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H Y P E R G R A P H S  IN WHICH ALL DISJOINT 
PAIRS HAVE D I S T I N C T  U N I O N S  

Z. F O R E D I  
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Let ,~  be a set-system of r-clement subsets on an n-element set, rY:3. It is proved that if 
1371 ;-3.5 t (r #-I 1]) then -~" contains four distinct nlenlbeis ,4, B, C. O stick that A i! B:= C I J D and 
A¢ iB=C(ID=I'). 

I. Introduction and the Theorem 

Let n and r ( n ~ r )  be positive integers and let X be an n-element set. We 

denote  by the family of  all r-element subsets o f  X. If  ~.~c 2 then we call -'.g a 

gra/,/t on the vertex-set X. Fm-thernlore, if ( q c ( ' q 2  ' B ) -  ( 2 / -  ( B ) , t h e n w e s a y % ' i s  

a bipart i te  graph with parts A and B. The  degree of  the point p ¢ X  in the set-system 
_Y- is denoted by d~(p) or briefly d(p)=]{F: p(  F~,~}I. As usual, Fc~(p) denotes the 
neiglzbou,'l,)od of  the point p in the graph <,g, i.e. Fr,,,(p) {q: {p, q}~<,~}, lF,,j(p) I 
=d,,~(p). We call tlne family .3 ~ disjoint-union-./)'ee if for every A, B, C, D~.N, 
A < ~ B=0 .  C r q D = 0  and A L J B = C t J D  imply {A, B } =  {C, D}. Tha t  is, a l ld is joint  
pairs have distinct unions. 

Erd(% [4] asked to determine the max imum cardinali ty of  .ej-c r ' "~ is dis- 

joint-union-free.  In the case r = 2  the question becomes:  what is the nmximum num- 
ber of  edges in a graph which contains no C4 (C~ is the cycle of  length 4) as a subgraph 
(not necessarily induced subgraph).  This problem goes back to 1938 (see ErdOs [3]). 

Definition 1.1. Let ,/)(n) be the nla.vimttm nttmber o1 edges in a di.~/oint-tmion-free 

f 'an,i/v ~-~, ,~ -c |~ , . / ,  IXI=,~. 
' k - - ) '  
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Erd6s, R4nyi and T, Sds [6] and Brown [2] proved (see also Blanchard [l]l 

/ ~ ( n ) = [ 4 + o ( l ) ]  hal". Recently, the author [I0] determined the exact value of ./;(n) 
i,,: ] 1 

for an infinitely many values, namely, for q = 2  ". We have J~(q"+q+ I)=~-q(q-F I) ~. 

As Erd6s and Frankl pointed out in 1975, one can prove for all ra-2 that 
J ; (n)<O(n "-°''~) (unpublished). in [4] Erd6s mentions that he and Bollob~is proved 
that ctn"-<f:3(n)<c.~n" tbr some positive ci>O. However, they have not published 
this result since that time (I 977) and failed to reconstruct the proof. 

l .Z.  S f  ,/,<',, + [ - - 7 - - ] < k O , )  . . . .  . 

We obtain the lower bound considering the set-system of all r-element subsets of 

Xwhichcontainafixedelen,entl~lUS an arbitrarysystem of l ~  l pairwise disjoint 

r-element subsets not containing that element. In the case r = 3  one can construct 
a little bit larger example: 

/') Example i.3. Let ,90 be an Sa(n, 5, 2) Steiner-system, i.e. ~ c 5 and for all .x. vq A 

there exists exactly one member S C ~  containing them. This Steiner-system exists ill" 

or5 (rood 20) (see Hanani [l l]). Replace each S(5" by [~/ .Sowegetadis jo in t -  # l i l  

X _ n 

"-I " Moreocer, for r ~ 4 .  

i "f" ( ' )  = t r -  1 J - -  17oids. 

The proof of Theorem 1.2 is based on a rather technical lemma (Lemma 3.3). 
which we state in §3 and prove in §4, along with other lemmas, needed for its Woof: 
For those who don't have the patience to go through its proof, we recommend just 
to read its statement and then go directly to §5 and see how it implies Theorem 1.2. 

