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Suppose ¥ is a Steiner triple-system on the n-element set X, i.e., for every pair of distinct
vertices of X there is exactly one triple in & containing them. Necessarily, |%|=n(n—1)/6
holds. It is easy to see that, for S, T, S, T'e ¥, SUT=S"UT implies {S, T}={S’, T'}.

We show that, conversely, this condition, for any family &' of 3-subsets of X, implies
|#|<n(n—1)/6. A similar type of result is obtained for a weaker union condition. The
corresponding problems for graphs are still open.

1. Introduction

Let n, k (n> k) be positive integers and let X be an n-element set. We denote
by 2% ((¥)) the family of all subsets (all k-element subsets) of X, respectively. A
subset of () (X)) is called a graph (a triple-system), respectively. We call the
family & union-free if, for every F, G, F, G'€e%, FUG=F UG’ implies
{F, G}={F', G'}. We call  weakly union-free if the following weaker condition
holds: for any four distinct members F,, F,, F;, F, of ¥ we have F,UF,#
F;UF,.

Erdos [S] asked to determine the maximum cardinality of <= (), % is
union-free. In the case k =2 the question is what the maximum number of edges
is in a graph which contains no C; or C, (C, is the cycle of length r) as a subgraph
(not necessarily induced subgraph). This problem goes back to 1938 [3]. In that
paper Erdos also asked to determine the maximum number of edges in a graph
without C,, i.e., if it is weakly union-free.

Let us introduce two sets of functions.

Definition 1.1. f,(n) (f(n)) is the maximum number of edges in a union-free
family #, F< () (F<2%), respectively.

Definition 1.2. F, (n) (F(n)) is the maximum number of edges in a weakly
union-free family %, %< (¥) (%< 2%), respectively.
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Reiman [12] (see also [1]) proved (1/2v2) n}<f,(n) <3 n? and it is conjectured
that f,(n) = ((1+(1))/2v2))n? holds [4]. Let us mention for curiosity that Erdds
and Simonovits [6] proved the exactitude of this bound if the graph contains
no C, or Cs.

It is known (see [2, 7]) that Fo(n) = G+2(1))ni

Quite recently, Firedi [8] determined the exact value of F,(n) for an infinity of
values. More exactly, he proved that, for q = 2%, F,(q®>+q+ 1) =3q(q +1)? holds.

Surprisingly, the determination of fs(n) and Fs(n) is easier.

Definition 1.3. An ¥ <(¥) is called an S, (n, k, t) if, for every T e (¥), there exist
exactly A sets S, ..., S, e ¥ such that T< S, holds, 1=<i<A\. An S;(n, 3, 2) is also
called a Steiner triple-system.

It is easy to see that an S,(n, 3,2) is always union-free (already, AUB>C
implies A=C or B=C for A, B, CeS, ¥ an S,(n, 3, 2)). For infinitely many
values of n we shall construct S,(n, 3, 2)’s, which are weakly union-free.

Theorem 1.4. We have
f3(n) =[n(n-1)/6]. ey

Remark 1.5. If n=1 or 3 (mod6), n=7, then Steiner triple-systems provide
equality in Theorem 1.4. However, they are not characterized by the union-free
property; many other examples exist, too.

Theorem 1.6. F;(n)<n(n—1)/3, and if equality holds for the weakly union-free
family %, then % is an S,(n, 3, 2). Moreover, if n=1 (mod 6), then equality holds
for n>n,.

Corollary 1.7. If n> n,, then we have
n(n—1)/3-%n<F;(n)<[n(n-1)/3].
We review the known bounds on fi.(n), f(n), F.(n) and F(n) in Section 4.

2. The proof of the upper bounds

Let % be any triple system, i.e., < (¥). Let us define, for every i, 0<i<n-—2,
¢ ={{x, y}e (;‘) Hze X, {x,y, z}e F}| =i}.

