COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI
37. FINITE AND INFINITE SETS, EGER (HUNGARY), 1981.

FAMILIES OF FINITE SETS WITH MISSING INTERSECTIONS

P. FRANKL — Z. FÜREDI

ABSTRACT

cally best possible.

Let X be an n-element set, l, s positive integers satisfying $s \ge 3l + 2$. Suppose that \mathscr{F} is a family of subsets of X having the property that for any two different $F, F' \in \mathscr{F}$ we have $|F \cap F'| \le s$ and $|F \cap F'| \ne l$. We prove that $|\mathscr{F}| \le (1 + o(1)) \binom{n-l-1}{s-l}$. Taking all

the (s+1)-sets containing a given (l+1)-set shows that this is asymptoti-

1. PRELIMINARIES

Let X be an n-element set. For an integer k we use the notation $\binom{X}{k} = \{A \subset X: |A| = k\}$ and $\binom{X}{\leqslant k} = \{A \subset X: |A| \leqslant k\}$.

If $L \subset \{0, 1, ..., n-1\}$ and \mathscr{F} is a family of subsets of X then \mathscr{F} is called an (n, L)-system ((n, k, L)-system) if for any two different

 $F, F' \in \mathscr{F}$ we have $|F \cap F'| \in L$ (and in addition |F| = k), respectively. We denote by m(n, L) (m(n, k, L)) the maximum cardinality of an (n, L)-system ((n, k, L)-system), respectively. In this terminology two of

- 305 -

the basic theorems in extremal set theory, can be stated as follows: **Theorem** (Erdős, Ko, Rado [5]). Suppose $n > n_0(k, t)$, where

k > t > 0, are integers. Then $m(n, k, \{t, t+1, \ldots, k-1\}) = {n-t \choose k-t}.$ (1)

$$1,\ldots,\kappa-1\})=\binom{k-t}{k}$$

Theorem (Katona [16]). Suppose n > t > 0. Then

$$m(n, \{t, t+1, \dots, n-1\}) =$$

$$\begin{cases} \sum_{i \ge \frac{n+t}{2}} {n \choose i} & \text{if } (n+t) \text{ is even,} \end{cases}$$

 $= \begin{cases} \sum_{i \geq \frac{n+t}{2}} \binom{n}{i} & \text{if } (n+t) \text{ is even,} \\ 2 \sum_{i \geq \frac{n+t-1}{2}} \binom{n-1}{i} & \text{if } (n+t) \text{ is odd.} \end{cases}$ (2)

Erdős [4] asked for the values of $m(n, k, \{0, 1, ..., k-1\} - \{l\})$ and $m(n, \{0, 1, ..., n-1\} - \{l\})$. He conjectured in particular that for $k \ge 1$ $\geq 2l+1, \ k \geq 3, \ n > n_0(k)$ the value of the first function is $\binom{n-l-1}{k-l-1}$.

If true, this is a strengthening of (1). This conjecture was proved in [9] for l = 1. For the general case it is known

Theorem (Frankl [71), If
$$k \ge 3l + 2$$
, then

Theorem (Frankl [7]). If
$$k \ge 3l + 2$$
, then

(3)
$$m(n, k, \{0, 1, \dots, k-1\} - \{l\}) = (1 + o(1)) {n-l-1 \choose k-l-1}.$$

If
$$k \ge 3l$$
, then

(4)
$$m(n, k, \{0, 1, ..., k-1\} - \{l\}) = O\left(\binom{n-l-1}{k-l-1}\right).$$

(5)

(6)

If
$$3l > k > l$$
, then

$$m(n, k, \{0, 1, \ldots, k-1\} - \{l\}) = O(n^{\frac{k+l-1}{2}}).$$

For the non-uniform case it is conjectured in [4]:

Conjecture 1. If
$$n > n_0(l)$$
, then

ecture 1. If
$$n > n_0(l)$$
, then
$$m(n, \{0, 1, \dots, n-1\} - \{l\}) =$$

A general result is the following

However, (6) seems to be true for all n and l.