2. Other Union-free  Properties  

In [7] and [8] Frankl and the author have introduced the following notion> and 
functions: Call the family ,~- union-fi'ee if, for every A, B, C, D G ~ ,  A U B=C,_" D 
implies {A, B}= {C, D}. Let G(n) denote the maximum cardinality of a union-h-ee 

<~clX/" " A family ~ is weakly union-free if for every disti,wt A, B, C D family ~ r " - • 
N # 

A family g is called intersection-union-J)'ee if for every four distinct A, B, C, Dq <Y- 
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either A U B ¢ C U D  or A (~ B¢C'f~D holds. Denote by i~(n) its maxinml possible 

cardinality, for ~ c ( X ) .  

Clearly, Ur(n)~w,(n)-~i~(n)~f,(n). It is easy to see that i,(rl)--C~n~r for 
some Or>0, where.zt,=[4r/3]/2~(2/3)r+O(l). In [Sl it is proved 

Theorem 2.1. There exists a positive constant c'~ such that c~. n~-<t;,.(n). 

3. The Main Idea of the Proof: Lemmas 

3.1. It is a usual technique to investigate r-partite hypergraphs only. hi this way 
we can lose only a constant factor. (See kemma 5.1.) Then we reduce the general 
problem to the three-uniform case (see kemma 5.2). Finally, this is the most difficult 
step, in the case of r=3 ,  when we want to prove fa(n)=O(n2), we tl 3, to get a one-to- 
one correspondence between the disjohlt-union-free set-system ,-y~ and the pairs of the 
underlying-set X. In general, we will not succeed, but we will correspond a pair of X 
to a few menabers of ~ only. 

3.2. Lemmas. From now on we denote by {q, ("-._~, fq', etc., only bipartite graphs with 
parts A and B. Let us denote by ~(~)  the set of diagonals of quadrilaterals in N, i.e. 

:2/(~) =:{{u, IT}E( ALl B): . -  2 3x#, ' ,#A'OB such that {,,, x}, {.,-, ,,}, {r, .v}, {.,, ,,}E(¢ I. 

Note that we have ~((g)~f~=0.  

Lemma 3.1. L e t  c.# be  a bipartite graph and let ~(cg) be the set o f  diagonals o f  its 
quadrilaterals. Then we can get a quadrilateral-free subgraph . J ( f # ) c ~  deleting at 
most 1~O)(~)1 edges from f~. 

For the proof of this lemma we will use the following statement: 

Lernma 3.2. Let ~#= {Pt, P., . . . . .  P,,} be a collection o f  finite sets and suppose that 
d~(p) ~_ LI p I hohls/br ecery element p. Then I~ I ~[U ~[. 

p E p ~  ~, o k " 

Our main tool in establishing the validity of Theorem 1.2 is the next lemma. 
The bounds of this lemma are not exact and improving this lemma could eventually 

/ \ 

lead to decreasing tile coefficient of [r n l I ,  the upper bound o f  the theorem. 
\ / 

Lemma 3.3. Let ~a~ i be a bipartite graph with parts A and B, i= 1, 2 . . . . .  t. Sulgpose 
that ;411~ .c# i does not contain two disjoint edges and (~i U ~; does not contain a C~ ivith 
two-two neighbouring edges from ~ and ~.i, 1 ~ i ~ ] ~ t .  (1.e., ~ j  is a star and 
there is no quadrilateral (a, b, c, d) such that {a, b i, {b, c}EC~. {c, d}, {d, a}~.i ). 
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4. Proof of the Lemmas 

4.1. Proof  of  Lemma 3.2. We use induction on I U~l .  Now, it is permitted that a mem- 
ber belongs to :¢ with multiplicity. Let pE U ~  be an arbi t rary point and let 

LJ P=N, ,:V={P--N: P~:~, P-N¢O}.  We can apply the induction hypoth-  

esis for...V; hence we get !~l~d,~(p)+],,i.i~INi+]LL/l[-iU:~ [. I 
4.2. Proof  of Lemma 3.1. We use induction on the number  o f  edges of  (g. If there exists 
an edge E<N which is not contained in a quadrilateral of  ~.g then we can use the 
induction hypothesis for -~4 - {E} and set ,~ (.~) = , ~  (N - {E}) U {E}. 

