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HYPERGRAPHS IN WHICH ALL DISJOINT
PAIRS HAVE DISTINCT UNIONS

Z. FUREDI

Received 22 April 1983

Let F be a iet-system of r-element subsets on an n-element set, r=3, 1t is proved that if
EAERE [ ”1] then .# contains four distinct members 4, B, C. D such that 41 B=Ci)D and
ATB=CnD=4v.

1. Introduction and the Theorem

Let 7 and r (n=r) be positive integers and let X be an n-element set. We

,

X o v X )
denote by [’] the family of all r-element subsets of X. If fé’c[7) then we call 4 a

. AUB A B .
graph on the vertex-set X. Furthermore, if fé"c[ 3 } — [2] — (2], then we say ¥4 is

a bipartite graph with parts 4 and B. The degree of the point p£X in the set-system
F s denoted by dz(p) or hl]eﬂy d(py=|{F: p€ FEF}|. Asusual. I'4(p) denotes the
neighbourhood ofthe point p in the graph %, ie. I, (p);{q Ip. c/,E”} T (p)
=dgz(p). We cuall the family F disjoint-union-free if for every A. B, C.DEZ,
ATB=0, CND=0 and 4UB=CUD imply {4, B}={C. D}. That is, ali disjoint
pairs have distinct unions.

) . . S _ (X .
Erdgs [4] asked to determine the maximum cardinality of _%C( r]‘ & is dis-

joint-union-free. In the case r=2 the question becomes: what is the maximum num-
ber of edges in a graph which contains no C, (C, is the cycle of length 4) as a subgraph
(not necessarily induced subgraph). This problem goes back to 1938 (see Erdgs [3]).

Definition 1.1, Ler f.(n) be the maximum number of edges in a disjoint-union-free
> r E . g R

X
Samily 7, ,?FC(,,J. X|=n.

¥
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Erd@s, Rényt and T. Sos [6] and Brown [2] proved (see also Blanchard [1])
_/Zz(n):[%jto(l)) n%2. Recently, the author [10] determined the exact value of /(1)
A . 1 »
for an infinitely many values, namely, for ¢=2% We have fz(q'~’+q+l):—2—q(t/+l)-.

As Erdds and Frankl pointed out in 1975, one can prove for all rz:2 that
()< O(n~°?) (unpublished). In [4] Erd8s mentions that he and Bollobds proved
that ¢, m?<f,(n)<cyn® for some positive ¢;=0. However, they have not published
this result since that time (1977) and failed to reconstruct the proof.

— -1
Theorem L.2. /f rz=3 then (’:*;] +[”I—J = f,(m)=<3.5 [,’_l ]),

We obtain the lower bound considering the set-system of all r-element subsets of
. . . n—1 . S
X which contain a fixed element plus an arbitrary system of —J pairwise disjoint
-
r-element subsets not containing that element. In the case r=3 one can construct

a little bit larger example:

. . X .
Example 1.3. Let .% bean S;(n. 5, 2) Steiner-system, i.e. EPC[:’) and forall x, v X
there exists exactly one member S¢€.% containing them. This Steiner-system exists iff

n=1 or5 (mod 20) (see Hanani[11]). Replace each S€.¢ by [?] So we getadisjoint-

union-free set-system F (/g] such that l:ﬁ?[:(g].
Conjecture 1.4. If' r=3 and n=ny(r) then f.(n)= [12 I]' Moreover, for rz=4,

1= (:1: ;] + l” — ]J holds.

2

The proof of Theorem 1.2 is based on a rather technical lemma (Lemma 3.3).
which we state in §3 and prove in §4, along with other lemmas, needed for its proof.
For those who don’t have the patience to go through its proof, we recommend just
to read its statement and then go directly to §5 and see how it implies Theorem 1.2.

2. Other Union-free Properties

In [7] and [8] Frank! and the author have introduced the following notions and
functions: Call the family & union-free if, for every 4, B, C, DEF, AUB=C_D
implies {A4. B}={C, D}. Let u,(n) denote the maximum cardinality of a union-free

. X . . .
family ,’ic[r . A family & is weakly union-free if for every distinct A, B, C. D

|

: X C ]
we have AUB=CUD. Let w,(n) denote max {[,971: fc(r), weakly unton-free.

