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Mental Poker with Three or More Players 
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A protocol is given which deals cards to three or more players in a fair way. 
Some related questions are also discussed. 

1. INTRODUCTION 

Four players want to play poker. This is not a mathematical problem yet. 
But suppose they can only communicate by telephone, i.e., they can send 
messages and not real playing cards to each other. The first problem they 
meet is how to deal the cards in a fair way using messages only. 

To solve this problem, they exchange a sequence of messages according to 
some agreed-upon procedure, called the protocol. This may require them to 
use some randomizing devices to compute the next message or their hands, 
etc. At the end of the protocol each player must know which cards are in his 
hand but must not have any information about which cards are in the other 
players' hands and in the remaining deck. The protocol should also ensure 
that the hands are disjoint and that the deal is fair in the usual sense. (We 
will have more to say about this point later.) Moreover, at the end of the 
game, each players must be able to check that, the deal was indeed fair and 
that no player has cheated. 

This problem originates from D. Grigoriev (Matiasevitch, 1982). It was 
solved by him, and also by Yu. Matiasevitch (Matiasevitch, 1982). Their 
solution works for bridge, i.e., the protocol deals the 52 cards to four 
players, 13 cards to each. In this paper we give another solution which 
works in a more general situation, for instance, for poker when, during the 
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game, the players may want to draw new cards from the remaining deck. 
They will be able to do so without obtaining any information on the other 
players' hands and the remaining deck. 

Mental poker with two players has recently been investigated in several 
papers: Adleman, Rivest, and Shamir (1981), Goldwasser and Micali 
(1981), and Lipton (1981). We mention two results. 

THEOREM A (Adleman et al., 1981). There is no fair-dealing protocol 
for  two players. 

THEOREM B (Adleman et al., 1981; Goldwasser and Micali, 
1981). There is a fair-dealing potocol for  two players is the thinking time of  
the players is bounded (and some problems are indeed eomputationally 
intractable). 

We do not go into details about this second result because our dealing 
protocol (for three or more players) is provably fair without any assumption 
on intractability. This protocol works because each player gets "partial infor- 
mation," sufficient to compute his hand but insufficient to determine the 
whereabouts of any card which is not in his hand. 

2. ASSUMPTIONS AND RESULTS 

Let L denote the set of cards in which each card is identified with one of 
the numbers 1,2,...,IL I. The players are P1,P2,. . . ,P, ,  their hands are 
L 1, L 2,..., Ln. Set k i = ]Lil and k = ]L ]. Of course, ~ _  1 ki <~ k. 

We make two assumptions about the possible behaviour of the players: 

(A1) The players do not form coalitions. 

(A2) There is a perfectly secure secret channel between every pair of 
players. 

A dealing protocol works in the following way. At the beginning of the 
kth step, the information known to players Pi (i--- 1,..., n) consists of the set 
of messages MI k) he obtained or transmitted so far and the random choices 
~I k~ he made so far. This information plus the rules of the protocol determine 
uniquely which player Pi is to be active in the kth step and what exactly he 
should do: He has to make a new random choice ~ and using MI k), ~I ~), ~ he 
has to compute either a card in his hand or his next message and transmit it 
to player Pj (who is again uniquely determined by M} k), ~}k), ~, and the rules 
of the protocol). The dealing protocol should also include a stopping rule. 

Let us denote by ~i and M i the set of all random choices made by Pi and 
the set of messages obtained or transmitted by Pi, respectively, during the 
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protocol. Once the random choices ~1,..., ~, have been made, M 1 ..... M,  are 
determined uniquely though M i depends on ~j ( j  ¢ i) through M i only. In 
this sense, every M i is a random variable composed from the random 
variables ~1,... ,~. Similarly, L i is determined by ~i and M i so L i is a 
random variable composed from ~1,..., ~n. 

DEFINITION 1. A deal is good if the hands are pairwise disjoint. 

DEFINITION 2. A dealing protocol is fa i r  if 

(1) It always produces good deals, 

(2) all possible partitions of L into L 1 ..... L n, L\O~'=ILi are equally 
likely (where ILit = ki ,  i =  1,..., n), 

(3) for every player Pi, for every Mi,  all possible partitions of L \ L  i 
into L ~ ..... L i- 1 ,  L i+ ,,..., Ln, L\{J]= 1 Lj  are equally likely (again [Lj[ = kj, 
j - - 1 , . . . , n ) ,  

(4) "afterward checking" is possible, i.e., when the game is over, each 
player can prove by revealing his random choices that he sent his messages 
according to the rules of the protocol and his hand L i was what it has to be 
according to these rules. 

As an example of a "nongood" dealing protocol suppose that every player 
picks (randomly) his own hand L i from L. In this case, of course, 
L t N L j 4 ~ O  can happen. As an example of a good but unfair protocol 
suppose that the two players split the 52 cards into two groups of 26 cards 
and then each of them picks five cards from his group. 

