E.BOROS AND Z. FUREDI

THE NUMBER OF TRIANGLES COVERING
THE CENTER OF AN n-SET

ABSTRACT. Let the points P,, P,,..., P, be given in the plane such that there are no three on a
line. Then there exists a point of the plane which is contained in at least n*/27 (open) P.P;P,
triangles. This bound is the best possible.

1. INTRODUCTION

Letn > 3 beaninteger and let #:= {P,, P,,..., P,} be a family of points of the
Euclidean plane o such that there are no three of them on a line (i.e. £ is
independent). For all points Xeo let f(#, X) be defined as the number of
triangles P,P;P, which contain X as an inner point.

Our problem is to investigate the function f(#):=maxy f(#, X). This
problem was posed by Karteszi [6] in 1955. Many authors (see [7, p. 9] or [4])
have shown that

(n®*—4n)/24  if nis even,

M) 1@< {(n3 —n)/24 if nis odd

holds for all £, and these bounds are best possible. (In this paper we prove (1)
as a by-product.)

Our main result is the determination of min f(#), where the minimization
ranges over all independent n-point sets of the plane.

THEOREM 1. min f(#) = n*/27 + O(n?).
P

The proof consists of two parts. In Section 5 we prove that for each
independent point-family £ one can choose a point X ;€0 which is contained
in at least n3/27 triangles from 2. On the other hand, in Section 6 we give an
n-point set 2,, such that f(#,, X) < n3/27 + n? holds for all Xeo.

2. NOTATIONS AND LEMMAS

Let us denote by [X, A) the closed ray passing through the point 4 from
the point X. Similarly, denote by (X, 4) the straight line incident with the
point X and A(X # A). Let (X, A) be the open half-plane bounded by the
line (X, A) such that for any point Beo(X, A) the triangle X AB has negative
(i.e. clockwise) orientation. Set o[ X, A) = o(X, A)U[X, A). If C is a convex
set b(C) denotes its boundary.
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If the point X lies on some of the lines P;P;, 1 <i< j<n, then moving it
inside a small enough circle the value of f(#, X) can be increased. Qur aim is
to determine maxy f(#, X) so we can suppose that the system 2U{X} is
also independent.

Let n be a fixed half-plane, 2nb(n)= &, and let Xeb(n) be a fixed
point.

Suppose that {P,P,,...,P,}=2\n and for any P,eP\n define
a.=|?nnnolX, P)|. We may suppose that a; <a, <" <a,.

k
LEMMA 1. f(#,X)= Y aQ@s+n—1-2k—a).
s=1

Proof. Any triangle which covers X has one or two vertices belonging
to . The number of triangles P,P,P;3X with s<t and P,,P,e®\nis a,— a;
and the number of triangles P,P,P;3X with Pe?\n and P;,P;en is

a(n—k - ay) by the definition of the numbers a,. Then
k

M f@X)=Y ar—k-a)+ (@—a)

s=1
and from this the statement follows by an easy calculation.

For the given 2 and X let us define the function g:(6\{X})—{0,1,...,n} as
follows:

g(A):=12na[X, A)| for all Aeo\{X}.

Reflect the points of 2 with centre X and denote by £ its image. List the
points of U2 in cyclic order around X, say, in clockwise orientation,
ie. PUP ={8,,53,...,82,}. Then §; and S,,, are an opposite pair, and
one of them belongs to #. This implies

@ g(S)+9(Si+)=n

and
1, ifS;e#,
3) g(S;s1)—g(S)= {

1, ifS,e.
2n 2

LEMMA 2. f(?,X):ﬁ(n3+2n)—% x3 (g(Si)——g)
i=1

Proof. A triangle T with vertices from £ contains, or does not contain,
X. In the second case T has exactly one vertex PeZ such that T< ¢[ X, P).
|2 nalX, P)| — 1) and

For fixed Pe# the number of such triangles is ( )
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from this follows:

n gP)—1
@ f(g*,X>=<3)—z( ) )

Clearly, f(#,X)= f(#, X); thus
f@,X)=3f(2,X)+ f(#,X)).

