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The aim of this paper is to prove Theorem 1 which gives a full description of families of 
3-subsets in which any 4 points contain 0 or 2 members of the family. 

1. Introduction 

A hypergraph H = (V, ~g) consists of a vertex set V and an edge set ~, which is 
a family of subsets of V satisfying U ~ = V. It is called an r-graph if all edges have 
r elements. For W c V we set ~w = {U ~ ~ : E c W}, these are the edges spanned 
byW. 

Given integers n > k > r, 0 < s  <~(k) let us denote by re(n, r, k, s) the maximum 

number  of edges in an r-graph on  n vertices in which any k vertices span less than 
s edges. The determination of re(n, r, k, s) is a hopelessly difficult problem in 
general  even for r = 2. The wel l -known Turhn's theorem is the case s = (~). 

For  r>~3 and s = (k) we come to Turhn's problem: What  is the max imum 
number  of edges in an r-graph wi thout  a complete subgraph on k vertices. This is 
a challenging open problem for all k > r, Erd6s offers a monotone  increasing sum 
for its solution (at present 3000 dollars). 

Turhn (cf. [3, 7]) conjectured tha t  m(n, 3, 4, 3) is asymptotic to na/24. 
Let  us consider the following 3-graph on 6 points: S(6)={(123) ,  (124), (345), 

(346), (561), (562), (135), (146), (236), (245)} (of. Fig. 1). One  can check that  any 
4 points span 2 edges in S(6). 

Example  L Suppose I VI = n and V is partitioned into V = VI U- • • LI V6. Define 
a 3-graph Hs  = (V, ~g), where 

~g={(vilv~v~): 1 <~il < i 2 <  i3~<6, v~ ~ V~, (i~i2i3)~S(6)}. 
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Fig. 1. 

If we choose a parti t ion satisfying l Vii i> [n/6J, then Hs has more than 10 [n/6J 3 
edges which is more  than nS/24, disproving Turb_n's c o n j e c t u r e - w e  will give a 
counter-example with more  edges in Section 2. 

Let us note that in Hs any four points span either zero or two edges. 

We shall show that a 3-graph having this property cannot have more edges than 
Hs (Theorem 2). This result is deduced from Theorem 1, which gives a complete 
description of 3-graphs with the above properties: apart the 3-graphs given by 
Example  1 they are of the following form: 

F_amm~e 2. Let V consist of n points on the unit circle, and let the edges be those 
3-tuples that the origin is contained in the triangle formed by them (tacitly we 
assumed that the origin is contained in the convex hull of the points but  it is on 
none of the lines joining two points). 

The fact that in this 3-graph any 4 points span 0 or 2 edges can be verified 
easily. 

Now we state our main  results formally.  

"l'lheorem L Suppose H = (V, £) is a 3-graph in which any 4 points span 0 or 2 
edges. Then H is isomorphic to one of the 3-graphs in Examples 1 or 2. 

" Iheo~m 2. Suppose that H = ( V ,  £) ,  I V l = n ~ 5  and any 4 points of V span 0 or 
2 edges. Then m a x  is attained exactly for H of the form Hs for some equiparti- 
aon, i.e., ln/61  <lv, I [n/6]. 

2. A remark on r e ( n , 3 , 4 , 3 )  

If one only wants to satisfy the condition: no four points span more  than 2 
edges, then one can add edges to Hs  iteratively: first parti t ion each V~ into 6 sets, 
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say W j x , . . . ,  Wi6 and add to Hs all 3-tuples (wiilwjqwji3) with (ili2i3)E S(6). Then  
repeat  this with the VCji, etc. 

Making the partitions always as equal  as possible, finaUy one obtains 
na ( l+o (1 ) ) /21  edges. This gives the first part  of the following: 

Theorem 3. 

~<m(n, 3 ,4 ,  3)~< 
7 n - 2 "  

The  upper bound was proved by Caen [2]. 
Let  us ment ion that the lower bound of the theorem was proved independently 

by Giraud [5] also. 
W e  shall discuss other  related extremal problems at the end of this paper. 

3. The proof of Theorem 1 

Suppose that H = (V, g)  is a 3-graph satisfying the assumptions, i.e., whenever  
(xyz) ~ g and v is another  element of V, then there is exactly one more edge 
spanned by {x, y, z, v}. 

