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Union-free Hypergraphs and Probability Theory 

PETER FRANKL AND ZOLTAN FUREDI 

Let F(n) denote the maximum number of distinct subsets of an n-element set such that there are 
no four distinct subsets: A, B, C, D with A v B = C v D. We prove that 2<n-Ios3ll3 - 2.;:; F( n).;:; 
2<3

n+Z)/
4

• We use probability theory for the proof of both the lower and upper bounds. Some 
related problems are considered, too. 

1. INTRODUCTION 

In 1969 Erdos and Moser [4] raised the problem of estimating f(n), the maximum 
number of distinct subsets of an n-element set such that all the f"<;>) pairwise unions are 
different. 

THEOREM 1. 2(n-3)/4~J(n):s;; 1 +2(n+l)/2. (1) 

Notice that the upper bound is an immediate consequence of (I<;J) :s;; 2n. To prove the 
lower bound we use an algebraic construction which is a modification of a construction 
of Babai and S6s [1]. How a family of sets can fail to have the union-free property? There 
are essentially two possibilities: 
(a) there are four distinct sets A, B, C, D with Au B =CuD. 
(b) there are three distinct sets A, B, C with Au B = Au C. 

We call families for which (a) never holds weakly union-free, and those for which (b) 
never holds cancellative (the second name indicates that Au B =Au C implies B = C). 
We denote by F(n)(G(n)) the maximum number of subsets of an n-set in a weakly 
union-free (cancellative) family, respectively. 

Our main result is the following: 

THEOREM 2. (2) 

The lower bound is deduced by a non-constructive, probabilistic method. The proof 
of the upper bound uses information theory, it was inspired by the paper Kleitman, 
Shearer and Sturtevant [9]. For cancellative families we prove: 

THEOREM 3. (8/9)'<n>133n13 ~ G(n) < n IS (n :2l: 14), (3) 

where e( n) is determined by 0 ~ e( n) ~ 2, n + e( n) is divisible by 3. 
Erdos and Katona ( cf. [8]) conjecture that the lower bound is exact. Their construction 

is simple: let X~> ... , Xq be pairwise disjoint sets with union of size n with !Xi!= 2 or 3 
and with at most two sets of size 2 among the Xi. Let our family consist of all the 
transversals that is of those sets which intersect each Xi in one element. Clearly this 
family achieves the lower bound and it is cancellative. 

2. RELATED AND OPEN PROBLEMS 

Let k be an integer, k:2l:2. Let us denote by fk(n) the maximum number of k-subsets 
of ann-set forming a union-free family, Fk(n), Gk(n) are defined similarly. Then j 2(n), 
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F2(n), G 2(n) denote the maximum number of edges in a graph without a cycle of length 
3 or 4, of length 4, of length 3, respectively. The problem of determining F2(n) was raised 
by Erdos [3] already 45 years ago, but it is still unsolved. However it is known that 

[ 
n3/2 ] 

F2(n) = 1(1 +o(l))-
2
-+o(l) . (4) 

Recently the second author determined the exact value of F2( n) for n = 4• + 2• + 1. He 
proved: ( cf. [7]) 

For / 2(n) it is only known that 

1 __ n3/2 < • (n) < !n3/2 
2. 21/2 J2 2 . 

The determination of G2(n) is a special case of Turan's theorem ([11]): 

G2(n) = [n2/4]. 

For n = 3 the authors proved in [8]: 

h(n) = [n(n -1)/6], 

and 

FJ(n) = n(n -1)/3 for n > n0 and n = 1 (mod 6). 

Bollobas [2] proved: 

[ n] [n + 1] [n +2] G3(n) = 3 -3- -3- . 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

For k ~ 4 no exact values are known. The authors have established several bounds for 
fk(n) and Fk(n), e.g. (cf. [6]): 

/4(n)=[1 +o(1)]n 3/24. (11) 

For Gk(n) Bollobas [2] conjectures that 

Gk(n) = fl [nk+ i]. 
o~r<k 

(12) 

It is easy to see that this is a lower bound for Gk(n). We prove the conjecture for n,;;; 2k. 