With words, A € (X) is in %; if there are exactly i sets in % which contain A. Set
g =1%.

Of course, %,,%,,...,%,_, form a partition of (¥). Thus we have

I oa=(3) ®
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Counting the number of pairs (A, F), A« Fe %, |A| =2, in two ways, we obtain

Y ig=3%. @

O=<ix=n-2

For A €(%), define T(A)={ze X:(AU{z}) e %}.

Claim 1. If & is (weakly) union-free, then for A, A' (%),

(L)

holds.

Proof. Suppose the contrary and let {z, z'} belong to the intersection. Then
AU{z}, Au{z}, A'U{z}, A’U{z'} are four different members of % and
AU{zHhUuA'U{izD=A U{Z’HU(A'U{z}), a contradiction. O

Thus, for a weakly union-free family %, we have

Zsign—z <.’i>g‘ = (;) (5a)

Adding (3) and (5a), we obtain

2 (e 5 e, 3 (+()-dumrrn 0

O<i=n-—2 O=si=n-2 O=sisn-2

In the middle part of (6) the first term is, by (4), just 3 |#|, while the second is
non-negative. Thus |#|<n(n—1)/3 follows, giving the upper bound of Theorem
1.6. To have equality, equality must hold in (5a) and also

I (1 * (;) - i)gi =0.

This latter condition implies go=g3;=g,= ‘- = g,-» = 0. Putting this back into
the first one, we obtain g, =(3), i.e., ¥ is an S,(n, 3, 2).

Claim 2. If % is union-free, then, for every A € (%), ("$") =%, holds.

Proof. Suppose the contrary and take some {z, z'}e ("$")) such that {z, z'}¢%,
holds. Then, for some i>0, {z,z'}€% and consequently, for some z"e€X,
{z,7',2"te % holds. However, (AU{z)U{z, z/,z2}=(AU{z'hU{z,2',2"}, a
contradiction. [

In view of Claim 1 and Claim 2 the sets (T$") are pairwise disjoint in ¢, for
Aec($,U%U: - -U%,_,). Thus we have

) (;)gi <go. (5b)

2<i=n-2
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Putting back (5b) into (3), we obtain

=L 2 (0G) s )

1=i=n-2 1=i=n—2
Again, the first term on the right-hand side of (7) is just 3 |#| while the second is
non-negative. Thus |#|=<3(3) follows. Since |#| is an integer, we obtain |%|<
{n(n—1)/6}, proving the upper bound of Theorem 1.4. Note that in case of
equality the second term in the right-hand side of (7) must be zero and thus
g3=84= - = g,—»=0. Also, equality must occur in (5b), yielding g, = g».

3. The constructions

We say that ¥ < ((¥)U (X)) is a quasi-design, QS;(n, {3, 4}, 2), if SN S'|=<1, for
every S, S'e &, and there exists at most one set A € (¥) which is not contained in
any member of &.

Proposition 3.1. Suppose F,<(X), F,<(X) and F,UF, is a QS,(n,{4,3},2).
For Fe%,, let A(F) and B(F) be two distinct 3-subsets of F. Then %=
F1U{A(F): Fe #F,}U{B(F): Fe %,} is union-free and |%|= [n(n—1)/6] holds.

Proof. As % ,U%, is a quasi-design QS,(n,{4,3},2), we have (J-1<
3|%,|+6|%,|<(5). Hence, |%|=|%,|+2 |%,| = |n(n—1)/6] holds, proving the sec-
ond part of the proposition.