Now we can state the main result of this paper. 

THEOREM 1. For three or more players there exists a fa i r  dealing 
protocol. 

For the proof we will give a protocol that deals the cards one-by-one, thus 
it solves the problem of how to draw new cards from the remaining deck. 

As a matter of fact, we expect more from afterward checking then 
condition (4) requires. Namely, that L i is determined uniquely by M i, the set 
of messages obtained or given by P~. If this were not the case, i.e., Pi could 
have two hands L i and L~ with the same M t, then he could choose his hand 
to be L; or L[ according to his preferences, or during the game, when some 
other players revealed some of their cards. But we do not have to postulate 
this in (4) because it follows from (1) and (3). 

LEMMA 2. Conditions (1) and (3) assure that M i determines L i uniquely. 

This lemma implies Theorem A at once: 
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THEOREM 3. For two players, conditions (1) and (3) are contradicting, 
so there is no fair-dealing protocol f o r  two players. 

To see this, we mention that in case of two players M1 is known to P2 and 
consequently, L1 is known to P2 contradicting (3). However, the actual 
computation of L,. from M i (without the knowledge of ¢i) might be very time- 
consuming. This is what the proof of Theorem B is based upon. 

We mention here that for n/> 3 conditions (i)  and (3) of Definition 2 
imply condition (2). To see this let L~ and L~ be obtained from L 2 and L 3 by 
exchanging one card of L z to one card of L 3. Then 

Prob(Lx,..., L , )  = P r o b ( L z , L 3 , L 4  ..... L ,  IL l )  Prob(Ll) 

= Prob(L~, L~, L 4 ..... L ,  ILl) Prob(Lt) 

-- Prob(L,, L~, L~, L4,..., L,).  

It is clear that using a sequence of such or similar exchanges one can reach 
any deal from the fixed deal L~ ..... L n. 

Theorem 3 does not rule out the following possibility. Suppose the two 
players have already got their hands somehow (they picked them randomly, 
say) but that they do not know if the hands are disjoint or not. So they are 
to construct a "goodness-checking protocol," or checking protocol, for short. 
Of course they want it to be fair. 

DEFINITION 3. A checking protocol is fair, if 

(lc) it claims "the deal is good" if and only if it is good, 

(3c) in case of a good deal, for every player Pi, for every Mi, all 
possible partitions of L \ L  i into L~ .... , L i _ ~ , L i +  ~ ..... L n, L\(._Jy_IL j are 
equally likely (where ]Ljl-= k : , j  = 1,..., n), 

(4c) afterward checking is possible, i.e., when the protocol is finished 
(or after the game) each player can prove by revealing his random choices 
and his hand that he sent his messages according to the rules of the protocol. 

Once again, we expect more from afterward checking than (4c) requires, 
namely, that Li is determined by M~ uniquely provided the deal is good. But 
this follows from (lc) and (3c): 

LEMMA 4. Conditions (lc) and (3c) assure that M i determines L i 
uniquely, i f  the deal is good. 

THEOREM 5. 

THEOREM 6, 
protocol. 

There is no fa i r  checking protocol f o r  two players. 

For three or more players there exists a fa i r  checking 
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The last theorem gives a nondeterministic fair dealing protocol for three or 
more players: every Pi picks his hand L i randomly and then, using the 
protocol of Theorem 6 they check if the hands are disjoint or not. However, 
the expected number of iterations can be very large, and even more signifi- 
cantly, there is no way of checking that the players selected their hands ran- 
domly. 

3. PROOFS 

It is perhaps instructive to start with the proof of Theorem 6. 

Proof of Theorem 6. A code x is a permutation of the cards L. It is 
enough to show how to check i lL  i and Lj are disjoint or not. For this end Pi 
and Pj agree upon a (random) code which is known only to them, and send 
their encoded hands x(Li) and x(Lj) to some Pk (k ~ i, j). P~ determines if 
x(Li) 0 x(L~) is empty (or not) and sends the messages "Pi and Pj have 
disjoint hands" (or "the deal is not good") to every other player. 

Proof ofLemma 2. If Y~=I ILi] =]L], then M i determines L i uniquely 
because for any L[ different from L i the deal cannot be good. If 
Y~]=I ILil < ILl, then let L i and L[ be two hands for Pi consistent with his 
messages M i. By (1), no other player can have card from L t U L  [, 
contradicting (3). 

Proof of Lemma 4. This is identical with the previous proof. The only 
thing we have to mention is that each M i includes the message "the deal is 
good." 