 $m(n,L) \leq \sum_{i \leq |L|} {n \choose i},$ (7) (8) $m(n, k, L) \leq {n \choose |L|}$. There are several more results on m(n, k, L) for $n > n_0(k)$ but very

little is known about m(n, L). In [13] it is shown that for $n > n_0(r)$ we

 $= m(n, \{l+1, \ldots, n-1\}) + \sum_{i \le l-1} {n \choose i}.$

If true this conjecture would generalize (2) – to an $(n, \{l+1, \ldots, n-1\})$ system we can always adjoin $\binom{X}{< l}$, and still have an $(n, \{0, 1, ..., (n, \{0, 1, ..., \{0, ..., \{0, 1, ..., \{0, 1, ..., \{0, 1, ..., \{0, 1, ..., \{0, 1, ..., \{0, 1, ..., \{0, 1, ..., \{0, 1, ..., \{0, 1, ..., \{0, 1, ..., \{0, ..., \{0, 1, ..., \{0,$..., n-1 - $\{l\}$)-system. In [8] the conjecture was proved for l=1. In [11] the validity of the conjecture is showed apart from a polynomial remainder term. Recently the authors [10] have proved (6) for $n > 3^{l}$.

have $m(n, \{0, r\}) = {\lfloor \frac{n}{r} \rfloor \choose 2} + {\lfloor \frac{n}{r} \rfloor} + 1 + {n - r \lfloor \frac{n}{r} \rfloor}$, and it was proved that $m(n, \{0, 2, 3\}) = O(n^2)$. Other results can be found in [14].

The main result of this paper is the following

Theorem 1. Suppose
$$s \ge 3l + 2$$
, n, s, l are positive integers. Then

 $m(n, \{0, 1, \ldots, s\} - \{l\}) = (1 + o(1)) {n-l-1 \choose s-l}.$ By taking $\begin{pmatrix} X \\ < I \end{pmatrix}$ and all the members of $\begin{pmatrix} X \\ \le s+1 \end{pmatrix}$ which contain a fixed (l+1)-element set, we see

 $m(n, \{0, 1, \dots, s\} - \{l\}) \ge \sum_{i \le l-1} {n \choose i} + \sum_{i=l+1}^{s+1} {n-l-1 \choose i-l-1}.$ (9)

Conjecture 2. For $n > n_0(s)$ and s > 2l + 1 equality holds in (9).

For l = 0 we can prove our conjecture.

Theorem 2. If $n \le 2s + 2$ or $n > 100 \frac{s^2}{\log(s+1)}$ then

(10)
$$m(n,\{1,2,\ldots,s\}) = \sum_{i \leq s} {n-1 \choose i}.$$

For $s \ge 2$ the extremal families are $\mathscr{G}_x = \{A \subset X \colon |A| \le s+1, x \in A\}$ and $\mathscr{G}_x' = \{A \subset X \colon |A| \le s+1, x \in A, |A| \ge 2\} \cup \{X - \{x\}\}.$

The case $L = \{1\}$ was investigated by de Bruijn and Erdős [1]. They proved $m(n, \{1\}) = n$ and the extremal families are: $\mathscr{G}_{\mathbf{x}}$, $\mathscr{G}'_{\mathbf{x}}$ and the finite projective plane on n points (if there exists). L. Pyber [17] (a student of G.O.H. Katona) proved (10) for $6s < n < \frac{s^2}{6}$.

3. STAR-SYSTEMS

system (or Δ -system) of cardinality k with kernel B if for $1 \le i < j \le k$ $A_i \cap A_j = B$ holds. The use of star-systems is based on the following

We need some lemmas. We say that the sets A_1, \ldots, A_k form a star-

Lemma 1 (Deza, Erdős, Frankl [3]). Suppose the members F_1, \ldots, F_k and G_1, \ldots, G_k of the (n, L)-system \mathscr{F} form a starsystem with kernels B and B', respectively. Moreover $|F_i| < k$, $|G_i| < k$ for $1 \le i \le k$. Then

$$(11) \qquad |B \cap B'| \in L.$$

(12) For each
$$F \in \mathcal{F}$$
, satisfying $|F| < k$ we have $|F \cap B| \in L$.

This lemma follows from the definitions.

