 
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It is easy to see that ~1 and ~2 satisfy the conditions and equality holds 
in (5) for ~1 and in (6) for ~2- (1) follows from Theorem 2 immediately with 
p = (n - 1)/2 if n is odd and with p = (n - 2)/2 if n is even. 

4. T H E  CENTER OF AN n-SET 

We have to find an appropriate point Xo for the given ~ such that 

f ( ~ ,  Xo) t> n3/27. By Proposition 1, Convt,_ 1/31(~) ~ 0. Hence, if Xo~ 
Convtt n_ 11/3j(~), then Theorem 2 gives that f ( .~,Xo)>~ (n3/27)'(20/24) and 
the construction given by Figure 1 shows that this result is the best possible. 

Nevertheless, for the proof of Theorem 1, we shall choose Xo from 

Convt~ ~_ 1~/31(~). We need an additional lemma. 
Suppose that q is an integer such that C o n v q ( ~ ) % ~  and either 

Convq÷ l (~ )=  ~ or it contains only one point. By Propositions 1 and 2 
we have (n - 1)/3 ~< q ~< (n - 1)/2. Suppose q < (n - 2)/2. 

LEMMA 3. There exists an inner point XeConv~(~)  and three closed 

half-planes rll, tl2, rl3 such that X lies on their boundaries, rh, l~2 and rl3 cover 

the plane and I rli n ~1 = n - q - l for i = 1, 2, 3. 
Call such a point X the center of  ~ .  

Proof. For  the proof we are going to introduce a function on the set of 
closed half-planes. 

Let ct be an arbitrary dosed half-plane with e=b(~t). Now let 
% ~ ax ~ " "  ~ at, be the set of closed half-planes with e i -- b(~i), such that 

the line ei is parallel to e and passes through at least one of the points o f~ .  Then 
define/t(~) as follows: 

~(~):= 

0 ifct _ % 

d(e, ei) n~i~l i f ~ i ~  ~ ~_ cti+ 1 (n - 1 - Ict in~l)  + l e i n ~ [  + d(el, ei+ 1)lei+ 1 

n - 1 ifct r ~ :t 

where d(e, f )  denotes the Euclidean distance between lines e and f.  
It is clear that if ~ is moved over the plane parallel to a fixed position, 

then the function #(ct) changes continuously; and if the boundary line of ct 
contains exactly one point of ~ ,  then/~(0t) = n - Ict n ~1. As the point set 
is finite the distances d(ei, ei÷ 1) in the definition of/t  are bounded by a certain 
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real D from above. Hence, if ~o --' 0t ~ f l  ~ ~, and d(b(~), b(fl)) = e, then 

(8) 

In this proof we shall consider only those half-planes with boundary 
lines parallel to the lines formed by the point of ~ .  Actually this restriction 
does not change our statements, but the proof becomes clearer. 

For every real x, 0 ~< x ~< n - 1 let Convx(~): = N {~10t is a closed half-plane, 
b(~) is parallel to s o m e  (PiP j) and #(~)= x}. 

It is easy to prove that Convx(~) is a convex, closed polygon in the plane 
and for an integer x = kConvx(~) is just the kth core of ~'; moreover, if 
Convy(~) # ~ ,  then Conv~(~) = Convy(~) for 0 < x < y. 

From these facts it follows that there is a greatest real Xo for which 
Conv~o(~) # Zi. It is clear that q = i-xo]. Using (8) it can be proved that 
Convxo(~ ) has no inner point. We state that it contains only one point, say 
X, otherwise q t> (n - 2)/2 would follow, contradicting our assumption. 

Let us consider the finitely many opened half-planes ~ for which 
#(~ub(~)) = Xo. Then the intersection of these half-planes is empty by the 
definition of x o. Hence there are three such half-planes ~1,~2,r~3 which 
have empty intersection by the Helly theorem. Let rh, r/2, r/3 be the closure 
of these half-planes. Then X~b(rll)c~ b(r/2 ) n b(r/3 ) by its definition; ?/1, ?/2 and 
~/3 cover the plane and Iq~c~l = n - q -  1. 

We note that an analogous statement also holds in higher dimensions. 