\h

A family & is called intersection-union-free if for every four distinct A, B, C, D= F
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either AUB=CUD or ANB=CND holds. Denote by 7,(n) its maximal possible
. X
cardinality, for fc(

Clearly, u(n)=w,(m) =i (M=f(n). It is easy to see that i(n)=c¢.n*> for
some ¢, =0, where »,=[4r/3]/2~(2/3)r+O(1). In [8]itis proved

Theorem 2.1. There exists a positive constant ¢] such that ¢, n*<u,(n).

3. The Main ldea of the Proof: Lemmas

3.1 It is a usual technique to investigate r-partite hypergraphs only. In this way
we can Jose only a constant factor. (See Lemma 5.1.) Then we reduce the general
problem to the three- umform case (see Lemma 5.2). Finally, this is the most difficult
step. in the case of r=3, when we want to prove f:()=0(@?), wetry to get a one-to-
one correspondence between the disjoint-union-free set-system .% and the pairs of the
underlving-set X. In general, we will not succeed, but we will correspond a pair of X
to a few members of F only.

3.2. Lemmas. From now on we denote by 4, 4,, 4, etc., only bipartite graphs with
parts 4 and B. Let us denote by Z(%) the set of diagonals of quadrilaterals in ¢, i.e.
o AUB '
5](5’/(}::{{:1~ u}g[ 5 ]: Jy#=y€AUB such that {u, x}, {x, e} {o, ) {0, u}éfﬁ}.

Note that we have Z(#)N%=0
Lemma 3.1. Let % be a bipariite graph and let 4(%) be the set of diagonals of its

quadrilaterals. Then we can get a quadrilateral-free subgraph </ (9)% deleting at
most |2(%)| edges from 4.

For the proof of this lemma we will use the following statement:

Lemma 3.2, Let #={P,. P,, ..., P,} be a collection of finite sets and suppose that
da(m=| U P! holds for every element p. Then |P|=|U2|.

pipc®

Our main tool in establishing the validity of Theorem 1.2 is the next lemma.
The bounds of this lemma are not exact and improving this lemma could eventually

. . n
lead to decreasing the coefficient of (r— l)‘ the upper bound of the theorem.

Lemma 3.3. Let 4, be a bipartite graph with parts A and B, i=1, .. t. Suppose
that 4, ﬂ‘? does not contain fvo disjoint edges and %, U%; does not contain a Cy with
rwo- tno ne:gllbow ing edges from %, and 4;, 1 =i= /Ar ([e 4.10\%; is a star and

there is no quadrilateral (a. b, ¢, d) such that {a, b}, {b. c}E(é {c, a’}, {d.a}e9,).
A B
Then 3 1<g,.\§2[12'}+ [‘2')+(m+13m/2+[2].

1=i=t
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4. Proof of the Lemmas

4.1. Proof of Lemma 3.2. We use induction on |U#|. Now, it is permitted that a mem-
ber belongs to # with multiplicity. Let p€ U# be an arbitrary point and let

U P=N, A'={P-N: PEP, P—N=0}. We can apply the induction hypoth-
pLPL#
esis for.47 hence we get 12|=d,(p)+ |4 =N+ |UA = U2l |
4.2. Proof of Lemma 3.1. We use induction on the number of edges of 4. If there exists
an edge E€% which is not contained in a quadrilateral of 4 then we can use the
induction hypothesis for % —{F} and set (%)= (% —{ENJIE).

From now on we suppose that the edges of quadrilaterals in 4 cover the edges

of %. We shall define a set of edges, B(9), B(Y)Y, '%(%4)|=12(%)|, G - A(%)
=4/(%) is quadrilateral-frec. Let p be an arbitrary vertex of % (with d,(p)=0).
Define P={p,.ps. ... 00} =T5(p). Q=T4(p) and P;=0MT4(p). (See Fig. i}
Each edge is contained in a C; so we have UP,=0.

If |P|=]Q]| then delete from % the edges adjacent to p. Using the induction
hypothesis for the obtained smaller %’ we get a A (%). Setting #(9)=#4(9")
U{{p. ¢}: g€ 4(p)} we obtain:

B(9) = 1BE) +10) = 25|+ |P| =
and % —#(%)=%"—#(%") is quadrilateral free.