For v e V let us define the neighbourhood of v: N(v)=  {(xy): (xyv)~ ~}. 
W e  distinguish two cases. 

(a) For  some v ~ V, N(v)  contains an odd cycle: (xlx2), (x2x3) , . . . ,  (x2,+lxx). 

P r o ~ n  1. N(v) contains a cycle of length 5. 

Proof.  Suppose x x , . . . ,  x2t+x form an odd cycle of minimal  length. Since t = 1 
would yield ~> 3 edges on 4 points, t i> 2. Suppose for contradiction, t 1> 3. 

By the minimal  choice of t,(v,x~xi)C,g holds unless i = j + l  or j = i + l .  
Looking at 4 vertices v, x~, x~+l, xj with j¢: i -  1, i + 1, i + 2, we conclude (x~Jq+lxj) ~ 
~. Consequently the 4 points x~, x2, x4, xs span 4 edges, a contradiction. [ ]  

Actual ly our argument gave for the five-cycle x l , . . . ,  xs that (x~q+lx~+3)e 
holds for i = 1 , . . . ,  5 (the subscripts are understood mod 5). -That is the 3-graph 
spanned by v, X l , . . . ,  x5 is isomorphic to S(6). Set Xo = v. 

First we show that w, x0, x a , . . . ,  x5 span a 3-graph of the form Hs, given by 
Example  1. 

Looking at the 4-tuple w, Xo, x~, x2 and using that the automorphism group of 
S(6) (which is As) is doubly transitive, we may  assume (wxlx2)~g.  

Similarly, with w, x~, x2, x3 we infer (wx2x3) ~ g. 
In  particular (WXoX~) f~ ~g holds for i = 1, 2, 3. 
W e  claim that the same holds for i = 4 , 5 .  Consider wxxx2x4, we infer  
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(wx2x4) ¢~ ~g. Now look at wx0x2x4. They span no edge, especially (WXoXa)q~ ~g. 
Similarly (WXoXs)~ ~g holds. Looking at the sets WXoXiyn+l we conclude (wx/x~+l) 
g, i.e., w, xl,  x 2 , . . . ,  x5 span S(6). 

These show that if we have S(6) plus one point, then they span a 3-graph of the 
form Hs. Now the general case follows easily, e.g. by induction on n. 

(b) N(v)  is bipartite for all v ~ V. 

Let x be a fixed vertex and (A, B) a fixed bipartit ion of N(x). 

Proposit ion 2. I f  (ab ) ~ N(x),  (ab') ¢ N(x), then (abb') ~ ~g. 

Proof.  It is sufficient to consider the 4-tuple (xabb'). [] 

Denote  by deg(c) the degree of the vertex c in N(x).  Order  the elements of A 
and B according to their degrees: A = { a l , . . . ,  ak}; B = { b l , . . . , / h } ;  deg(ax) >~ 
• • • >I deg(ak), deg(b~) 1>- • • >1 deg(b~). 

Proposition 3. Suppose (a~bj)~N(x), i'<~i,j'<~]. Then (avbi,)eN(x) holds. 

Proof.  Clearly, it is sufficient to prove the statement in the case i = i'. Set a =a~ 
and suppose for contradiction (abj,)¢N(x). Now deg(br)~deg(bi)  implies the 
existence of a '  ~ A with (a'b~) ~ N(x), (a', bj) ¢ N(x).  

Applying Proposition 2 four times we infer that a, a ' ,  b;, bj span 4 edges, a 
contradiction. []  

]Proposition 4. Neither A nor B contains an edge of H. 

Proof.  Suppose by symmetry  (ala2a3) is an edge of H contained in A. Consider- 
ing the four points x, a~, a2, a3 we arrive a t  a contradiction with (A, B) being a 
bipart i t ion of N(x).  [] 

Proposit ion 5. Suppose a ~ A,  b, b' ~ B. Then (abb') ~ *g if and only if exactly one 
out of (ab) and (ab') belongs to N(x). 

Proot. Since N(x) is bipartite, (xbb')¢ g. Now the statement follows by consider- 
ing the four point x, a, b, b'. [ ]  

Let us call v, w ~ V equivalent if N(v) = N(w) .  It is easy to see that adding or 
removing equivalent  points does not change the four points property. 