Lemma 2. Suppose $\mathscr{A} \subset {X \choose \leqslant r}$ $|A \cap A'| < a$ for every $A, A' \in \mathscr{A}$ $(r \geqslant a, k \geqslant 2 \text{ integers})$ moreover $|\mathscr{A}| > k^a \prod_{i=0}^{a-2} (r-i)$. Then \mathscr{A} contains a star-system of cardinality greater than k.

true. Suppose now a is the smallest value for which we have not shown the lemma yet. Let A_1,\ldots,A_s be a maximal collection of pairwise disjoint sets in \mathscr{A} . If s>k, we are done. Thus we may assume $s\leqslant k$. Let us set $Y=A_1\cup\ldots\cup A_s$. Then $|Y|\leqslant kr$ and for every $A\in\mathscr{A}$ we have $A\cap Y\neq \phi$. Hence we may find an $y\in Y$ satisfying $|\mathscr{A}(y)|\geqslant \frac{|\mathscr{A}|}{kr}$, where $\mathscr{A}(y)=\{A\in\mathscr{A}:\ y\in\mathscr{A}\}$. Define now $\mathscr{B}=\{A-\{y\}:\ A\in\mathscr{A}(y)\}$. Then for $B,B'\in\mathscr{B}$ we have $|B|\leqslant r-1,\ |B\cap B'|< a-1$. Moreover $|\mathscr{B}|\geqslant \frac{|\mathscr{A}|}{kr}>k^{a-1}(r-1)\ldots(r-a+2)$. By the induction hypothesis \mathscr{B} contains a star-system of cardinality k+1, say B_1,\ldots,B_{k+1} .

Proof. We apply induction on a. If a = 1, then \mathscr{A} consists of pairwise disjoint sets, i.e. it is a star-system itself. Thus the statement is

Corollary 1. Suppose $B \subset {X \choose \leqslant r}$ and $1 \leqslant |B \cap B'| < a$ for every $B, B' \in \mathcal{B}$, moreover $|\mathcal{B}| > k^{a-1} \prod_{i=0}^{a-2} (r-i)$. Then \mathcal{B} contains a starsystem of cardinality greater than k.

Setting $A_i = B_i \cup \{y\}$, we obtain the desired star-system in \mathcal{A} .

Proof. Just let \mathscr{A} consist of k pairwise disjoint copies of \mathscr{B} , then $|\mathscr{A}| = k|\mathscr{B}| > k^a \prod_{i=0}^{a-2} (r-i)$. We may apply Lemma 2 and find a starsystem A_1, \ldots, A_{k+1} . By the construction of \mathscr{A} , it contains no k+1 pairwise disjoint sets, whence the kernel of the star-system is non-empty. Thus all the A_i 's are from one copy of \mathscr{B} , yielding the result.

Remark 1. Lemma 2 is a generalization of a theorem due to $Erd \tilde{o}s$ and Rado [6]. He proved the case a=r.

Remark 2. It would be very interesting to know what happens if we replace the condition $|A \cap A'| < a$ by $|A \cap A'|$ takes at most a different values. For the case a = 1, this more general problem was solved by $D \in \mathbb{Z}a$ [2], who showed that if $|\mathcal{A}| > r^2 - r + 1$ then \mathcal{A} is a star-system.

4. THE PROOF OF THEOREM 1

Suppose now that \mathscr{F} is an $(n, \{0, 1, \ldots, l-1, l+1, \ldots, s\})$ -system. By Theorem 2 we may suppose $l \ge 1$. We break up \mathscr{F} into 4 parts: $\mathscr{F} = \mathscr{F}_0 \cup \mathscr{F}_1 \cup \mathscr{F}_2 \cup \mathscr{F}_3$, where

$$\begin{split} \mathscr{F}_0 &= \{F \in \mathscr{F} : \ |F| \leqslant l\}, \\ \\ \mathscr{F}_1 &= \{F \in \mathscr{F} : \ l+1 \leqslant |F| < n^{\frac{\epsilon}{l}}\}, \\ \\ \mathscr{F}_2 &= \{F \in \mathscr{F} : \ n^{\frac{\epsilon}{l}} \leqslant |F| < n^{\epsilon} n^{\frac{l+1}{s+1}}\}, \\ \\ \mathscr{F}_3 &= \{F \in \mathscr{F} : \ n^{\epsilon} n^{\frac{l+1}{s+1}} \leqslant |F|\}. \end{split}$$

For convenience we set $k(n) = n^{\epsilon} n^{\frac{l+1}{s+1}}$. The value of ϵ is $\frac{1}{10s}$. We shall estimate the cardinalities of \mathscr{F}_i 's separately.