5. T H E  P R O O F  OF THE LOWER B OUND IN T H E O R E M  1 

Let X = Xo be the center of ~ given by Lemma 3. Suppose that g(S1)~-- 
n - q - 1. By Lemma 3 we have that there exist indices i,j (1 < i < j  < n) 
such that g(Si)=q+l, g(Sj )=n-q-1 ,  g(S,,+l)=q+l holds by (2). 
According to (2) and (3) we get that Z2__ " l(g(Si)-n/2) 2 is maximal with 
respect to these constraints, e.g. for the function g given in Figure 3. Hence 

n-q-1 

q÷l 

i i I I 

n-2q-2 3(n-2q2) n 

Fig. 3 

I 

2n 
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we have, using (2), 

2n /t S ?,/~2 2n n 3 

n - q - 1  n - q - 2  
~<3 ~ i 2 + 3  ~ i 2 + ( 3 q + 3 - n )  

i=q+2 i = q + l  

x ((q + 1) 2 + (q + 2) 2 + (n -- q -- 1) 2 + (n -- q -- 2) 2) -- - -  
n 3 

2 

= ½(n - 2q - 2)(n - 2q - 4)(4q + 6 - n) + n. 

By Propos i t ions  1 and  2 we have (n/3) - 1 ~< q ~< (n/2) - 1. The  last expression 

increases in this interval. Hence,  we get 

2n ( n )  2 n 3 n 
Y. g(s,)-~ <<.~+~. 

i=1 

Then  f ( ~ ,  X)>~ n3/27 follows by L e m m a  2. 

6. A CONSTRUCTION FOR THE PROOF OF THE UPPER BOUND 

IN THEOREM 1 

We now define ~ . .  Let C be the unit circle, with center O, and let Q be a point  
on its circumference. Let  ~ , :  = ~ w ~ u ( g ,  with 

~¢ = {A,I ~ QOA, = i/n 2, 1 <~i<~ tn/3J}; 

= {Bj] .~QOBj=(2~z)/3 + n -j, 1 <<.j<~ L(n + 1)/3J} 

and 

~g = {Ckl ~ QOC k = (4n)/3 - n -k, 1 <<. k <<. L(n + 2)/3J }, 

where the points  of  ~ ,  also belong to the circumference of C. 

P R O P O S I T I O N  3. For all X we have f ( ~ . ,  X) < n3/27 + n 2. 

Proof. If  X is covered by every triangle AIBFk,  then f ( ~ , , X ) =  
In/3] [(n + 1)/3] [(n + 2)/3] ~< n3/27. 

If  X belongs to the convex hull of  two groups  of ~ , ,  say that  

X ~ C o n v ( ~ u ~ ) ,  but  it is not  conta ined  in any triangle AiAjA k or 
BiB~B,, then L e m m a  1 can be applied. 

Consider  the half-plane !/ which separates  ~ f rom ~ u c ~  with X 

on its bounda ry  line and apply  L e m m a  1 with this half-plane and with 

k = [n/3]. I t  is easy to prove  that  there is an index t ~< k such that  a~ = al  
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for all 1 ~ s ~ t, and a~ = k for k/> s >f t + 2. Hence by Lemma 1 we obtain 

t 

f ( ~ ,  X) -- ~ al(2s  - 2k  + n - 1 - a l )  
s = l  

k 

+ ~,  k ( 2 s - 2 k + n - l - k )  
s = t + 3  

+ at+ l(2t + 1 -- 2k + n - al+ 1) 

+at+ 2(2t d- 3 -- 2k + n - at+2) 

<. t 'a~(k  + t - a~) + k(k  - t ) (k  + t) 

+ l ' t _ k + n + l ' ~ 2  i' . n + 3 ~  2 

+t 
This is maximal, if t = al = k(= [n/3]), thus f (~n ,X)  ~< n3/27 + n2/2 + 

2n + ~ in this case, too. 
Finally, if X belongs to the convex hull of one group of ~n, say to Conv(M), 

then there is a nearest line (AiAj)  which separates it from the points of ~ and 
c~. Then moving X through this line, f (~n ,  X) increases at least by [n/3]; hence 
X does not maximize the function f .  

Fig.  4 

7. A R E M A R K  O N  T H E  H I G H E R  D I M E N S I O N A L  C A S E  

Let ~ c R  d be an n-element set, and X~R d a point. We can 
define fd(~,  X) as the number of (open) d-simplices covering X with vertices 
from ~.  It is easy to see that 

(BArAny [2] determined exactly the value of max f" (~ ,  X).) Similarly, using 
Tverberg's theorem [8] and a generalization of Caratheodory's theorem, 
BArfiny proved the following in [2]: 
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For each independent ~ ~ •a, there exists an X E R  n such that 

(9) fa(# ,X)>~na+l/(d+ 1)!(d + 1) a+x -O(na). 

His proof is suitable to obtain a d-dimensional version of Theorem 2, 
proving that 

(10) fa(~,, X) >1 n'kd/d! d a 

holds for X~COnVk(~). 

This generalizes a result of Baker [1]: f a (~ ,X)>,  n -  d holds for all 
XEConv(~). Formulas (9) and (10) give the best possible bounds, apart from 
a constant factor, but the determination of the exact values is an open problem. 
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