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ABSTRACT

Let X be an n-element set, [,s positive integers satisfying s=
> 31+ 2. Suppose that # is a family of subsets of X having the prop-
erty that for any two different F,F'€ % we have |FN F'|<s and
[FNF'|#1 We prove that | #|<(l+ 0(1))(:*1;_1_—; 1]. Taking all
the (s+ 1)-sets containing a given (/ + 1)-set shows that this is asymptoti-
cally best possible.

1. PRELIMINARIES

Let X be an n-element set. For an integer k& we use the notation
(B =tacx1a1=r ama (F)=t4cx: 141< 82

If Lc{0,1,...,n—1} and £ is a family of subsets of X then
# is called an (n, L)-system ((n, k, L)-system) if for any two different
F,F'e # wehave |Fn F'| € L (and in addition | F| = k), respectively.
We denote by m(n, L) (m(n,k,L)) the maximum cardinality of an
(n, L)-system ((n, k, L)-system), respectively. In this terminology two of
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the basic theorems in extremal set theory, can be stated as follows:

Theorem (Erdé6s, Ko, Rado [5]). Suppose n> no(k, t), where
k> t>0, areintegers. Then

(1) m(n,k,{t,r+1,...,k-—1})=[z:;]-

Theorem (Katona [16]). Suppose n>t> 0. Then

mn,{t,t+1,...,n—1D=

2) Z [ ) if (n+1t) iseven,

ﬂ+3‘

2 ngﬂl["}‘l] if (n+ 1) isodd
e
2

Erdd6s [4] asked for the values of m(n, k,{0,1,...,k—1}—{I}) and
m(n,{0,1,...,n— 1} —{I}). He conjectured in particular that for k=
>20+1, k>3, n>ny(k) the value of the first function is [: - ::: i]

If true, this is a strengthening of (1). This conjecture was proved in [9] for
I= 1. For the general case it is known

Theorem (Frankl [7]). If k= 31+ 2, then

(3) m(n, k{0, 1,..., k= 1} = {Ih = (1 + o(1)(}; ﬁ_}
If k=31, then
@ mok{0,1,.. k-3 -tn=0((" =17 1)).
If 31> k>1, then

k+1-1
(5) m(n, k,{0,1,...,k—1}—={IH=0(n 2 ).

For the non-uniform case it is conjectured in [4]:
Conjecture 1. If n> ny(l), then
(6) m(n!{os l:'-'sn_‘l}_{!})z
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=mm I+ 1,...,n—1D+ 2 (7).

i<l-1

If true this conjecture would generalize (2) —toan (n,{{+ 1,...,n— 1})-
system we can always adjoin [fl], and still have an (n,{0, 1,...

...,n—1}—{l})-system. In [8] the conjecture was proved for /= 1. In
[11] the validity of the conjecture is showed apart from a polynomial
remainder term. Recently the authors [10] have proved (6) for n> 3%
However, (6) seems to be true forall » and [

A general result is the following

Theorem (Frankl, Wilson [12], Ray-Chaudhuri, Wilson
[18D

(7) min, L)< 2 (%),

i<|L|
(8) m(n, k,L)é[IE'].

There are several more results on mi(n, k, L) for n > nqy(k) but very
little is known about m(n, L). In [13] it is shown that for n> ny(r) we

-
have m(n, {0,r}) = [[5 ] + [5:;] +1+(n— r[—fﬁj], and it was proved
that m(n, {0, 2, 3}) = O(n?). Other results can be found in [14].

2. RESULTS
The main result of this paper is the following

Theorem 1. Suppose s= 31+ 2, n,s,| are positive integers. Then

n—I1-1
s—1 ]

m(n, {0, 1,...,s} —{IN =1+ o(1))(

By taking (2}] and all the members of ( @ f_l_ l) which contain a
fixed (I+ 1)-element set, we see
+1

n S n—-1-1
) m(n, {0, 1,5} = (> 2 A
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Conjecture 2. For n> ny(s) and s> 21+ 1 equality holds in (9).

For I= 0 we can prove our conjecture.

32

log(s+ 1) then

Theorem 2. If n<2s+ 2 or n>100
10 mn11,2,..,sh= 2 ("7 1),
iss

For s>2 the extremal families are 4 = {A C X: JA|<s+ 1, x€ A}
and §;={ACX: |[A|<s+ 1, x€A, |[A|= 2}V {X—{x}}.

