Geometrical Solution of an Intersection Problem for Two Hypergraphs

Z. Füredi

Let A_1, A_2, \ldots, A_m be at most a and let B_1, \ldots, B_m be at most b-element sets and let t be a non-negative integer with the following property $|A_i \cap B_i| \le t$ and $|A_i \cap B_j| > t$ for $i \ne j$. Then $m \le \binom{a+b-2}{a-t}$. The proof uses Lovász's geometrical method and leads to several open problems.

1. Introduction

The following theorem plays an important role in the theory of τ -critical hypergraphs (see Berge [1], Lovász [14]):

(1) Let A_1, \ldots, A_m be a-element and let B_1, \ldots, B_m be b-element sets with the following property. $A_i \cap B_i = \emptyset$ iff i = j. Then $m \leq \binom{a+b}{a}$.

The case a=2 was proved by Erdős, Hajnal and Moon [6], and the general case by Bollobás [3]. Later other proofs were given by Jaeger and Payan [10], Katona [11] and Lovász [12, 13]. However, only Bollobás's original proof yields that in (1) equality holds iff the sets A_i and B_i are all a and b-element subsets of a given (a+b)-set.

Lovász [12, 13] proved the following two geometrical generalizations of (1).

- (2) Let A_1, \ldots, A_m be a-dimensional and let B_1, \ldots, B_m be b-dimensional subspaces of a linear space with the following property. $\dim(A_i \cap B_j) = 0$ iff i = j. Then $m \leq \binom{a+b}{a}$.
- (3) Let A_1, \ldots, A_m be a-dimensional subspaces of a linear space and let B_1, \ldots, B_m be b-element point-sets with the following property $A_i \cap B_i = \emptyset$ iff i = j. Then $m \leq \binom{a+b}{a}$.

2. RESULTS

Most of the above-mentioned authors conjectured the following generalization.

THEOREM 1. Let A_1, \ldots, A_m be a-element and let B_1, \ldots, B_m be b-element sets and let t be a nonnegative integer, $a, b \ge t$. Suppose further that $|A_i \cap B_j| \le t$ iff i = j. Then $m \le \binom{a+b-2t}{a-t}$.

Let X be an (a+b-2t)-element and let T be a t-element set and $X \cap T = \emptyset$. Define, $\mathcal{A} = \{A: |A| = a, T \subset A \subset X \cup T\}$, $\mathcal{B} = \{B: |B| = b, T \subset B \subset X \cup T\}$. Pairing the members of \mathcal{A} and \mathcal{B} in the obvious way shows that the upper bound in Theorem 1 is exact. But I cannot prove the uniqueness of the extremal families.

THEOREM 2. Let A_1, \ldots, A_m be a-dimensional and let B_1, \ldots, B_m be b-dimensional subspaces of the real Euclidean space, and let t be a non-negative integer, $a, b \ge t$. Suppose further that $\dim(A_i \cap B_j) \le t$ iff i = j. Then $m \le \binom{a+b-2t}{a-t}$.

The investigation of (3) leads to new problems. The statement (3) could not be generalized in the same way as (1) and (2). Define $m_t(a, b)$ as the greatest number m such

134 Z. Füredi

that there exist subspaces A_1, \ldots, A_m of rank a (i.e. dimension a-1) of the real projective space and pointsets B_1, \ldots, B_m of b elements with the following property. $|A_i \cap B_j| \le t$ iff i = j. Clearly,

(4)
$${a+b-2t \choose a-t} \leq m_t(a,b) \leq {a+b-t \choose b-t}.$$

The upper bound is obtained from (3) by replacing each B_i by the (b-t)-set $B_i - A_i$. There is no equality in (4), e.g.

PROPOSITION 3. For a = 2, t = 1, $b \ge 3$ we have

$$1+\lfloor b(b+3)/6\rfloor \leq m_1(2,b) \leq \binom{b}{2}+1.$$

Here

$$\binom{a+b-2t}{b-t} = b < 1 + \lfloor b(b+3)/6 \rfloor \quad \text{and} \quad \binom{b}{2} + 1 < \binom{b+1}{2} = \binom{a+b-t}{b-t}.$$

The simplest counterexample for the evident (but wrong) conjecture $m_t(a, b) = \binom{a+b-2i}{b-t}$ is the following. Set a=2, t=1, b=3 and let A_1 , A_2 , A_3 , A_4 be four lines in general position on the projective plane. Let us denote by A_{ij} the intersection point of A_i and A_j , and let $B_1 = (A_{23}, A_{34}, A_{42})$, $B_2 = (A_{13}, A_{34}, A_{41})$ and so on.