PROPOSITION 2.1. For n,;;; 2k we have 

Gk( n) = 2"-k. (13) 

CoROLLARY 2.2. For n ~ 2k we have 

(14) 

For the problems considered in detail in this paper the most important would be to 
determine limn_.oo log h( n )/ n where h is any off, F and G. For f and F it is not even 
proved yet that this limit exists, for G it follows from G(n 1 + n2) ~ G(n1)G(n2). 

Let us note that equation (12) would imply limn_.oologG(n)/n=3 113 =1·44 ... The 
upper bound of Theorem 3 gives 1· 5. 
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3. THE PROOF oF THE UPPER BouND OF THEOREM 2 

Let 9' = {F~. ... , Fm} be any weakly union-free family of subsets of {1, ... , n}. Let V; 

be the characteristic vector F;: v; is a (0, I)-vector which has 1 in the jth position if and 
only if j E F;. The following proposition can be proved easily. 

PROPOSITION 3.1. The (m; 1
) sums V; +v;' (1 ~ i ~ i' ~ n) are all distinct (0, 1, 2)-vectors 

of length n. 

Notice that this proposition already implies (m;t) ~ 3n, in particular m < 3<m+t)/2
• 

However, we want to show that the considerably stronger inequality (2) is valid. Let us 
give weights to the vectors v; +v;·. Let the weight, w(v; +v;·) be 1 if i = i' and 2 if i-¥- i'. 
Then the total sum of weights is m 2

• Let us define a probability distribution x on these 
sums by setting p(x = V; +v;.) = w(v; +vi')/ m2

• Then x can be considered as a random vector 
x = (x~o ... , Xn) where xi is the frequency distribution of Os, ls and 2s in the jth position. 
If di denotes the degree of j in 9', i.e., the number of sets containing j and Pi= di/ m, 
then xi is given by p(xi=2)=pJ, p(xi=1)=2pi(I-pi), p(xi=O)=(I-pi)2

• Thus the 
information-theoretic entropy of xi is: 

log means log2• The next proposition can be proved by elementary analysis: 

PRoPOSITION 3.2. The function in equation (15) takes its maximum value for Pi=! 
where H(xi) = ~-

The next proposition is from [10, p. 33]. 

PROPOSITION 3.3 If x = (x~o .. . , Xn) is a random vector then 

H(x)~ I H(xj)· (16) 
l=s;;:j~n 

Let us now count H(x). 

Now combining expressions (5), (6) and Proposition 2.2 we obtain m2/2<23n12, yielding 
the upper bound of expression (2). 

4. THE LowER BouND OF THEOREM 2 

Let us consider a random (0, I)-matrix of size 2m by n where each element is 1 with 
independent probability p (we shall fix m and p later). Each row of the matrix is the 
characteristic vector of a subset of {1, ... , n}. Let 9' denote the collection of the corres­
ponding (not necessarily distinct) sets. The probability that some 4 sets in 9' satisfy (a) 
is {1-2(1-p)2[1-(1-pi]r. This quantity becomes rn for p = (1-2112)/2. If we choose 
m at most 2<n-tog3

)
13 then the expected number of four-tuples in 9', satisfying (a) is at 

most m. Omitting one set from each of these four-tuples we omit at most m sets, i.e. at 
least m sets remain and since (a) is impossible for these sets, at most one of them appears 
twice. Consequently, F(n);;;. 2(n-tog3)/3 - 2. 
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5. THE PROOF OF THEOREM 1 

We only have to prove the lower bound. First let us note: arguing in the same way as 
for the lower bound of Theorem 2 but choosing p = 1/3 we can get as many as ( 1 + o(l )( 
27/19)"12 sets forming a union-free system, e.g. for n > 1000 we obtain 

(18) 

The inequality is actually stronger than that in Theorem 1, however it is non-constructive 
and valid only for large values of n. 