From now on we suppose that the edges of  quadrilaterals in .(~ coxer the edgea 
o f  ~. We shall define a set of  edges, ,~(~g), ~)(c.Y)c~Y, ',;~((,#)l~!~(.~#)], ~.g .~(.~g) 
= , ~ ( N )  is quadrilateral-free. Let p be an arbitrary vertex of  (g (with d,Ap)>O). 
Define P={p~,pe . . . . .  p,,,}=F~(p), Q=F~e(p) and P~=Qi-IF,,,-(p~). (See Fig. 1.) 
Each edge is contained in a C4 so we have U P i = Q .  

P 
r 

o 

Fi~, / 

If ] P l ~  > ]Q[ then delete from (g the edges adjacent to p. Using the induction 
hypothesis for  the obtained smaller ~g' we get a :~(N'). Setting ~((¢)=:~(~g ' )  
U{{I,, q}: qEF:e(p)} we obtain:  

l:Y3(,~g)l = I~(-cg')t +IQ] =~ l~(~g')l + !PI ~--I@(,~g) I, 

and :g-.;A(N)--N'-,'A((g') is quadrilateral free. 
If ]Pl-<lQI then by Lemma 3.2 there exists a q CQ such that d,/q) 

<I,,~ i.e., IPC)F~(q)!-_[Qf-IF,(q). (Note that d~,~(q)>O 

for  all qCQ.) If the pair {x,y} is a diagonal of  a quadrilateral of .~ and [.v,.!'} 

~ /~} ~ ( ' ~ ' ~  t ' len the re|Tlainin~ two vertices o f  t,~lis quadrilateral belon~ to PU ~lb. ,,--j 
According to this, delete the edges joining q to POF:~(q). We get the graph ~¢". 
In the graph ~(N")  there is no edge fi'om q to Q, hence we get by the induction 
hypothesis that  ]M(qg)] = [.N((g')] + IPUqr~(q)l ~ I~(~")] + IQTlF~(q)[ ~ ].C)'((g)[. | 

4.3. Proof  of Lemma 3.3. (First step.) Let us denote by 6'(N) the set of  pairs {'c v} 
which possess a common neighbour  w. I.e., g((g)={{u,  v}: ~w such that [u, ,r}. 
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It is easy to see that, for i,%/, @(f~;)~c~(~a)=0. Now, apply Lemma 3.1 to 
• ~i.  We obtain d(~.q)=~*Y~ which is quadrilateral-fl'ee. Of course. ~ [ ~ ( . ~ ) 1  

~( ]A[)  + ( I B i ) a n d  ]LI4"(~;)I~(IJI)+ [IBI). Consequently, we aredone if we prove 

the following statement. 

Lemma 4.4. Let ~; be a bipartite, qua&'i&teral-free graph with parts A and B. i= 
=1, 2 . . . .  , t. Suppose that ~f[f]fg/5 does not contah7 two di,~joint edges and ~[I j~5 
does not contain a C~ with two-two neighbouring edges,from (.~ and ~5 for all I ~- i <j  ~ t. 
Then 

{t }+]L,, ~ '  e~'(~; )!. ~5' !%'] >: (IA[+lB])t/2+ 2 

Proof, We apply induction on ~YI~J;I. We need several definitions and a lemma. 
Define a graph J('(p) over the points {I, 2 . . . . .  t} for each point p~AIJB. 