If [P|<|Q| then by Lemma 3.2 there exists a ¢€Q such that d.,(¢)
<| U P{=10NTa(@l+1, ie. [PNT4(g)=]|QNIy(g). (Note that d,(g)=0

4P

for all' gcQ.) If the pair {x, v} is a4 diagonal of a quadrilateral of % and {x. 1}
q s -y

(%),

€ {g] (12(%) then the remaining two vertices of this quadrilateral belong to P! {p}.
According to this, delete the edges joining ¢ to PMI,(g). We get the graph %",
In the graph 2(%”) there is no edge from ¢ to Q. hence we get by the induction
hypothesis that  [#(%)|=|8(%")|+|PNT4(@) = |2(F)+1QNT 4(g)|=19(%). |

4.3. Proof of Lemma 3.3. (First step.) Let us denote by &§(%) the set of pairs {u. v}
which possess a common neighbour w. Le., 6’((9’):{{u, v}: Gw such that {u, w},
{w, r}€ @}
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It is easy to see that, for i), 2(9)N%(¥;)=0. Now, apply Lemma 3.1 to
%,. We obtain Z(9)=%, which is quadrilateral-free. Of course. > [2(%)]

= [Ig\] + [Igl] and |U&(%) = (IS_H] + [‘g‘) . Consequently, we are done if we prove
the following statement.

Lemma 4.4. Let %] be a bipartite, quadrilateral-free graph with parts A and B. i=
=1,2, ..., 1. Suppose that %% does not contain two disjoint edges and 47\)%;
does not contain a Cy with two-two neighbouring edges from 4 and % for all 1 £i=j=t.
Then

<t s { ,

3 1= (Al + B2 () +10e@).

1=i=t

Proof. We apply induction on >{%47|. We need several definitions and a lemma.
Define a graph # (p) over the points {1,2, ..., ¢} for each point pcAUB.

A (p={{i.j}: Ju.v€ AUB such that {u,p}, {p,0}€9/N%}. ie. the pair {i,j}

cA (p) iff 4/ and %] intersect each other in a star with center p. Hence # (p)1#(q)

=0 for p=gq. and U.;’f(p)c(g]. (T={1.2.....1}.)

. . AY (B . )
Define aset M(E)YC T for each pair Eé[z]U[z). Let M(E)}=1{i: E€&(%))}.

Finally. define a subset of T for each edge F from U®[. Let N(F)=
={i: F£%4{}. Of course, in some cases # (p) or M(E) may be empty.

Lemma 4.5. Jf there exists an edge {p,q}=Fc\J%] such that i€ N(F) and 2
+dyp () =dy (p) for some (€T then we can choose subgraphs %79} such that

2% =297 = |UEE)] - UEE])

Proof of Lemma 4.5. Set %/=%]—{F} and %/=9;—{F} if JEN(F)OII (i)
and 97 =% otherwise. We deleted the edge F at most (d,,,({)+1) times, hence the
left-hand side is at most (dyn(1)+1). However, we deleted every edge {g.r}.
rél"glg(p) from U&(%Y"). Hence the right-hand side is at least dy(p)— 1. |

4.6. Now we can conclude the proof of Lemma 4.4 and thus that of Lemuma 3.3.

We apply induction on >[%]l. If there are £ and / fulfilling the assumptions
of Lemma 4.4 then we are ready. Thus, we can suppose that for each p€é AUB and
cach /€T we have l+</,,m,,(‘i,)-—‘:d@,;(.p). Summing up these inequalities for all
peE(ALUB) we get

2y F1d+Bl = X dcfig (n) = 2%/
P

r

That is, |%{|= (4] -+ B+ 1—1)/2. Hence, in this case, > |4/ =r(|4]|+ |B])/'2+[;]. |
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5. Proof of the Theorem

5.1. Lenumas. We use the following theorem of Erdds and Kleitman [5]:

Lemma 5.1. Let & be an r-graph over the n-element set X, n=m-+n+..+n,
(n;= L. integer). Then there exists a partition {X. X,, .. X} of X with |X{|=n;
such that the subcollection 4 of F deﬁm'dbt G={Fc7F: ‘Fﬂ =1 forall 1=i=r}

has at least |Flnyny...n /( ] sets.
We need the following lemma.