To give the other bound it will be enough to show that for every positive integer n we 
have 

(19) 

To prove this inequality, let us consider 4 pairwise disjoint n-element sets: X, X', Y, 
Y' and let us fix 4 embeddings of GF(2") into 2x, 2x·, 2 v, 2 v·, respectively: g, g', h, h'. 
Let I denote the element (1, 1, ... , 1) in GF(2"). Now let us define: 

.9!1 = {g(a) u g'(J- a) u h(a 3)u h(I- a3
): a E GF(2")}. 

We have to show that .9!1 is union-free. Suppose a, b, c, d are elements of GF(2") for 
which the corresponding sets satisfy (a) or (b). Then g(a)ug(b)=g(c)ug(d) and also 
g'(I -a)u g'(l-b)= g'(l- c)u g'(J- d). The second equality yields g'(a)n g'(b)= 
g'(c) n g'(d). We infer a+ b = c +d. Similarly, from the equalities for h and h', it follows 
that a 3 + b3 = c3 + d 3

• However over a field of characteristic 2 we have: a3 + b3 = 
(a +b)[(a + b)2 +ab ]. Since a +b = c +d, we infer ab = cd from a3 +b3 = c3 +d3

• Thus 
{a, b} and { c, d} are both the set of roots of the equation x 2

- (a + b )x + ab = 0 i.e. 
{a, b}={c, d}. 

6. THE PROOF OF THE BOUNDS (13) AND (14) 

Let .9!1 be a cancellative family and let A be a member of .9!1 with maximal cardinality, 
say k. Then Au B ~Au C implies B n ({1, ... , n}- A)~ C n ({1, ... , n}- A) forB, C E 
(.9!1-{A}). Thus 

(20) 

Now assume that .9!1 is k-uniform that is all its members have the same size: k. Then 
Bn({l, ... ,n}-A)=0 is impossible for BE(d-{A}), yielding equation (13), as an 
upper bound. To show that we have equality, let us partition {1, ... , n} into k sets 
X~> ... , Xk such that 2k- n of them have size l and the remaining ones 2. Let .9!1 be the 
complete k-partite graph that is 

.9!1 ={A: lA n Xi I= 1 for every 1,;;; i,;;; k}. 

We prove inequality (14) by a simple averaging argument. Suppose that .9!1 is a k-uniform, 
cancellative hypergraph on X = { 1, ... , n}, n :;;, 2k. Let Y be a random 2k-element subsets 
of X. Set dv = .9!1 n ([}. Then dv is cancellative. Thus equation (13) implies 

ldvl,;;; 2k. (21) 

Denoting by E(ldvl) the expected number of edges in dv, we have 

(22) 

Since the expectation can not be greater than the maximum, expressions (21) and (22) 
imply inequality (14). 
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7. THE PROOF OF THEOREM 3 

We need the following simple inequality: 

(~k) >22k/(2k)l/2, if k;;;. 7. (23) 

To prove expression (23), notice that it holds for k = 7. Then apply induction. Passing 
from k to k + 1 the LHS of expression (23) grows by a factor of 4(2n + 1 )/ (2n + 2), while 
the RHS by a factor of 4(2n/2n + 2)112. Now, comparing these two, expression (23) follows 
from 2n + 1 > (2n(2n +2)) 112. 

Suppose now that .sf/ is a cancellative family on {1, ... , n}. Let A be a member of .sf/ 
having maximal size. If IAI;;;. n/2 then inequality (20) yields expression (3). Thus we may 
suppose IAI < n/2. Let ak denote the number of k-element subsets in .sf/. By definition we 
have: 

and l.stil = I ak· 
O.;;k.;;nj2 

Thus inequality (14) implies 

l.stil ~ I ( n) 2k/(2k) 
o.;;k.;;n(2 k k · 

Using expression (23), for n;;;. 14 we infer 
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