3. PROBLEMS AND REMARKS

- 3.1. Each statement stays true if we replace the assumptions $|A_i| = a$, $|B_j| = b$, $\dim |A_i| = a$... with $|A_i| \le a$, $\dim |A_i| \le a$ and so on.
- 3.2. Bollobás [4, 5] and Pin [15] conjectured and Frankl [7] proved that the assumptions of (1)–(3)

$$A_i \cap B_j = \emptyset$$
 iff $i = j$

can be replaced with the following weaker assumption.

$$A_i \cap B_i = \emptyset$$
 and $A_i \cap B_i \neq \emptyset$ for $1 \le i < j \le m$.

These stronger theorems have several applications in graph theory (Bollobás [4, 5]) and in extremal hypergraph theory (Füredi and Tuza [9]).

Theorems 1 and 2 are valid if we suppose our assumptions only for $1 \le i \le j \le m$.

- 3.3. Theorems (1)–(3) have Helly-type reformulations (see Lovász [12, 13]). E.g.
- (2)' Let a collection \mathcal{A} of a-dimensional subspaces of a linear space have the property that for every $\binom{a+b}{a}$ of them there exists a b-dimensional subspace meeting each of them in a nonzero subspace. Then there exists a b-dimensional subspace meeting each member of \mathcal{A} in a nonzero subspace.

We can reformulate (1), (3) and Theorem 1 and 2 in the same way.

3.4. The theorems (2), (3), (2)' hold for flats of matroids if this matroid can be coordinated over a commutative field (Lovász [12, 13]). (Rank a stands instead of dimension a.) Similarly, Theorem 2 holds for subspaces of a linear space over a 'great enough' commutative field (See the next section).

3.5. Tarján [16] generalized (1) proving that

$$\sum 1 / \binom{|A_i| + |B_i|}{|A_i|} \leq 1.$$

In the case of Theorem 1 a similar inequality seems to be true,

$$\sum 1 / \binom{|A_i| + |B_i| - 2t}{|A_i| - t} \leq 1,$$

but I cannot prove it.

3.6. We get a new problem in all three versions (1), (2) and (3) if we modify the assumptions in the following way: $|A_i \cap B_j| > t$ and $|A_i \cap B_i| \le l$ ($l \le t$). These problems seem to be much more difficult, I have no established conjecture.

4. Proofs

- 4.1. PROOF OF THEOREM 1. It follows from Theorem 2 in the same way as (2) implies (1). I.e. let $X = (\bigcup A_i) \cup (\bigcup B_j)$, |X| = N. Let us assign a vector $\mathbf{v}(x) \in \mathbb{R}^N$ to each $x \in X$ so that $\{\mathbf{v}(x): x \in X\}$ forms a basis of \mathbb{R}^N . Finally let $\overline{A_i}$ (and $\overline{B_j}$) be the subspaces generated by $\{\mathbf{v}(a): a \in A_i\}$. Now, Theorem 2 can be applied.
- 4.2. PROOF OF THEOREM 2. Suppose that A_i , $B_j \subset \mathbb{R}^N$. We can suppose that N is finite. For a subspace C let us define $C^{\perp} =: \{y \in \mathbb{R}^N : (c, y) = 0 \text{ for each } c \in C\}$, i.e. the orthogonal subspace to C. Two subspaces D and C of dimensions d and c are in general position if $\dim(D \cap C) = \max\{0, d+c-N\}$.