Suppose F, G, F,G'€% and FUG=F UG’ holds, but {F, G} #{F, G’}. By
symmetry we may assume F'¢{F, G} holds. As F<FUG, |[FNF| or |GNF|is
at least 2. By symmetry assume |[FNF|=2. But %, U%, is a QS,(n, {3, 4},2),
thus the only possibility is F, F' < H, for some H e %,. Then G'¢ H, consequently
|G'NF|<1. We deduce |GNG'|=2 and consequently, for some Ke%,, G,
G'<K holds. FUG=FUG' implies (F-F)<G', (F-F)cG. Thus HNK
contains F—F' and F'—F. Since %, U%, is a QS;(n, {3, 4}, 2), H=K must hold,
yielding [{F, F', G, G'}|<2, a contradiction. [

Corollary 3.2. If a QS (n, {3, 4}, 2) exists, then f3(n)=|n(n—1)/6] holds.

Next, we want to show that a QS,(n, {3, 4}, 2) exists for almost all values of n.
For this we shall use an important theorem of Ray-Chaudhuri and Wilson [11].

Definition 3.3. Suppose & is an S,(6t+3,3,2), t=1, and ¥=%,U-:- US55,
with each & being a partition of X, i.e., |%|=2t+1 and Ug.s, S=X hold for
1=si=3t+1. Then & is called a Kirkman design and the &, its parallel classes.
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Theorem 3.4 ([11]). Kirkman designs exist for every n=6t+3, t=1.

Proposition 3.5. A QS,(n, {3, 4}, 2) exists for every n except n =5, 6, 8 and eventu-
ally n =20, 32.

Proof. If n=1,2, take = . If f=3, 4, take F={X}. If n =7, take the unique
$1(7,3,2), the lines of the projective plane of order 2. In the remaining cases,
n=9. Suppose n¥ 14, n=6t+3+i with 0<si=<S5, t=1.

Let X={1,2,...,n} and let & be a Kirkman design on {i+1,..., n} with
parallel classes &4, ..., %s41.

Define & ={SU{j}:Se¥} if 0<j=<i. Then ¥'=LU:---UFUY,,U
s Uy isa OS(6t+3+40,3,2) if i =0, 1 or 2 while for i =3 or 4 we can take
FuU{{l,2,...,i}}

If n=6t+8, we write n as 6(t—1)+3+11. Suppose first t=5. Let & be a
Kirkman design on {12, 13, ..., n} with parallel classes &, ..., P3_1).1. Define
Fi={SU{j}:SeFtforj=1,...,11. Let T be a QS,(11,{3,4},2) on {1, ..., 11}.
Then ¥'=L1U - - UL [ UL U - US04 UT is a QS,(n, {3, 4}, 2).

Four cases remain, n=14,20,26,32. If m =12r+4, then, by a theorem of
Hanani [9], there exists &, an S;(m,4,2) on {1,2,..., m}. Let S, be the unique
set in & containing {m —1, m}. Then ¥ ={SN{1,2,...,m—2}:Se¥, S#S,}isa
QS,(m—2,{3,4},2). Setting r =1 or 2 we obtain a QS,(n, {3,4},2) for n=14 or
26.

For the cases n =20, 32 we could not decide whether a QSy(n, {3, 4}, 2) exists
ornot. O

Now Proposition 3.5 implies, in view of Corollary 3.2, fs(n)=|n(n—1)/6],
unless n =35, 6, 8, 20 or 32.
For these cases we give a direct construction.
(i) n=5. Take F={{1,2,i}:i=3, 4, 5}.
(i) n=6. Take F={{1,i,i+1}:i=2,3,4,5}U{{1, 2, 6}}.
(iii) n=8. Let ¥ be the family given by the rows of the following incidency
matrix,

[11100000]
11010000
11001000
00100011
00010101
00001110
10100100
10010010
(1000100 1]
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(iv) n=20 or 32. Let & be a Kirkman design on {6, . . . , n} with parallel classes
L1y ooy Pin—syn- Define again F;={SU{i}:Se ¥} and let ¥, denote the triple-
systern which we obtain from %; by replacing each of its members by two of its
3-subsets. Take F=F, U - UFUFcU - UP_62U{1,2,}:]=3, 4, 5}.

Weakly union-free systems.