Hence the lemma follows from (4) by a simple calculation.

3. THE THICKNESS OF TRIANGLES IN THE pTH
CORE OF THE CONVEX HULL

Let p >0 be an integer. Denote by Conv,(#) the pth core of the convex
hull of 2, which is the intersection of the closed half-planes containing exactly
| 2| — p points of 2. It is clear that Convy(%) is just the convex hull of the
pointset #.

PROPOSITION 1. If p<(n—1)/3, then Conv,(?) # .

Proof. Consider the family of closed half-planes containing |2|—p
points of 2. Any three of them cover 3(n — p) > 2n + 1 times the points of 2,
hence they have a common point of 2, i.e. the intersection of any three such half-
planes is not empty. Therefore by the Helly theorem (see [ 5]) the intersection of
the whole family is not empty.

Similarly, it is easy to prove that

PROPOSITION 2. If p>(n— 1)/2, then Conv,(#) = .

Moreover, if Conv,(#)#(J holds for p=(n—1)/2, then it contains
a single point only.

The Caratheodory theorem says (see [2], [5]) that if X eConv(#), then there
exists a closed triangle P,P;P, which covers X. In [3] Birch proved that there
are at least n — 2 such triangles. In other words, if U {X} is independent,
X eConv(#), then f(#, X) = n— 2. Here we improve this resulit.

THEOREM 2. Let #uU{X} be an independent family of points in the
plane n=|2|. If XeConv (%), then

p+2\  1/2p+4
©) f(g’,X)>< ! >n—§< : )

Moreover, if X¢Conv,, ((#), then



72 E. BOROS AND Z. FUREDI

1( ny n+2p—2 GP+V)n—p—2 . .
© f@.x) <| T\ 3 e i n s even,

%((n;—l)_(n—ip—l)) if nis odd.

These bounds are best possible.

Proof. Let n be fixed. If 0 < p<(n—1)/2, then the lower bound in (5)
increase and the upper bounds in (6) decrease. Hence, we may suppose that
XeConv,(#)\Conv,, (#). X is an inner point of this set, since LU {X} is
independent.

Let 11 be a closed half-plane with X eb(), containing Conv,,, (%) such that
[Pnn|=n-—-p—1and b(n)nP = . By the definition of the pth core such a
half-plane exists. Then applying Lemma 1 for this half-plane and fork=p + 1

we have
pt+1

) f@,X)=Y af2s+n—3—2p—a,).
s=1
As XeConv,(#) is an inner point, every half-plane passing through X with
its boundary line contains at least p+ 1 and at most n — p — 1 points of #.
Hence n—p—12|2na(X,P)|2p+1 for every P,e?\n and therefore
n—2p—-34s=za,2sfors=1,2,...,p+ 1. In this case the terms of the sum
in (7) are minimal if a, = s, and are maximal if their factors are close, i.e. if
a,=s—p—1+(n—1)2i nis odd and if g, =5s—p—1+(n—2)2if n is
even. Thus (5) and (6) follow from (7) by simple calculation.

The sharpness of the bounds can be proved by constructions (see Figs. 1
and 2). Let us consider a regular (2p + 3)-gon Py, Py,..., P;,,, With center
X. Suppose that n > 2p 4 3. Let the point set #, consist of Py, Py,...,Py,4,
and a (n — 2p — 3)-element point set around P,. Let the point set &, consist
of Py,Py,...,P5,,, and a [(n—2p — 3)/2]-element point set around P, ,
and a [(n — 2p — 2)/2]-element point set around Py,

A T
/'{ 7N /'{1 A
n-2p-23% P ) D-2p 20 p Pl ) n-2p-1
v Lt \ 0 o e 2
\.Q'z A / 'Qog' P2
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It is easy to see that 2, and £, satisfy the conditions and equality holds
in (5) for #, and in (6) for 2,. (1) follows from Theorem 2 immediately with
p=(n—1)/2if nis odd and with p=(n—2)/2 if n is even.