The case L = {1} was investigated by de Bruijn and Erdés [1].
They proved m(n,{1}) = n and the extremal families are: ¥_, t’f; and the
finite projective plane on »n points (if there exists). L. Pyber [17]

2
(a student of G.O.H. Katona) proved (10) for 6s<n < %
3. STAR-SYSTEMS
- We need some lemmas. We say that the sets 4, ... s Ag form a star-

system (or A-system) of cardinality k with kernel B iffor 1<i<j<k
A;N A!. =B holds. The use of star-systems is based on the following

Lemmal (Deza, Erdés, Frankl [3]). Suppose the members
F TN and G,...,G, of the (n, L)-system # form a star-
system with kernels B and B', respectively. Moreover |F;|<k, |G;|<k
for 1<i<k. Then

(11) |IBNB'|eL.
(12) Foreach Fe€ #, satisfying |F|<k wehave |FN B|EL.

This lemma follows from the definitions.

Lemma 2. Suppose MC[ér) |IANA'|<a forevery A,A'€ A

a—2
(r=a, k=2 integers) moreover | &|> k° i (r—1i). Then <« con-
i=0

tains a star-system of cardinality greater than k.
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Proof. We apply induction on a. If a= 1, then « consists of
pairwise disjoint sets, i.e. it is a starsystem itself. Thus the statement is
true. Suppose now a is the smallest value for which we have not shown
the lemma yet. Let A,,...,A4  be a maximal collection of pairwise
disjoint sets in «/. If s>k, we are done. Thus we may assume s< k.

Letusset Y=4,U...UA_. Then | Y| < kr and forevery A € &/ we

have A N Y # ¢. Hence we may find an y € Y satisfying | &/ (¥)| > lgla

where #(y)={A€ o: y€ o}. Definenow #={4A - {y}: A€ Z(¥)}.
Then for B,B'€ # we have |[B|<r—1, |BNB'|<a— 1. Moreover

11
|#1> kr

# contains a star-system of cardinality k+ 1, say B,,...,B, ;-
Setting A, = B;U {y}, we obtain the desired star-system in . §

>k 1(r—-1)...(r—a+ 2). By the induction hypothesis

Corollary 1. Suppose BC (é,r] and 1<|BnNnB'|<a forevery

a—2
B,B'€ #, moreover |B|> k%1 _]_% (r—1i). Then % contains a star-
i=

system of cardinality greater than k.
Proof. Just let & consist of k pairwise disjoint copies of #, then

a-2
||\ =k|B|> k° _]% (r —i). We may apply Lemma 2 and find a star-
1=

system A,,...,A4,, ;. By the construction of &, it containsno k+ 1
pairwise disjoint sets, whence the kernel of the star-system is non-empty.

Thus all the A,’s are from one copy of %, yielding the result. &

Remark 1. Lemma 2 is a generalization of a theorem due to Erd&s
and Rado [6]. He proved the case a=r.

Remark 2. It would be very interesting to know what happens if
we replace the condition |[ANA'|<a by |ANA'| takes at most a
different values. For the case a = 1, this more general problem was solved
by Deza [2], who showed that if | |>r2 —r+ 1 then o isa
star-system.
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4. THE PROOF OF THEOREM 1

Suppose now that % is an (n,{0,1,...,I—-1,1+1,...,s}H-
system. By Theorem 2 we may suppose /= 1. We break up # into
4parts: F=F U F UF,U F,, where

Fo={FeF: |FI<I},

€
F,={FeF:1+1<|Fl<n'},

€ I+1
F,={FEZ:n' <|FI<n‘n**1},
i+1
F, ={Fe #: nn**1 <|F|}.

I+1
For convenience we set k(n)=nn**1. The value of € is 1_55 We

shall estimate the cardinalities of # s separately.

Of course we have
I
a3 1F,1< 2 (7) = o=,
=

Moreover we have

(14) | #51=o(ns~1-¢).

; F T
Proof. For F,F'€ #, we have [S+ 1] g il l] = ¢. Moreover

s+ 1
| FI > k(n) implies [Slfll]>%>n””2f for n > ny(s).
(sfl] g
Thus |§3|€F+—2;=0(n )

Now we deal with #,. From now on we use simply k(n)<n? ¥,
As #, isan (n,<k(n),{0,1,...,s}— {I})-system, it can be embedded
into a non-extendable (n,<k(n),{0,1,...,s}—{l})system, FJ.

Proposition 1. If F,F,,...,F,e #F form a star-system with
kernel K, and t= k(n), then K€ FFZ*.
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Proof. Let F€ # ;. Then |F|<k(n), thus F cannot intersect all
of the pairwise disjoint sets |, — K, F, — K, ..., F,— K. By symmetry,
assume F N (F; — K)=¢. This means, however, |FN K|=|FNF, |€
€({0,1,...,s}—{/}. Hence K€ # ;) follows.