Of course we have

$$(13) |\mathcal{F}_0| \leqslant \sum_{i=0}^l {n \choose i} = o(n^{s-l-\epsilon}).$$

Moreover we have

$$(14) | \mathscr{F}_3 | = o(n^{s-l-\epsilon}).$$

Proof. For $F, F' \in \mathcal{F}_3$ we have $\binom{F}{s+1} \cap \binom{F'}{s+1} = \phi$. Moreover

$$|F| \ge k(n) \quad \text{implies} \quad {|F| \choose s+1} > \frac{(k(n)-s)^{s+1}}{(s+1)!} > n^{l+1+2\epsilon} \quad \text{for} \quad n > n_0(s).$$

Thus
$$|\mathscr{F}_3| \le \frac{\binom{n}{s+1}}{n^{l+1+2\epsilon}} = o(n^{s-l-\epsilon}).$$

Now we deal with \mathscr{F}_2 . From now on we use simply $k(n) \le n^{\frac{1}{3} + \epsilon}$. As \mathscr{F}_2 is an $(n, < k(n), \{0, 1, ..., s\} - \{l\})$ -system, it can be embedded

As \mathscr{F}_2 is an $(n, < k(n), \{0, 1, ..., s\} - \{l\})$ -system, it can be embedded into a non-extendable $(n, < k(n), \{0, 1, ..., s\} - \{l\})$ -system, \mathscr{F}_2^*

Proposition 1. If $F_1, F_2, \ldots, F_t \in \mathscr{F}_2^*$ form a star-system with kernel K, and $t \ge k(n)$, then $K \in \mathscr{F}_2^*$.

of the pairwise disjoint sets $F_1 - K, F_2 - K, \dots, F_t - K$. By symmetry, assume $F \cap (F_1 - K) = \phi$. This means, however, $|F \cap K| = |F \cap F_1| \in$

Proof. Let $F \in \mathcal{F}_2^*$. Then |F| < k(n), thus F cannot intersect all

$$\in (\{0, 1, \dots, s\} - \{l\}). \text{ Hence } K \in \mathscr{F}_2^* \text{ follows.} \blacksquare$$
Let us set $\mathscr{B} = \mathscr{B}(\mathscr{F}_2^*) =: \{B \in \mathscr{F}_2^*: l+1 \leq |B| \leq s \text{ and } \nexists B' \in \mathscr{F}_2^*$

such that $B \subseteq B'$, $|B'| \le s$. For every set $F \in \mathscr{F}_2$ define $\mathscr{B}(F) =$ $=\{B\in \mathscr{B}:\ B\subset F\},\quad \mathscr{C}_I(F)=\left\{C\in {F\choose I}:\ \nexists B\in \mathscr{B}(F) \text{ such that } C\subset B\right\}.$ Moreover we set for $l < i \le s$:

$$\mathscr{C}_{i}(F) = \left\{ C \in {F \choose l} : \exists B \in \mathscr{B}, |B| = i, C \subset B \subset F \right\}.$$

We have $\binom{F}{l} = \bigcup_{i=1}^{s} \mathscr{C}_{i}(F)$ by definition. Hence we may fix for every $F \in \mathscr{F}_{2}$ the least integer i(F) $(l \le i \le s)$ such that

(15)
$$|\mathscr{C}_{i(F)}(F)| > \frac{1}{n^{\epsilon}} {|F| \choose l}.$$
(Of course $n^{\epsilon} > \epsilon + 1$) Let $\mathscr{C}_{i}(F) = \{R \in \mathscr{C}_{i}(F), |R| = i\}$. Then

(Of course $n^{\epsilon} > s - l + 1$). Let $\mathcal{B}_{i}(F) = \{B \in \mathcal{B}(F): |B| = i\}$. Then we obviously have

(16a)
$$|\mathscr{B}_{i(F)}(F)| > \frac{\binom{|F|}{l}}{\binom{i(F)}{l}} \frac{1}{n^{\epsilon}} \quad \text{for } l \leq i(F) < s$$
 and

(16b) $|\mathscr{B}_{i(F)}(F)| > \frac{\binom{|F|}{l}}{\binom{i(F)}{l}} \left(1 - \frac{s}{n^{\epsilon}}\right) \quad \text{for } i(F) = s.$

Let us set $\mathscr{F}^i = \{F \in \mathscr{F}_2 : i(F) = i\}$. We want to give upper bounds on $|\mathcal{F}^i|$ in function of i.