4. THE CENTER OF AN H-SET

We have to find an appropriate point X, for the given £ such that
f(@,X)=n3/27. By Proposition 1, Convy,_,;;(?)#0. Hence, if X,e
Convy,_1)3(?), then Theorem 2 gives that f(2, X,) > (n*/27)-(20/24) and
the construction given by Figure 1 shows that this result is the best possible.
Nevertheless, for the proof of Theorem 1, we shall choose X, from
Convy, _ 1)3;(%). We need an additional lemma.

Suppose that g is an integer such that Conv,(?)# J and either
Conv,,;(#)= or it contains only one point. By Propositions 1 and 2
we have (n — 1)/3 < g < (n— 1)/2. Suppose g < (n—2)/2.

LEMMA 3. There exists an inner point XeConv, (%) and three closed
half-planes n,,n,,n5 such that X lies on their boundaries, ,,n, and y5 cover
the plane and |n,nP|=n—q—1 for i=1,2,3.

Call such a point X the center of 2.

Proof. For the proof we are going to introduce a function on the set of
closed half-planes.

Let o be an arbitrary closed half-plane with e=b(x). Now let
%o 2% 224, be the set of closed half-planes with e; = b(a;), such that
the line ¢, is parallel to e and passes through at least one of the points of . Then
define p(x) as follows:

0 ifa=2a,
d(e’ei) .
po):=(—1—|;n2))+|enP|+—————le;, NP 20204,
dle;,e;q 1)
n—1 ifa, Do

where d(e, f) denotes the Euclidean distance between lines ¢ and f.

It is clear that if « is moved over the plane parallel to a fixed position,
then the function u(x) changes continuously; and if the boundary line of «
contains exactly one point of 2, then y(a) =n — |a&P|. As the point set 2
is finite the distances d(e;, e, , ;) in the definition of u are bounded by a certain
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real D from above. Hence, if oy o a > f > o, and d(b(x), b(f)) = ¢, then

®) HPB) = pl@) + ¢/D.

In this proof we shall consider only those half-planes with boundary
lines parallel to the lines formed by the point of 2. Actually this restriction
does not change our statements, but the proof becomes clearer.

For every real x,0 < x <n— 1let Conv,(#): = () {a|«is a closed half-plane,
b(x) is parallel to some (P,P;) and p(a) = x}.

It is easy to prove that Conv(#) is a convex, closed polygon in the plane
and for an integer x =k Conv,(#) is just the kth core of #; moreover, if
Conv,(#) # J, then Conv,(#) > Conv,(#) for 0 <x < y.

From these facts it follows that there is a greatest real x, for which
Conv, (?) # . It is clear that g=[x,]. Using (8) it can be proved that
Conv, (%) has no inner point. We state that it contains only one point, say
X, otherwise q > (n — 2)/2 would follow, contradicting our assumption.

Let us consider the finitely many opened half-planes 4 for which
W@ b(@)) =x,. Then the intersection of these half-planes is empty by the
definition of x,. Hence there are three such half-planes #,,#,,7#; which
have empty intersection by the Helly theorem. Let n,,%,,75 be the closure
of these half-planes. Then X eb(n,)nb(n,)nb(n,) by its definition; 5,7, and
15 cover the plane and |y,n2?|=n—q—1.

We note that an analogous statement also holds in higher dimensions.