Letusset #=#(F))=:{B€ #): [+ 1<|B|<s and AB'€ #}
such that BCB’, [B'|<s}. For every set F€ #, define #(F)=
—Be#: BcF), ¢, ={ce(}) B2 such that ccB}.

Moreover we set for [ <i<s:
¢, ={ce () aBea, 1BI=1, ccBCcF)
i I A E E .

M
We have [f;] = ‘UI %,;(F) Dby definition. Hence we may fix for every
I=
Fe # 2 the least integer i(F) (I<i<s) such that
q pcbe: I
1) 16,mE1>=c (1))
(Of course n€>s—1+1). Let #(F)={B€ %(F): |B|l=i}. Then we
obviously have

(1)
(162) 19, ())| > —bo= = for I<i(F)<s
()
and
|F]
[ I ] Ky

€

W(l—n—] for f(F)ZS.
l

Let usset #i= {Fe F i(F)=i}. We want to give upper bounds
on | #!| in function of i.

€
(a) i=s. We only use that for every FE€ #° contains at least -?3—,-
L

Be#(F) such that |[Bl=s by (16b). In view of (3) the number of
choices for B is < (1+ 0(1))[': » 5__ i], and each particular B is
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contained in at most (n — s+ 1) membersof #°. Thus

-1

(17) | F <1+ 0(1))[’;i l: 1)(n —s+ 1)Om—¢) = 0(ns~1-¢).

(b) 3I<i<s. Letusset #(i)={B<€ %: |B|=i}. Thenin view of
@) 12MOI<0m~"1). Let Fi(r)={Fe #': |Fl=r}.

Proposition 2. Every B € %(i) is contained in at most 2(k(n))*~ " -
- =12y members of Fr).

Proof. The definition of 2 and Proposition 1 imply that for B €
€ #B(i), x¢& B the set BU {x} is not contained in the kernel of the star-

system  Fy,F,,...,F0 € Fr). So applying Lemma 2 we have

s—i—2
H{Fe€ Fir): BU{x}C F}| < (k(n))* ! rg r— o).

Hence

§—i—2
[{Fe #itr): BC F}| < r—f—l (k(n))s— ¢ r!% r—=o.1
.
(1)
e

Now (16a) shows that every F€ £i(r) contains at least

members of #£(i). Thus we deduce
| BG) 1 2(k(m)* 'r= = 2n - n¥(})
r — -
(7)

. 1 ;
' 1+("3"+ e)(s—)+1+ E)rg— §= 2~ f_

| i) <

= 0(n
If s—i—1{—2<0 then we deduce simply

i- 1+(%+ e)(s—D+e

(18) | #1| < k(n)O(n )= o(n*1-¢).

If s—i—I1—2>0 then using 2 r'<(k(n)'*! we conclude
r<k(n)
s el 1. .
(19) | 32”.1 < 0(?‘1‘_ 1+ 3 +e)(s—D+e+( 3+ e)(s—i—1— l)) = O(ns— 1- ),
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I+i—1
(c) 1<i<3l. Weknow |2@)|<0m ? ) from (5), and using

Proposition 2 and distinguishing the same two cases as in (b) we deduce

(20) | Zi| = o(n® - ¢).

(&) i=1 Let D€ (7). Then in view of Corollary 1 and Proposi-

tion 1 for fixed r, there are at most (k(n)r)*~! members of Z!(r) con-
taining D. Using (15), we deduce

(1)

l— E).

1) | Fll< 2 ne
r<k(n)

Now summing up the bounds for #! (s> i>1[) we obtain
22) | F,1<0ms ).

Now let us consider the set system % ,. We can investigate it in the
same way as we have done by set-sysem #,. %, can be embedded into

a non-extendable (n,<n' {0 1, , 8} — {I})-system, F[.
Proposition 1'. If T e F [ form a star-system with
kernel K, and t= n_'., then K¢€ ﬁl*

Let us set #'=2'(F)={B€ F: I+ 1<|B|<s and AB' €
€ #; such that BC B' |B'|<s}. For every set F€ #  define
#B'(F)={Be #: BCF}, ¢,(F)={Ce [’?] AB € #'(F), CC B}. More-

over we set for /<i<s:

¢ ={ce(f):aBea’, 1BI=i, ccBc F}.

| Fl

Let i(F) the minimal i for which |#;¢(F)| > . Then (16a) and

(16b) holds for 2 /(F), too. Let us set gi={Fe gz‘ 1 i(F) =i}. Simi-
larly to the cases (b), (¢) and (d) we obtain |€§”[ =o€ for
I<i<s. Now we deal with #¥%. Let usset
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95 ={Fe %" |B(F)|<s-1}
and
95 ={Fe¥%: |B,(F)|>s—1I}.