Proof of Theorem 1. We describe the protocol in the following form. 
Suppose players PI,-.., Pn have their hands L 1 .... , Ln. (L 1 . . . . .  L~ = ~ can 
be the initial step of the protocol.) We suppose further that L i ~ Lj = O and 
that the players do not know anything about the other players' hands. We 
denote Pn by Q, Pi+ x is just P1 if i = n - 1. Greek letters will stand for a 
code of L, i.e., for a permutation o f L  = {1 ..... ILl}. So tc:L --,L is a bijection 
with inverse x -1, x( j )  denotes the x-code of card j. 

Step 1. Pi chooses a random x i ( i =  1 ..... n -  1), Q chooses a random 
code ~. 

Step 2. Pi transmits t¢i to Q (i = 1 ..... n - 1), Q transmits xiz~-~ to Pi+l 
(i = 1,..., n -  1). 

Step 3. P~ transmits xi(Li) to Pi+~ ( i =  1,..., n -  1). 

At this moment, Pi+l knows not only the xi-code of  L i but its 7r-code as 
well because (xizr-l)  -1 (xi(Li)) = zc(Li). 
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Step 4. Pi+l transmits n(Li) to P] ( j =  1 , . . . , n -  1, j 4 : i +  1), transmits 
~(Ln) to Pi (i = 1,..., n - 1). 

• At this stage players P~ ,..., P , _  ~ know every player's hand in x-code. All 
known information is summed up like this: 

P1 knows x 1 , K,_I 7r- ' ,  7r(L,),..., rc(L,_1), ~(L,,),LI 

Pi knows ~i, K~_I ~-~, ~(L1) ..... ~(L._I), ~(L.),Li 

P~-I  knows ~c,_ I , t¢,_2~r -1, 7c(L1),... , 7C(Ln_ 1), 7~(L,), L , _  l 

Q knows ~c~ ,..., K n_ ~, x, L n . 

If the protocol is initialized with L~ . . . . .  L ~ = O ,  Steps 3, 4 are 
omitted. Then the tableau can be built up using Steps 1, 2 and the following 
"dealing" steps. 

Now Q wants to draw a new card from the remaining deck. He will get it 
from PI (see Fig. 1). 

Step 5a. P1 chooses j C rc(L)\OT_~ 1r(Li) and transmits j to every other 
player. 

Then Q computes his new card as ~r-]( j)  and sets L~*- -L ,U  {lr-l( j)},  
and every other player sets ~r(L~) ~- rc(L~) U {j}. 

Now Pi wants to draw a new card, he gets it from Pi+i (Fig. 2). 

Step 5b. Pi+~ chooses j~.Tz(Z)\U~=1%(Zi) and transmits it to every 
other player except for Q. Pi+l transmits Kizr-~(j)to Pi. 

Then every Pj. sets ~r(Li) ~- rt(Li) U {j} and Pi himself computes his new 
card as ~r- 1 ( j)  = K~- I(K i ~ - 1 ( j))  and sets L i ~- L~ U { ~ -1 (j)}. 

This protocol clearly yields disjoint hands. It is also evident that it 
satisfies condition (4) of Definition 2. So it suffices to show that 
condition (3) holds as well because, as we have seen, it implies condition (2) 
if n> /3 .  

P2 

FIGURE 1 
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Define  Ji = zc(Li) (i = 1,..., n). Ac tua l ly  Ji is the set o f  n u m b e r s  chosen  in 
step 5 by  some  player ,  n a m e l y  by  P1 i f i =  n or  n - I and P;+~ otherwise.  So 
each  Jl  is a r a n d o m  var iable .  De no t e  the ac tual  values  of  the r a n d o m  
var iab les  Li, Ji, t¢,-~ zr-~ by L i ,  Je, a nd / i ,  respect ively.  

W e  cons ider  first (and ma in ly )  the case i =  1. Obse rve  tha t  the infor- 
ma t i on  k n o w n  to P1 is LI:.L1, Jl~--J1, Jz=]z,... J , = f , ,  x l=g l ,  
Kn_l n - 1  =,ft. Then  

P r o b ( L  2 = Z  z , L  3 = L  3 .... , L , = L , ] ~ , , M 1 )  

P r o b ( L i  = L i ,  Yi = J i  (i = 1,..., n),  K 1 = g l ,  K ,_ I  1r-1 = ¢7) 
7~ -1  • Prob(L1  Ll,di=Y:(i=l, . . . ,n) ,Kl=gl, t%_l =/Y) 

Here  the d e n o m i n a t o r  is equal  to 

D = ~ Vrob(Li  = L i ,  J i  = ]i (i = 1 ..... n), x 1 = g l ,  K ,_ I  zr- I  = ¢71 re) Prob(zc), 
rt 

where  the s u m m a t i o n  is t aken  over  all codes  zr with f i  = zr(Li) (i = 1 ..... n), so 