5. THE PROOF OF THE LOWER BOUND IN THEOREM 1

Let X = X, be the center of # given by Lemma 3. Suppose that g(S,)=
n—gq—1. By Lemma 3 we have that there exist indices i,j (1 <i<j<n)
such that g(S)=q+1, g(S)=n—q—1, g(S,+1)=q+1 holds by (2).
According to (2) and (3) we get that 3?",(g9(S) — n/2)* is maximal with
respect to these constraints, ¢.g. for the function g given in Figure 3. Hence

o \/W
q+1

n-2q-2 3{n-2q2} n 2n
Fig. 3




TRIANGLES COVERING THE CENTRE OF AN H-SET 75

we have, using (2),

2n n\2 2n n3
) (g(s,-)—5> =2 9’

i=1

—1 n—q—2
<3 Y 243 i?+(3g+3—n)

n—q
i=q+2 i=q+1

3
(@ +1P+@+ D+ (—q— D +—q-2) -
=4n—2q—2)(n—2q—4)(4g+6—n)+n.

By Propositions 1 and 2 we have (n/3) — 1 < g <(n/2) — 1. The last expression
increases in this interval. Hence, we get

2n n 2 n3 n
S)—5) <= +2.
,-;<g( ) 2) 5473

Then f(2, X) > n*/27 follows by Lemma 2.

6. A CONSTRUCTION FOR THE PROOF OF THE UPPER BOUND
IN THEOREM 1

We now define 2,. Let C be the unit circle, with center O, and let Q be a point
on its circumference. Let 2,:= o/ VB U¥, with

o ={A4,| ¥ 004;=i/m?, 1<i<In/3]};

% ={B;| $QO0B;=Q2n)/3+n74, 1<j<(n+1)/3]}
and

¢={Cl¥Q0C,=(@m/3—n"* 1<k<[(n+2)3]},
where the points of 2, also belong to the circumference of C.

PROPOSITION 3. For all X we have f(2,,X) <n3/27 + n®.
Proof. If X is covered by every triangle A4,B;,C,, then f(#, X)=
[n/310(n + 1)/31[(n + 2)/3] < n3/27.

If X belongs to the convex hull of two groups of #,, say that
XeConv(/ U%), but it is not contained in any triangle A4,;4;4, or
B;B;B,, then Lemma 1 can be applied.

Consider the half-plane n which separates & from ZuU% with X
on its boundary line and apply Lemma 1 with this half-plane and with
k =[n/3]. It is easy to prove that there is an index ¢ < k such that a,=a,
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forall 1<s<t,and aq,=k for k>s>t+ 2. Hence by Lemma 1 we obtain

[@0nX)=Y aQ2s—2%k+n—1—a,)
s=1

k
+ Y k2s—2k+n—1—k)

s=t+3
+a,,,2t+1—-2k+n—a,,,)
+a,,,2t+3-2k+n—a,,,)

<tayk+t—a)+k(k—t)yk+1)

2 2
+(t—k+n;1> +(t—k+n;3>.

This is maximal, if t=a, =k(=[n/3]), thus f(2,,X)<n®27+n*2+
2n + 3 in this case, too.

Finally, if X belongs to the convex hull of one group of 2, say to Conv(.s/),
then there is a nearest line (4;4;) which separates it from the points of # and
%. Then moving X through this line, f(£,, X) increases at least by [n/3]; hence
X does not maximize the function f.

Fig. 4

7. A REMARK ON THE HIGHER DIMENSIONAL CASE

Let 2cR? be an n-element set, and XeR? a point. We can
define 42, X) as the number of (open) d-simplices covering X with vertices
from 2. It is easy to see that
1 n
d < —_—
o<, 1).
(Barany [2] determined exactly the value of max f%, X).) Similarly, using

Tverberg’s theorem [8] and a generalization of Caratheodory’s theorem,
Barany proved the following in [2]:
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For each independent P — R, there exists an X €R? such that
) fY2, X) 2 n*  (d+ 1)1(d+ 1) = O(n?).

His proof is suitable to obtain a d-dimensional version of Theorem 2,
proving that

10) YR, X) > n-kY/d d

holds for X eConv, ().

This generalizes a result of Baker [1]: f4%,X)>n—d holds for all
XeConv(#). Formulas (9) and (10) give the best possible bounds, apart from
a constant factor, but the determination of the exact values is an open problem.
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