(a) i = s. We only use that for every $F \in \mathscr{F}^s$ contains at least $\frac{n^s}{s!}$ $B \in \mathcal{B}(F)$ such that |B| = s by (16b). In view of (3) the number of choices for B is $\leq (1+o(1))\binom{n-l-1}{s-l-1}$, and each particular B is

- 311 -

 $|\mathscr{F}^{s}| \le (1+o(1)) {n-l-1 \choose s-l-1} (n-s+1) O(n^{-\epsilon}) = O(n^{s-l-\epsilon}).$ (b) $3l \le i < s$. Let us set $\mathcal{B}(i) = \{B \in \mathcal{B}: |B| = i\}$. Then in view of $(4) |\mathscr{B}(i)| \leq O(n^{l-l-1}). \text{ Let } \mathscr{F}^{i}(r) = \{F \in \mathscr{F}^{i}: |F| = r\}.$

contained in at most (n-s+1) members of \mathcal{F}^s . Thus

Proposition 2. Every
$$B \in \mathcal{B}(i)$$
 is contained in at most $2(k(n))^{s-i} \cdot r^{s-i-2}n$ members of $\mathcal{F}^i(r)$.

Proof. The definition of \mathscr{B} and Proposition 1 imply that for $B \in$ $\in \mathcal{B}(i), x \notin B$ the set $B \cup \{x\}$ is not contained in the kernel of the starsystem $F_1, F_2, \ldots, F_{\lfloor k(n) \rfloor} \in \mathscr{F}^i(r)$. So applying Lemma 2 we have

$$|\{F \in \mathscr{F}^i(r) \colon B \cup \{x\} \subset F\}| \le (k(n))^{s-i} \prod_{t=0}^{s-i-2} (r-t).$$
 Hence

$$|\{F \in \mathscr{F}^i(r): B \subset F\}| \leq \frac{n}{r-i} (k(n))^{s-i} \prod_{t=0}^{s-i-2} (r-t). \blacksquare$$
Now (16a) shows that every $F \in \mathscr{F}^i(r)$ contains at least $\frac{\binom{r}{l}}{\binom{i}{l} n^{\epsilon}}$

members of $\mathcal{B}(i)$. Thus we deduce

members of
$$\mathscr{B}(i)$$
. Thus we deduce
$$|\mathscr{F}^{i}(r)| \leq \frac{|\mathscr{B}(i)| 2(k(n))^{s-i} r^{s-i-2} n \cdot n^{\epsilon} {i \choose l}}{{r \choose l}} =$$

$$= O(n^{i-l-1+(\frac{1}{3}+\epsilon)(s-i)+1+\epsilon})r^{s-i-2-l}.$$

$$= O(n \qquad)r^{s-l-2-l}.$$
If $s-i-l-2 \le 0$ then we deduce simply

 $(18) \qquad |\mathcal{F}^{i}| \leq k(n)O(n^{i-l+\left(\frac{1}{3}+\epsilon\right)(s-i)+\epsilon}) = o(n^{s-l-\epsilon}).$

If s-i-l-2>0 then using $\sum_{r\leq k(n)} r^t < (k(n))^{t+1}$ we conclude

 $\mid \mathcal{F}^i \mid < O(n^{i-l+\left(\frac{1}{3}+\epsilon\right)(s-i)+\epsilon+\left(\frac{1}{3}+\epsilon\right)(s-i-1-l)}) = o(n^{s-l-\epsilon}).$

- 312 -

(19)

$$\mathscr{C}_{i}'(F) = \left\{ C \in {F \choose l} : \exists B \in \mathscr{B}', |B| = i, C \subseteq B \subseteq F \right\}.$$

 $\mathscr{B}'(F) = \{B \in \mathscr{B}: B \subset F\}, \ \mathscr{C}'_{l}(F) = \{C \in {F \choose l}: \not\exists B \in \mathscr{B}'(F), \ C \subset B\}.$ More-

Proposition 1'. If $F_1, F_2, \ldots, F_t \in \mathcal{F}_1^*$ form a star-system with kernel K, and $t \ge n^{\frac{\epsilon}{l}}$, then $K \in \mathcal{F}_1^*$. Let us set $\mathscr{B}' = \mathscr{B}'(\mathscr{F}_1^*) =: \{B \in \mathscr{F}_1^*: l+1 \leqslant |B| \leqslant s \text{ and } \nexists B' \in \mathscr{F}_1^* \text{ such that } B \subset B' \mid |B'| \leqslant s \}.$ For every set $F \in \mathscr{F}_1$ define

over we set for $l < i \le s$:

 $|\mathscr{F}^i| = o(n^{s-l-\epsilon}).$

(20)

- Now let us consider the set system \mathcal{F}_1 . We can investigate it in the same way as we have done by set-sysem \mathcal{F}_2 . \mathcal{F}_1 can be embedded into a non-extendable $(n, < n^{\frac{\epsilon}{l}}, \{0, 1, \dots, s\} - \{l\})$ -system, \mathscr{F}_1^* .
- $|\mathcal{F}^l| \leq \sum_{r \leq k(n)} n^{\epsilon} \frac{\binom{n}{l}}{\binom{r}{l}} (k(n)r)^{s-l} = o(n^{s-l-\epsilon}).$ Now summing up the bounds for \mathscr{F}^i $(s \ge i \ge l)$ we obtain
 - $|\mathscr{F}_{2}| \leq O(n^{s-l-\epsilon}).$
- tion 1 for fixed r, there are at most $(k(n)r)^{s-l}$ members of $\mathcal{F}^l(r)$ containing D. Using (15), we deduce

(c) l < i < 3l. We know $|\mathcal{B}(i)| \le O(n^{\frac{i+l-1}{2}})$ from (5), and using

(d) i = l. Let $D \in {X \choose l}$. Then in view of Corollary 1 and Proposi-

Proposition 2 and distinguishing the same two cases as in (b) we deduce

Let i(F) the minimal i for which $|\mathscr{C}'_{i(F)}(F)| > \frac{\binom{|F|}{l}}{n^{\epsilon}}$. Then (16a) and (16b) holds for $\mathscr{B}_{i}'(F)$, too. Let us set $\mathscr{G}^{i} = \{F \in \mathscr{F}_{1} : i(F) = i\}$. Similarly to the cases (b), (c) and (d) we obtain $|\mathscr{G}^i| = o(n^{s-l-\epsilon})$ for $l \le i < s$. Now we deal with \mathscr{G}^s . Let us set

$$\mathscr{G}_1^s = \{F \in \mathscr{G}^s \colon \ | \, \mathscr{B}_s'(F)| < s - l \}$$
 and

Hence

If
$$F \in \mathcal{G}_1^s$$
 then there exists a subset $A = A(F) \subset D$ $|A| = s - l - 1$

 $\mathscr{G}_{2}^{s} = \{ F \in \mathscr{G}^{s} : |\mathscr{B}'_{s}(F)| \ge s - l \}.$

which is not contained in any $B \in \mathscr{B}'_s(F)$. By (15) and (16a) $\mathscr{B}'_s(F) = \mathscr{B}'(F)$, that is A is not contained in any $B \in \mathscr{B}'(F)$. So, applying Lemma 2, we have $|\{F \in \mathscr{G}_1^s : A(F) = A\}| < (n^{\frac{\epsilon}{l}})^{l+2} (n^{\frac{\epsilon}{l}})^{l+1} = o(n^{1-\epsilon})$. Thus we deduce

(23)
$$|\mathcal{G}_1^s| \leq {n \choose s-l-1} o(n^{1-\epsilon}) = o(n^{s-l-\epsilon}).$$

Finally, similarly to (17) we have

$$|\mathcal{G}_{2}^{s}| \leqslant \frac{1}{s-l} \sum_{F \in \mathcal{G}_{2}^{s}} |\mathcal{B}_{s}'(F)| \leqslant \frac{n-s+1}{s-l} |\mathcal{B}'(s)| \leqslant$$

$$(24)$$

$$\leq \frac{n-s+1}{s-l} (1+o(1)) {n-l-1 \choose s-l-1} = (1+o(1)) {n-l-1 \choose s-l}.$$
 So we have

(25) $|\mathscr{F}_1| \le (1+o(1)) {n-l-1 \choose s-l}.$

Adding up (13), (14), (22) and (25) the statement of Theorem 1 follows.
$$\blacksquare$$

5. THE PROOF OF THEOREM 2

Let \mathscr{F} be a $\{1, 2, \ldots, s\}$ -system on n points. Pyber [17] has found a very simple proof for the case $n \leq 2s + 3$ so our complicated proof can be omitted.

