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Geometrical Solution of an Intersection Problem for 
Two Hypergraphs 

z. FDR£DI 

Let A 1, A2, .•• , A'" be at most a and let 8 1, ••• , Bm be at most b-element sets and let t be a 
non-negative integer with the following property JA, n B.J,;;; t and JA, n Bil > t for i >" j. Then 
m,;;; (":':_--;

2
). The proof uses Lovasz's geometrical method and leads to several open problems. 

l. INTRODUCTION 

The following theorem plays an important role in the theory of r-critical hypergraphs 
(see Berge [1], Lovasz [14]): 

(I) Let Ah ... , Am be a-element and let Bh ... , Bm be b-element sets with the following 
property. Ai n Bj = 0 iff i = j. Then m,;;; (a;~. 

The case a= 2 was proved by Erdos, Hajnal and Moon [6], and the general case by 
Bollobas [3]. Later other proofs were given by Jaeger and Payan [10], Katona [11] and 
Lovasz [12, 13]. However, only Bollobas's original proof yields that in (I) equality holds 
iff the sets Ai and Bj are all a and b-element subsets of a given (a +b)-set. 

Lovasz [12, 13] proved the following two geometrical generalizations of (1). 

(2) Let Ah ... , Am be a-dimensional and let Bh ... , Bm be b-dimensional subspaces of 
a linear space with the following property. dim(Ai n Bj) = 0 iff i = j. Then m,;;; (a;b). 

(3) Let A~> ... , Am be a-dimensional subspaces of a linear space and let Bh ... , Bm be 

b-element point-sets with the following property Ai n Bj = 0 iff i =j. Then m,;;; (a;b). 

2. RESULTS 

Most of the above-mentioned authors conjectured the following generalization. 

THEOREM l. Let Ah ... , Am be a-element and let Bh ... , Bm be b-element sets and let 
t be a nonnegative integer, a, b;;;. t. Suppose further that IAi n Bjl,;;; t iff i = j. Then m,;;; 
ca:~~21). 

Let X be an (a+ b- 2t)-element and let T be a t-element set and X n T = 0. Define, 
d={A: JAJ =a, Tc Ac Xu T}, ~ ={B: IBI = b, Tc Be Xu T}. Pairing the members 
of d and ~ in the obvious way shows that the upper bound in Theorem 1 is exact. But 
I cannot prove the uniqueness of the extremal families. 

THEOREM 2. Let A~> ... , Am be a-dimensional and let Bh ... , Bm be b-dimensional 
subspaces of the real Euclidean space, and let t be a non-negative integer, a, b ;;;. t. Suppose 
further that dim(Ai n Bj),;;; t iff i = j. Then m,;;; (a:~~21 ). 

The investigation of (3) leads to new problems. The statement (3) could not be 
generalized in the same way as (l) and (2). Define m1(a, b) as the greatest number m such 
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that there exist subspaces A~o ... , Am of rank a (i.e. dimension a -1) of the real projective 
space and pointsets B~o ... , Bm of b elements with the following property. lA n Bjl ~ t 
iff i = j. Clearly, 

(4) (
a+b-2t) (a+b-t) 

~ m,(a, b)~ b . 
a-t -t 

The upper bound is obtained from (3) by replacing each B; by the ( b- t)-set B;- A;. 
There is no equality in ( 4), e.g. 

PROPOSITION 3. For a= 2, t =I, b ~ 3 we have 

Here 

(
a+b-2t) 

b-t =b<I+Lb(b+3)/6J and 

The simplest counterexample for the evident (but wrong) conjecture m,( a, b)= (at':_/') is 
the following. Set a = 2, t = I, b = 3 and let A 1, A 2, A 3, A 4 be four lines in general position 
on the projective plane. Let us denote by Aii the intersection point of A; and Aj, and let 
B, = (A23, A34, A42), B2 = (A 13, A 34, A41 ) and so on. 

3. PROBLEMS AND REMARKS 

3.1. Each statement stays true if we replace the assumptions lAd= a, IBjl = b, dimiA;I = 

a . .. with lAd~ a, dimiA;I ~a and so on. 
3.2. Bollobas [4, 5] and Pin [15] conjectured and Frankl [7] proved that the assumptions 

of (I )--(3) 

iff i=j 

can be replaced with the following weaker assumption. 