If Fe f?f then there exists a subset A =A(F)CD |[A]l=5s-1-1
which is not contained in any B€ 2 (F). By (15) and (16a) .@;(F) =
=%'(F), thatis A is not contained in any B€ 2'(F). So, applying

£ £
Lemma 2, we have [{FE 45: A(F)= A} <(n")!*2(m")*! = o(nl~*).
Thus we deduce

) 1931< [s—?}— 1]0(n1‘6)=o(ns"’_f).

Finally, similarly to (17) we have

1951s— 2 1#,OI<221 L 1 7'6)<
(24) Feg,
n—s+1 n n—1I1-1
sﬁtuo(ln(s l]v(1+o(1))( ;)
So we have
@) 1Fi<a+omn(" ),

Adding up (13), (14), (22) and (25) the statement of Theorem 1 follows. &

5. THE PROOF OF THEOREM 2

Let # bea {1,2,...,s}system on n points. Pyber [17] has
found a very simple proof for the case n< 25+ 3 so our complicated
proof can be omitted.

2
-lgg%—):i—i—) and F=F()UFQ)U ...

where 3?"(1‘) = {Fe Z: |F|=i}. Moreover we can suppose that | # | >
92’[ ] i<s, then applying (1) we have Iﬁ(f)lé(’::{].

I=g
Hence

Let us suppose that n >
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2 IFes+ni>("7h)

Now we give an upper bound for | #(=s+ 3)|. Let F, € 97 be an
arbitrary edge. Then every F € # (> k) contains at least ( ] mem-

bers of [sfl] [XS+I;] Hence

G+a) =1 Hujllg |Fy | -
[k;l] [k-l] s Fr

Ay

(27) I 7 (k<

Here the coefficient of (n; 1] is less than 1 if |Fy|=k>s+3 so,

by (26), we get that | #(s + 1)U #(s + 2)| > 0. Thus F;, can be chosen
from % (<s+ 2), and we get by (27) that

S+2 n—1
(28) | # (= k)< 1]( 4 ]
s
In particular, for k= s+ 3 we have
2 (n—1
(29) |9"(3?S+3)|€m[ ; }

Now we deal with F(s+ DU F(s+ 2)=%.

3s+ 3y(n—2
( (

(30) If N%=¢ then |9|< s_1)

(30) can be proved by considering a set T of cardinality < 3s + 3 which
meets every GE€ ¢ in at least 2 points. Such a T always exists. (Either
there is an edge of 4 meeting the requirements, or we can find E1 ; E2 (=
€9, E N E2 = {p}. Then there exists an edge E; € ¥ not containing p,
and in this case E; U E, U E, issuitable for T.)

The sum of the right-hand sides of (29) and (30) is less than [n ; 1]’

if nm> 27s3. This contradicts (26). Thus, we may assume ()% # ¢, sa
PENY. Let F€ F(>s+3) bea minimal edge not containing p

|F, | = k. Then
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[{FeE #F (s+1): peF}I<
. X = F; —Ap}
<|(FZPH- ("7 TP

s

So by (28) we have
n—1-— s+2 n—1
(" M <itFe # s+ 1) peF}|<--_—1—]~[ s )
5
This yields that k>n—s—3> 225 thus we get |{F€ & (=5 + 3):

2
p & F}| < 1. This implies that #(s+ 2)=¢ and & (=s+ 3) iseither
{X — {p}} or ¢. This completes the proof for n> 27s3.

For s> 10 we can improve (30) using the following theorem due to
Hilton and Milner [15].

If N#(s+1)=¢ then
30 n—1 n—s—1
1 FerDIs "5 ) =" " )+ 1L

((31) holds iff n = 25 + 2.) Moreover we need

3s+2 n—1
s+ 2 [ s ]
27)

(32) | F(s+ 2)I<

To prove (32) consider the members of (’SY], and let the weight of
se(¥) be w®=I(Fe#(s+2): SCFH. Itis easy to see that if

S , 8, € [’SY] are pairwise disjoint edges then one of them has weight

i s

< 2. Thus, the number of edges of (i_(] with weight larger than 2 is less
n—1

than 6| - l]' Hence

(S+2

F(s+2) )<

"_1]”_S ([’;]—6(';:}]]2<(3s+2)(”;1].

s—1
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Finally, taking the sum of (29) and (32), we obtain

Fs+<— [”;1]<[”_§_1]

s+ 2
100s2 .
for n> Togs " So (26) implies
2
(30) If n>ll%-g-“1s- (s>10) then N F(s+ 1)+ ¢.

From this point the proof goes in exactly the same way as above.
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