Let us suppose that $n > \frac{100s^2}{\log(s+1)}$ and $\mathscr{F} = \mathscr{F}(1) \cup \mathscr{F}(2) \cup \dots$ where $\mathscr{F}(i) = \{F \in \mathscr{F} : |F| = i\}$. Moreover we can suppose that $|\mathscr{F}| \ge$

where $\mathscr{F}(i) = \{F \in \mathscr{F} : |F| = i\}$. Moreover we can suppose that $|\mathscr{F}| \ge \sum_{i \le s} {n-1 \choose i}$. If $i \le s$, then applying (1) we have $|\mathscr{F}(i)| \le {n-1 \choose i-1}$.

Here the coefficient of
$$\binom{n-1}{s}$$
 is less than 1 if $|F_0| = k \ge s+3$ so, by (26), we get that $|\mathscr{F}(s+1) \cup \mathscr{F}(s+2)| > 0$. Thus F_0 can be chosen

 $|\mathcal{F}(\geqslant k)| \leq \frac{\binom{n}{s+1} - \binom{n-|F_0|}{s+1}}{\binom{k-1}{s}} \leq \frac{|F_0|}{\binom{k-1}{s}} \binom{n-1}{s}.$

bers of $\begin{pmatrix} X \\ s+1 \end{pmatrix} - \begin{pmatrix} X-F_0 \\ s+1 \end{pmatrix}$. Hence

 $|\mathscr{F}(\geqslant s+1)|\geqslant {n-1\choose s}.$

Now we give an upper bound for $|\mathscr{F}(\geqslant s+3)|$. Let $F_0 \in \mathscr{F}$ be an arbitrary edge. Then every $F \in \mathscr{F} (\geqslant k)$ contains at least $\binom{k-1}{s}$ mem-

Here the coefficient of $\binom{n-1}{s}$ is less than 1 if $|F_0| = k \ge s+3$ so,

from $\mathscr{F} (\leq s+2)$, and we get by (27) that

 $|\mathscr{F}(\geqslant k)| \le \frac{s+2}{\binom{k-1}{s}} \binom{n-1}{s}.$ In particular, for k = s + 3 we have

 $|\mathscr{F}(\geqslant s+3)| \leqslant \frac{2}{s+1} {n-1 \choose s}.$

Now we deal with $\mathscr{F}(s+1) \cup \mathscr{F}(s+2) = \mathscr{G}$.

If $\cap \mathscr{G} = \phi$ then $|\mathscr{G}| \leq {3s+3 \choose 2} {n-2 \choose s-1}$. (30)

(30) can be proved by considering a set T of cardinality $\leq 3s + 3$ which

meets every $G \in \mathscr{G}$ in at least 2 points. Such a T always exists. (Either there is an edge of \mathscr{G} meeting the requirements, or we can find $E_1, E_2 \in$

 $\in \mathcal{G}, E_1 \cap E_2 = \{p\}$. Then there exists an edge $E_3 \in \mathcal{G}$ not containing p, and in this case $E_1 \cup E_2 \cup E_3$ is suitable for T.) The sum of the right-hand sides of (29) and (30) is less than $\binom{n-1}{\mathfrak{c}}$,

if $n > 27s^3$. This contradicts (26). Thus, we may assume $\bigcap \mathcal{G} \neq \emptyset$, say $p \in \bigcap \mathcal{G}$. Let $F_1 \in \mathcal{F} (\geqslant s+3)$ be a minimal edge not containing p $|F_1| = k$. Then

$$|\{F \in \mathscr{F} (\geqslant s+1): \ p \in F\}| \le 1$$

$$\le \left| {X - \{p\} \choose s} - {X - F_1 - \{p\} \choose s} \right|.$$

So by (28) we have

(31)

$${n-1-k\choose s}\leq |\{F\in \mathcal{F}\ (\geqslant s+1)\colon\ p\not\in F\}|\leq \frac{s+2}{{k-1\choose s}}\,{n-1\choose s}.$$

This yields that $k > n - s - 3 > \frac{n+s}{2}$, thus we get $|\{F \in \mathscr{F} (\geq s+3): p \notin F\}| \leq 1$. This implies that $\mathscr{F}(s+2) = \phi$ and $\mathscr{F}(\geq s+3)$ is either $\{X - \{p\}\}$ or ϕ . This completes the proof for $n > 27s^3$.

For $s \ge 10$ we can improve (30) using the following theorem due to

Hilton and Milner [15].