There exists a subspace C of dimension (N-a-b+t) which is in general position with respect to each A_i , B_i and $\{A_i \cup B_j\}$ where $\{A_i \cup B_j\}$ denotes the subspace generated by $A_i \cup B_j$. Projecting A_i and B_j to C^{\perp} , we get A'_i and B'_j . Now $\dim(A'_i) = \dim(A_i) - \dim(A_i \cap C) = a$ holds and similarly $\dim B'_i = b$, $\dim\{A'_i \cup B'_i\} = a + b - t$ and $\dim\{A'_i \cup B'_i\} \le a + b - t - 1$ hold for $i \ne j$. I.e. $\dim(A'_i \cup B'_i) \le t$ iff i = j.

Now find a subspace $C' \subset C^{\perp}$ of dimension a+b-2t which is in general position with respect to each $A'_i \cap B'_i$. $(\dim(A'_i \cap B'_i) = t)$. Let $A''_i = A'_i \cap C'$ and $B''_i = B'_i \cap C'$. Then $\dim A''_i = a - t$, $\dim B''_i = b - t$, $\dim(A''_i \cap B''_i) = 0$ and for $i \neq j$ we have $\dim(A''_i \cap B''_j) = \dim((A'_i \cap B'_i) \cap C') \ge 1$. Hence (2) can be applied to $\{A''_i, B''_i\}$.

4.3. PROOF OF PROPOSITION 3. The fact $m_1(2, b) \le {b \choose 2} + 1$ is trivial, because the lines A_2, A_3, \ldots, A_m contain at least two points from B_1 but A_i and A_j contain different pairs. The lower bound is a construction. Burr, Günbaum and Sloane [2] gave b+3 points P_1, \ldots, P_{b+3} on the plane and $1 + \lfloor b(b+3)/6 \rfloor$ lines $L_1, \ldots, L_{1+\lfloor b(b+3)/6 \rfloor}$ such that each L_i contains exactly three $P_j - s$. A much simplier construction can be found in Füredi and Palásti [9]. Let $A_i = L_i$ and $B_i = \{P_\alpha : P_\alpha \notin L_i\}$.

REFERENCES

- 1. C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
- 2. S. A. Burr, B. Grünbaum and N. J. A. Sloan, The orchard problem, Geometriae Dedicata 2 (1974), 397-424.
- 3. B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965), 447-452.
- B. Bollobás, Weakly k-saturated graphs, in Beiträge zur Graphentheorie (H. Sachs, H.-J. Woss and H. Walter, eds.) Leipzig, 1968, pp. 25-31.
- 5. B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
- 6. P. Erdös, A. Hajnal and J. W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964), 1107-1110.
- 7. P. Frankl, An extremal problem for two families of sets, Europ. J. Combinatorics 3 (1982), 125-127.

136 Z. Füredi

- 8. Z. Füredi and I. Palásti, Arrangements of lines with large number of triangles, Proc. Amer. Math. Soc. (submitted).
- 9. Z. Füredi and Z. Tuza, Hypergraphs without large stars, J. Combin. Theory, Ser. A (submitted).
- F. Jaeger and C. Payan, Nombre maximal d'arétes d'un hypergraphe critique de rang h, C. R. Acad. Sci. Paris 273 (1971), 221-223.
- 11. G. O. H. Katona, Solution of a problem of Ehrenfeucht and Mycielski, J. Combin. Theory, Ser. A 17 (1974), 265-266.
- 12. L. Lovász, Flats in matroids and geometric graphs, in *Combinatorial Surveys* (P. J. Cameron, ed.), Academic Press, New York, 1977, pp. 45-86.
- L. Lovász, Topological and algebraic methods in graph theory, in Graph Theory and Related Topics (J. A. Bondy and U. S. R. Murty, eds.) Academic Press, New York, 1979, pp. 1-15. (Proc. of Tutte Conference, Waterloo, 1977).
- L. Lovász, Combinatorical Problems and Exercises, Akadémiai Kiadó, Budapest, and North-Holland, Amsterdam, 1979.
- 15. J. E. Pin, On two combinatorial problems arising from automata theory, Annales Discr. Math. (to appear).
- 16. T. Tarján, Complexity of lattice-configurations, Studia Sci. Math. Hungar. 10 (1975), 203-211.

Received 23 February 1983

Z. FÜREDI Mathematical Institute of the Hungarian Academy of Sciences Budapest V., Realtanoda u. 13-15, Hungary