°~#(p)={{i, j}:  ~u, v (ALJB such that {u,p}, {p, l,}(~;f"l~,~-}, i.e. the pair {i,j} 
~ ('p) iff (~ and ~j  intersect each other in a star with center i5. Hence o;/f (p)(-i :gg'(q) 

=f) fo," , ' # q ,  and U , g g ( p ) c [ 2  j .  (T={I v,~.,...,t}.) 
/ r e x  

Defineaset M ( E ) c T f o r e a c h p a i r  E< [2 ] I..J [2 / Let M(E)={i"  • E,-(I vCf]]_,,  ,, ,.,. 

Finally, define a subset of T for each edge F from U.(~, Let N(F)=  
= {i: F¢(.qf}. Of course, in some cases #[(p)  or M(E)  may be empty. 

Lemma 4.5, I f  there exists an edge {p, q}= F ( t J ~  such that i~,N(F) am/ 2 
+dar~v)(i)~d~¢;(p) J'or some i ( T  then we can choose subgraphs ¢.Yjc ¢~ sztch that 

Z I ~ j I - Z  I.(~71 - ] vg ( , ( ( ; ) [ -  I/J~;/c~;')[ • 
Proof of Lemma 4.5. Set ~e'~s,~ =.((;[-{F} and .~gJ~'=C4~- {F} if j~ ,N(F)(~F~ p)(i) 
and ff'-'=ff" otherwise. We deleted the edge F a t  most (dar~,~(i)+ 1) times, hence the 

" J " .1 
left-hand side is at most (d.,~,)(i)+l). However, we deleted every edge {q,r}, 
rCF~,~(p) from U~'(:(¢'). Hence the right-hand side is at least d,¢(p),- 1. | 

4.6. Now we can conclude the proof of Lemma 4.4 and thus that of Leln,na 3.3. 
We apply induction on /x,'[~l. IF there are F and i fulfilling the assumptions 

of Lemma 4.4 then we are ready. Thus, we can suppose that for each p ( A  I,JB and 
each i ( T  we have l+dm~v)(i)-~d~,;,(p). Sumnfing up these inequalities for all 
p~(A/JB)  we ~oet 

Z d~,,,(i) + iA] + !~1 ~ _Y7 d<(p) = 2/5~;'J. 
P P 

What is, [~;I>-(!AI+ IBi + t - 1 ) / 2 .  Hence, in this case, Z I'~Y;] ~t(IAI + 181)/2+[~J. I 
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5. P r o o f  of  the Theorem 

5.1. Lemmas. We use the  fo l lowing  t h e o r e m  of  E rd6s  and  K l e i t m a n  [5]" 

Lenmm 5.1. Let Y; be an r-graph over the n-element set X, n = n a + n . , + . . . + n ,  
(, 'zi~ I. integer). Ttzen tlwre exists a partition {X t ,  X~ . . . . .  X,} o f  X with [ X i l = n  i 
such that the subco/lectio~ ad q f . Y  defined by ad = {FGY;': ' I ¢Fff]Xi~ = t for  at/ 1 ~ i ~ r }  

/('1 has at /east  !YInln,_,. . .n,  r sets. i 

W e  need  the f o l l o w i n g  l emma .  

L e m m a  5.2. Let ff be an r-partite r-graph with parts Xt . . . . .  X~ where [X~i=ni, 
l h ~ n ~ < . . . ~ n ,  and r~3 .  For asubset  E c ( L J X i ) = X  we denote bv ad[E] the set- 
system {GEad" EcG} .  Then there exist pairwise dL~joint subsets El, E2 . . . .  , E,,~ such 
that !E l i=r -2 ,  IE~Q,KiI=I for  all l~_i:ct h and 1 ~ . / : : r - 2  and 

(+~-) ~ ad E i n, !~ [~,], ~ lad}. 
1 ~ i ~ n  I I l l  t72 • • ' H r - ' 2  ' 

P r o o f  of L e m m a  5.2. Let us c o n s i d e r  all sys tems  E~ . . . .  , E,,~ sa t i s fy ing  the c o n d i t i o n s  

oftheLemmae×cept(-~).WecanchoosesuchanE, ..... E"~in n'!f'h]X"'!f"2]Uh) tn ,}X... 