If
$$\bigcap \mathscr{F}(s+1) = \phi$$
 then

 $|\mathscr{F}(s+1)| \le {n-1 \choose s} - {n-s-1 \choose s} + 1.$ ((31) holds iff $n \ge 2s + 2$.) Moreover we need

$$(32) \qquad |\mathscr{F}(s+2)| < \frac{3s+2}{\binom{s+2}{2}} \binom{n-1}{s}.$$

To prove (32) consider the members of $\binom{X}{s}$, and let the weight of $S \in \binom{X}{s}$ be $w(S) = |\{F \in \mathscr{F}(s+2): S \subset F\}|$. It is easy to see that if

 $S_1, \ldots, S_7 \in {X \choose S}$ are pairwise disjoint edges then one of them has weight ≤ 2 . Thus, the number of edges of ${X \choose S}$ with weight larger than 2 is less

than $6\binom{n-1}{s-1}$. Hence

$$\mathscr{F}(s+2){s+2 \choose s} \le$$

$$\le 6{n-1 \choose s-1} \frac{n-s}{6} + \left({n \choose s} - 6{n-1 \choose s-1}\right) 2 < (3s+2){n-1 \choose s}.$$

 $\mathscr{F}(\geqslant s+2) < \frac{8}{s+2} {n-1 \choose s} < {n-s-1 \choose s}$

Finally, taking the sum of (29) and (32), we obtain

for
$$n > \frac{100s^2}{\log s}$$
. So (26) implies

(30') If $n > \frac{100s^2}{\log s}$ $(s \ge 10)$ then $\bigcap \mathscr{F}(s+1) \ne \phi$.

From this point the proof goes in exactly the same way as above.

REFERENCES

(1978), 369-384.

- [1] N.G. de Bruijn P. Erdős, On a combinatorial problem, Indag. Math., Akademia Amsterdam, 10 (1948), 421-423.
- [2] M. Deza, Solution d'un probleme de Erdős-Lovász, J. Combinatorial Th. B, 16 (1974), 166-167.
- [3] M. Deza P. Erdős P. Frankl, Intersection properties of the systems of finite sets, *Proc. London Math. Soc.*, (3) 36
- [4] P. Erdős, Problems and results in graph theory and combinatorial analysis, *Proc. Fifth British Comb. Conf.* (Aberdeen, 1975) (C.St.J.A. Nash-Williams and J. Sheenan eds.) 169–192. *Congressus Numerantium*, 15, Utilitas Math. Publ., Winnipeg, 1976.
- systems of finite sets, Quart. J. Math. Oxford, (2) 12 (1961), 313-320.

 [6] P. Erdős P. Rado, Intersection theorems for systems of

[5] P. Erdős – C. Ko – R. Rado, Intersection theorems for

- [6] P. Erdős P. Rado, Intersection theorems for systems o sets, J. London Math. Soc., 35 (1960), 85–90.
- [7] P. Frankl, Extremal problems and coverings of the space, European J. Comb., 1 (1980), 101-106.

P. Frankl - R.M. Wilson, Intersection theorems with [12] geometric consequences, Combinatorica, 1 (1981), 357-368. [13] Z. Füredi, Set-systems with prescribed cardinalities for pairwise

[11] P. Frankl - N.M. Singhi, Linear dependencies

[8] P. Frankl, An intersection problem for finite sets, Acta Math.

[9] P. Frankl, On families of finite sets no two of which intersect in a singleton, Bull. Austral. Math. Soc., 17 (1977), 125-134.

P. Frankl - Z. Füredi, On hypergraphs without two edges

intersecting in a given number of vertices, J. Combinatorial Th. A,

among

t-designs,

Acad. Sci. Hungar., 30 (1977), 371-373.

subsets of a finite set, to appear.

[10]

submitted.

- intersections, Discrete Math., 40 (1982), 53-67. [14] Z. Füredi, An intersection problem whose extremum is the finite projective space, J. Combinatorial Th. A, 32 (1982), 66-72.
- A.J.W. Hilton E.C. Milner, Some intersection theorems [15] for systems of finite sets, Quart. J. Math. Oxford, 2 (1967), 369-384.
- G.O.H. Katona, Intersection theorems for systems of finite [16] sets, Acta Math. Acad. Sci. Hungar., 15 (1964), 329-337.
- [17] L. Pyber, personal communication. [18] D.K. Ray-Chaudhuri - R.M. Wilson, On Osaka J. Math., 12 (1975), 737-744.
 - P. Frankl CNRS 54 Bd. Raspail, 75006 Paris, France. Z. Füredi

H-1053, Hungary.

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13-15,