]Proposition 6. Two points v, w are equivalent if and only if there is no edge in H 
containing both of them. 
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Proof.  If for some z, (vwz)~ ,g, then (vz)~ N(v) but  (vz)~ N(w), that is v and w 
are not equivalent.  Suppose now that {v, w} is not contained in any edge. Choose 
y, z ~ V - { v ,  w}. Considering v, w, y, z it follows that  either both (vyz) and (wyz) 
are edges or none of them, proving the proposition. []  

Clearly it is sufficient to show that H is isomorphic to Example 2 in the case: 
there are no two equivalent vertices. In view of Proposition 6 we assume that any 
pair of vertices is contained in at least one edge. Consequently N(x) has no 
isolated vertices. 

If a, a '  c A  have the same degree, then by Proposition 3, they have the same 
neighbourhood in N(x). Thus, by  Propositions 4 and 5, {a, a'} is contained in no 
edge, a contradiction. We infer 

l >~deg(a~)>. • • >deg(ak)>~ 1; k >~deg(bl)> • • • > d e g ( / ~ ) ~  1. 

This is only possible if k = l and deg(a~)= deg(bi)= k -  i +  1. More exac t ly -  
using Proposit ion 3-(a~,  b j )~N(x)  if and only if i + ] ~ k + l .  

Now imagine that we have placed these 2k + 1 points  in the vertices of a regular 
(2k + 1)-gon on the unit circle in the order x, a k , . . . ,  aa, b l , . . . , / ~ .  Then  (a~b i) 
N(x)  if and only if the triangle xa~bj contains the origin. Now Proposition 5 yields 
that 3 points form an edge in H if and only if the corresponding triangle contains 
the origin, concluding the proof of Theorem 1. [ ]  

Remark 1. Our  proof showed that in Example 2 one can always move the points 
to the vertices of some regular (2k + 1)-gon without  altering the 3-graph. In 
particular, if any two vertices are covered by an edge, then n is odd. 

To prove Theorem 2 just note that if H can be obtained by putting 
d l , . . . ,  d2k+l points into the vertices of a regular (2k + 1)-gon, then the number  
of edges is maximized if the ~ ' s  are as equal as possible. Thus it is upperbounded 

by 
+ 

(n/(2k +1))3(2k + l ) ( k 2 1 ) / 3  (<n3/24), 

which is always less than or equal  to the maximal  size of a 3-graph coming from 
Example  1, with equality holding only for n ~< 5 -  then  the two examples coincide. 

4. Conclu, dllm2~ remarks and open problems 

The value of our Theorem 1 is given partially by  the fact that there are very few 
exact results concerning 3-graphs. 

Following a conjecture of Katona  [6], Bollobhs [1] proved that if in a 3-graph 
on n vertices no edge is containing the symmetric difference of two other  edges, 
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then it has at most [n/3J [(n + 1)/3J [(n + 2)/3] edges. In [4] for n > 800 we gave a 
more exact form of this result by showing that if the 3-graph has at least as many 
as above edges than either it contains 3 edges of the form (123), (124), (345) or it 
is the complete 3-partite graph, that is V = V1LI V2 U V3, the V~'s are disjoint and 
the edges are the triples meeting all the V~ (Bollobhs excluded the configuration 
(123), (124), (134) also, however, his result holds for all n). 

Let us mention the foUowing: 

Conjectm'e 1 (Erd6s and S6s [3]). Suppose H = (V, ~g) is a 3-graph in which N(x)  
is bipartite for all x ~ V. Then I~gl < n3/24. 

Example 2 shows that one can have as much as n3(1 +o(1))/24 edges. Another,  
more general example is provided by taking a random tournament on n points 
and the 3-cycles of it as edges. 

Problem 1. Suppose H = ( V ,  ~g) is an r-graph on n points in which any r + l  
points span zero or two edges. Determine max ]gl- 

An interesting example of such r-graphs is given by 

• ~ m p l e  3. Put n points on the surface of the unit sphere in r - 1  dimension. Let 
r points form an edge if the corresponding simplex contains the origin. 

It is easy to see, that choosing the points at random gives (7) (1+o(1) ) /2  "-1 

edges and one cannot have more edges in this example. 
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