Lemma 5.2, Let 4 be an r-partite r-graph with parts X,...., X, where |Xj=n,,
m=n=...=n, and r=3. For a subset EC(UX)=X we denote by Y[E] the set-
sysiem {GE€9: ECGY. Then there exist pairwise disjoint subsets Ey, E,. ..., E, such
that |El=r—2. (ENX;|=1 forall 1=iz=n, and 1=j=r-2 and

(+) > 9IE] .

1=izn, R P PO

W

Proof of Lemma 5.2. Let us consider all systems E,. ..., E,, satisfying the conditions

3 . . ml.. ",
of the Lernma except (» ). We can choose suchan £,. ..., £, in m! (nl]an! [”2] X ...
1 1

n
o] [ ”1 ] way. Let us note that each F¢% belongs to U¥[E] exactly

nl i, Hp_y

o 12— 1 =Y
ny X (= 1), ]X(nl - ! (n‘— l]x...,\((u] —1}! ( 1 )—tunes.Thusthe mean
1 1
value of |U{9 b,-]| 18 (m/mny..n._)%4|.

i

5.2. Proof of Theorem 1.2. Let F [X] be a disjoint-union-free set-system, |X|=n.
Let m=|(n+i—1D/r} 1=i=r. Use Lemma 5.1. We obtain X,, ..., X, and the

. . n .
r-partite 4 with |f§’|znlnz...rz,l.gf']/(r). Now using Lemma 5.2 we get 4[E,]. ...
. 4[E, ] with

> GIE] = 9] = ——|F| =
2 9IE] My .o By s d Ay oo Hee (n] 7]
;
mn,_n, 1F| . n | # |
= Hr 1

- (n—r+,l)/r[ n l]
e

Let us define the bipartite graph ¥4,={E—F,: E€%[E]}. It is easy to check that the
system %, ..., 4, satisfies the dssumptlons of Lemma 3.3 (with A=X,_,. B=X,,
t=m). So applymg it we infer

[r " 1] ey 1, 29 =

n 1 nY 71,_1) Mt n (nl]](l[ n ]
(r—l)n,_ln, [2(2]T2[ 2 ) 2 TN =221 I

td

A

1A
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6. Remarks

Proposition 6.1. The limit lim f,(n)/ [’21] exists and it satisfies 1= 1lim f,(m)/ [1,1] ==
=3.5.

Proof. Let %, be a disjoint-union-free set-system on k points with |#,|=/,(k). Set

ﬁ;(k)/(g):ck. If n=>ny(k) and #n=1 (mod k(k—1)) then there exists an S,(n. &, 2)

Steiner-system .%. Replace each member of & by a copy of #,. We get a disjoint-
union-free system on 1 points. Hence for n>ny(k, &) we have ¢,=c¢,—¢ forall ¢=0,

proving the existence of the limit. The inequality follows from Theorem 1.2. |

I cannot prove the corresponding statement for f£,(»).

6.2. Lemma 3.3 belongs to the structure intersection problems posed by V. T. Sés

(cf.[12]).

6.3. The determination of f,(#) belongs to the so-called Turan-type problems, i.e.
what is the maximum number of r-subsets of an s-set if it contains no sub-system
isomorphic to one member of a set of r-graphs #. (Generally this 5 is finite.) This
maximum is usually denoted by ex,(n, 5#). Let us define U as the class of set-systems
having four distinct members A, B. C, D such that AUB=CUD and ANB=CND
=¢. In this terminology we proved in Theorem 1.2 that

n—1 7[ n }
(2= =2(,")

Let us denote hy W those class of the set-systems consisting of 3 r-sets, 4. B, C such

that ANB=0, Cc AU B and |CMAl=1. Withthis notation, Frankl and the author [9]
-1 . .

have proved that ex,(n, W)z('rl_ 1] holds for n=n,(r). Thus, Conjecture .4, if

true, shows that ex,(n, U)—ex, (n, W)=0(n).
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