A;nB;= 0 and for 1 ~ i <j ~ m. 

These stronger theorems have several applications in graph theory (Bollob<is [ 4, 5]) and 
in extremal hypergraph theory (Fiiredi and Tuza [9]). 

Theorems I and 2 are valid if we suppose our assumptions only for I ~ i ~ j ~ m. 
3.3. Theorems (1)--(3) have Helly-type reformulations (see Lovasz [12, 13]). E.g. 

(2)' Let a collection d of a-dimensional subspaces of a linear space have the property that 
for every c;l>_) of them there exists a b-dimensional subspace meeting each of them in a 
nonzero subspace. Then there exists a b-dimensional subspace meeting each member of d 
in a nonzero subspace. 

We can reformulate (1), (3) and Theorem I and 2 in the same way. 
3.4. The theorems (2), (3), (2)' hold for flats of matroids if this matroid can be 

coordinated over a commutative field (Lovasz [12, 13]). (Rank a stands instead of 
dimension a.) Similarly, Theorem 2 holds for subspaces of a linear space over a 'great 
enough' commutative field (See the next section). 
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3.5. Tarjan [16] generalized (I) proving that 

In the case of Theorem I a similar inequality seems to be true, 

L t/(IAil +IBd -2t) !!S; I 
IAd-t ' 

but I cannot prove it. 
3.6. We get a new problem in all three versions (1), (2) and (3) if we modify the 

assumptions in the following way: lA; n Bil > t and lA; n B;l !!S; 1 (I !!S; t). These problems 
seem to be much more difficult, I have no established conjecture. 

4. PROOFS 

4.1. PROOF OF THEOREM I. It follows from Theorem 2 in the same way as (2) implies 
(I). I.e. let X= (uA;) u (uBi), lXI = N. Let us assign a vector v(x) E IRN to each x EX so 
that {v(x): x EX} forms a basis of IRN. Finally let A; (and Bi) be the subspaces generated 
by {v(a): a E A;}. Now, Theorem 2 can be applied. 

4.2. PRooF OF THEOREM 2. Suppose that A;, Bi c IRN. We can suppose that N is finite. 
For a subspace c let us define c.t =: {y E IRN: ( c, y) = 0 for each c E C}' i.e. the orthogonal 
subspace to C. Two subspaces D and C of dimensions d and c are in general position 
if dim(D n C)= max{O, d + c- N}. 

There exists a subspace C of dimension (N-a-b+ t) which is in general position 
with respect to each A;, B; and {A; uBi} where {A; uBi} denotes the subspace generated 
by A;uBj. Projecting A; and Bi to c.t, we get A; and Bj. Now dim(AD= 
dim(A;)-dim(A; n C)= a holds and similarly dim B; = b, dim{A; u B:} =a+ b- t and 
dim{A; u Bj} !!S; a+ b- t -I hold for i ¥- j. I.e. dim(A; u Bj) !!S; t iff i = j. 

Now find a subspace C' c C.t of dimension a+ b- 2t which is in general position with 
respect to each A; n B;. (dim( A; n B;) = t). Let A7 =A; n C' and B7 = B; n C'. Then 
dim A7 =a-t, dim B7 = b- t, dim( A? n B7) = 0 and for i ¥- j we have dim( A? n B'f) = 
dim(( A; n Bj) n C');;;: I. Hence (2) can be applied to {A7, B7}. 

4.3. PRooF OF PRoPOSITION 3. The fact m1(2, b)!!S;(~+l is trivial, because the lines 
Az, A3, ••• , Am contain at least two points from B 1 but A; and A; contain different pairs. 

The lower bound is a construction. Burr, Giinbaum and Sloane [2] gave b + 3 points 
P~> ... , Pb+J on the plane and I+ lb(b +3)/6J lines L~> ... , L1+lb(b+JJ/6J such that each 
L; contains exactly three ~- s. A much simplier construction can be found in Fiiredi 
and Palasti [9]. Let A;= L; and B; = {Pa: Pa e L;}. 
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