D= ~ Prob(Ji=fi( i=l  ..... n), K1 = g l ,  Kn_x = fire ] 7r) Prob(rQ. 
~: y;=~rtE,.) 
i=l, . . . ,n 

Similar ly ,  the n u m e r a t o r  can  be wri t ten as 

N = ~ P rob ( J i  - -  ] i  (i = 1 ..... n), K 1 = g l ,  x n - ,  = ¢77t I zr) P rob(z  0. ..,_a 
zr:Yl=n(T~ 0 

As all t e rms  of  the last  two sums  are the s ame  because  of  the independence  
of  the r a n d o m  var iab les  J i ,  tq,  and re, we have  

P r o b ( L  2 = Z, i ..... L ,  : Z n I ~1, M I )  

D I{zr: a~ = zr(Z,i) ( i =  1,..., n)}{ k,! ... k,!(k-~.'~kl)! 
= N - =  I{zr: ] ,  - -  zr(L1)}] - k , ! (k -k , ) !  
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Thus we have checked condition (3) for P~. For reasons of symmetry this 
condition holds for Pz,.-., P , -  ~ as well. To check it for Pn = Q is similar and 
is left to the reader. 

So the protocol given above is fair in the sense of Definition 2. But we can 
prove more about it. For l ~ L and k = 1 ..... n, let us call l @ L k or l ~ L k an 
"elementary event," and let A and B be two events formed from some 
elementary events using the operations of conjunction or disjunction. Fix 
i E  {1,..., n} and assume that B is consistent with the event L ~ = L  i. Then 

• Prob(A I B, ~,, Mi )  = Prob(A I B, L i = Li) ,  

where the first probability measure comes from the above protocol and the 
second one comes from the usual shuffling of the cards which is assumed to 
be perfect. The meaning of this equality is that for P~, ~i and Mi do not 
contain more information on the deal than L~, even it it has been revealed to 
him somehow that some cards 11,..., l r are (or are not) in some other players' 
hand. This can actually happen during the game. 

The proof of this fact is not difficult but a bit technical and is, therefore, 
omitted. 

We observe further that this equality implies condition (3) of Definition 2 
and, as a matter of fact, it ought to hold in any protocol which is "fair in 
common sense," 

Finally, we mention that the number of messages in this protocol is 
O(IZl .  n). 

4. SOME REMARKS ON BRIDGE 

In the game of bridge four players, North, South, East, and West get 13 
cards each in the deal and then E and W play against S and N. Suppose they 
use the protocol of Theorem 1, then E and W (and S and N) can directly 
communicate with each other, so they can send their partners extra infor- 
mation on their random choices, hands and so on. Actually, by Theorem 3, 
if N and S form a coalition during the dealing protocol and so do E and W, 
then there is no fair dealing protocol. 

This difficulty can be removed by the further "splitting" of the messages. 
We still use the protocol of Theorem 6. Suppose that, according to that 
protocol, S has to send a message, a permutation 7z, say, to N (see Fig. 3). 

Then S chooses a random permutation a, computes f l = a - l ~  and 
transmits a to W and fl to E. W sends a and E sends fl to N who computes n 
as 7t = a f l .  

This method does not give any extra information to W and E, but S may 
choose a so that a and fl give more information to N than n. To avoid this 
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W E 

FIGURE 3 

possibility we make some assumptions on the behaviour of the players. Let 
Px ..... Pn be the players and suppose that a graph G is given with vertex set 
P~,...,P,,. G is the graph of the "permitted communications." Now we 
assume 

(A1) the players do not form coalitions, 

(A3) there is a perfectly secure secret channel between Pi and Pj if 
and only if PiPj is an edge of G. 

In this model we have 

THEOREM 7. There is a fair dealing protocol if and only if G is doubly 
connected. 

A sketch of the proof. The if part follows from Menger's theorem (see 
Lovfisz, 1979) using the same method as in bridge. The only/fpart is similar 
to the proof of Lemma 2: Assume G is not doubly connected and still there 
is a fair dealing protocol. Then the deletion of a vertex, P~ say, produces (at 
least) two connected components, C~ and Cz. Then one can prove in the 
same way as in Lemma 2 that M~ determines uniquely the sets L (1)--- 
U {Li:Pi~ C1} and L ~2) = U {Li: PiE C2}. This contradicts to condition 
(3) of Definition 2. 

Finally we mention that one can further enlarge the class of graphs of 
permitted communications if a set of"pre-protocol communication" can take 
place. For instance, in the case of bridge E and W previously (i.e., before the 
dealing protocol started) agreed upon a secret permutation y. Now S wants 
to send zc to N, so he writes Ir = aft (where a is a random permutation) and 
sends a to /4/and fl to E. Then W sends a7 to N and E send y-  lfl to N who 
computes n as (a;~)(y-1/~)= a/~ = n (see Fig. 4). 

W E 

S 

FIGURE 4 
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