Xn,! fn...,1 way. Let us note that each F~ad belon~zs to CJ'.~[E;] exactly 
"'" t nz ) 

n, X (n, - ,  ) ,  U h[n'- It ] X(,fl - l), Uhfn" - II ] >< ... ~1 (n , -  l), (";}:'-' l -  I }ti,nes. Thus the mean 
wdue  of IU~.~IE,]I is (,,1/,,,.,...~,_~)1~.~1. I 

5.2. Proof  of  Theorem 1.2. Let ,Y'c  r be a d i s j o i n t - u n i o n - f r e e  se t - sys tem,  IXI = n .  

Let n i = l ( n + i - l ) / r J  l:ci:~r. Use k e m m a  5.1. W e  o b t a i n  X~ . . . .  , X, and  the  

~ / [ n  / N o  wusin_o L e m m a  5.2 we ~oet ad[E,], r -pa r t i t e  ff wi th  [adl~'hn'- ' . . .n~[ '~ ']  r " ~ ~ "" 

t l  l t l  1 , . .  ~7 r ~ ,l, Fadl --I- x - - v - v -  I~ i = 
1 7 1  . . .  1 7 r _  2 I'll . . .  17r - - ,  2 t';I 

~ -  _~  l l r _  l l l r  - -  . 

g e t  us def ine  the  b i p a r t i t e  g r a p h  re - ~" ~ - i -  ~,~--Ei:  ECad[E~]}. I t  is easy  to  check  t ha t  the  
sys tem ad z . . . . .  ad,1 sat isf ies  the  a s s u m p t i o n s  o f  L e m m a  3.3 (wi th  A = X , _ I ,  B = X , ,  
t = n , ) .  So a p p l y i n g  it we infer  

[,, 
~ ( n ) 1 I f n ' ] r -  l ~ L 2  t 2 ,  + 2 (nlnr-~-lTr--lr--2 ~ + 2 nz + [n,)12 -<_ 2-7( n ) ' - I  " ' 

. . . .  ~ [E,,~] with  

, r  [~[E, lr /-, 
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6. Remarks 

>//"/ >/f"/ Proposition 6, I. The limit lira ./'3(n 9 exists and it satisfies 1 ~ hm Ji~(n -~ =: 

~3.5 .  

Proof.  Let .Y'-:k be a disjoint-union-fl 'ee set-system on k points with !~1 =f3(k). Set ,(k] f.~(k), 2 =c~,. I f  n>n0(k)  and n -  l (rood k ( k - 1 ) )  then there exists an Sl(,7, k, 2) 

Steiner-system 5,L Replace each member  o f  ~ by a copy of  ~ .  We get a disjoint- 
union-free system on n points. Hence for n>n0(k ,  ~) we have c,,=~c k - ~  for all e,>0, 
proving the existence o f  the limit. The inequality follows from Theorem 1.2. 1 

I cannot  prove the corresponding statement lorry(n).  

6.2. Lemma 3.3 belongs to the structure #Ttersection problems posed by V. T. Sds 
(cf. [121). 

6.3. The determination o f  J~(n) belongs to the so-called Turzin-type problems, i.e. 
what is the maximum number  o f  r-subsets o f  an n-set if it contains no sub-system 
isomorphic to one member  o f  a set o f  r-graphs J#. (Generally tiffs og# is finite.) This 
maximum is usually denoted by ex,(n, ,:;~:). Let us define U as the class o f  set-systems 
having four distinct members A, B, C, D such that A U B =  C U D  and A fh B= C(~ D 
= qS. In this terminology we proved in Theorem 1.2 that 

1 < e x , ( . , U ) < - 2  r - I  " 

Let us denote  by /4/those class o f  the set-systems consisting o f  3 r-sets, A, B, C such 
that A N B = 0, C ~  A L) B and I C ( '1A!= I. With this notation,  Frank[ and the author  [9] 

have proved that  ex,(n, W ) =  r - 1  holds for  n>n0(r ) .  Thus, Conjecture 1.4, if 

true, shows that  ex,(n, U ) - e x , ( n ,  W ) =  O(n). 
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