Let p be an odd prime power, p>7, p=1 (mod 3). Let further X = GF(p), and
1, g, g be the solutions of x>= 1. Let us define

g___{{a, b, C}E(§)2a+bg+cg2=0}_
Proposition 3.6. # is an &,(p, 3,2) and ¥ is weakly union-free.

Proof. Suppose {x, y}e(¥). Then {x,y, z}e% if and only if z=—gx—g%y or
z=—g?x—gy, and —gx—g*y=—g*x—gy would imply (x—y)(g>~g)=0, ie.,
x =y. Thus & is an S,(p, 3, 2), in particular, |%| = p(p—1)/3.

Now we suppose indirectly that F,, F,, F;, F, are four different sets in % and
F,UF,=F;UF, holds. We want to derive a contradiction. As F;< (F, UF,), we
may assume |F,; N F;3{=2. Let {x, y} be this intersection. Again, by symmetry,we
may assume

Fl = {x’ Yy, —Xg— ygz}: F3 = {x, Y, _ng—_ yg}s
and, consequently, (—xg—yg®)eF,, (—xg>’—yg)eF,. Suppose F,=

{v, w, —xg?— yg}. We distinguish 3 cases:
(i) F,={v, w, —xg—yg?}. Eventually exchanging v, w, we may assume

—vg—-wg=-xg—-yg?, —vg’-wg=-xg’—yg,

and thus v=x, w=y, i.e., F, = F,, F, = F3, a contradiction.
(ii) |F,UF,|=4. By symmetry we may assume

Fo={x,—xg—vg® ~xg*—ygl,  Fa={y,—xg—yg* —xg*>—yg},
and

x+g(—xg—yg?) +g*(—xg>~yg) =0.
Consequently, using g*>=1=—g— g2, we have 2(x —y) =0, i.e., x = y, a contradic-
tion.

(iii) Neither (i) nor (ii) holds. Then |F, U F,| =5. By symmetry we may assume
v=x, w#y. Since (i) does not hold we must have F,={y, w, —xg — yg?}. Using
F,e%, F,#F,, we obtain —yg—wg>=—xg—yg>. Using F,c%, F;#F,, we
obtain —xg — wg? = —xg?— yg. Taking the difference of the two equations we infer
(x—y)2g+gH)=0, ie, x=y (2g+g?>=g—1+#0), the final contradiction. [J

Proposition 3.7. Suppose n=1 (mod 6) and n>n,. Then there exists a weakly
union-free ¥ < (X) with |%|=n(n-1)/3.
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Proof. By Wilson’s existence theorem [13] there exists an S,(n, {13, 19}, 2), & on
X (this means that ¥ < ({5) U ({%) and for every T e (5) there exists exactly one set
S € & such that T < S holds). By Proposition 3.6 on 13 (on 19) points there exists
a weakly union-free family of size (13-12)/2 ((19-18)/2), respectively. Replace
every block of & by some such family. The new family is easily seen to be weakly
union-free and has size n(n—1)/3. O

Now, to prove the lower bound of Corollary 1.7 for any n>n,, let n' be the
greatest integer satisfying n—5<n'<n and n’=1 (mod 6). Take a weakly union-
free family of size n'(n'—1)/3 on {1,...,n'}; such a family exists in view of
Proposition 3.7 and

n'(n'—1)/3=zn-35n-6)/3>n>-n)/3-Ln.

Remark 3.8. It would be very interesting to know for which values of n a weakly
union-free S,(n, 3, 2) exists. We believe that, for n> n,, the condition 3 | n(n—1)
is sufficient—as for the existence of S,(n, 3,2) (see [10]).

4. The case k=4 and the non-uniform case

We shall return to these problems in a later paper. Here we only list the
existing results.

The next proposition shows that f,(n) and F.(n) are of the same order of
magnitude.

Proposition 4.1. f(n)<F, (n)<(k*/k)f.(n).
Theorem 4.2. We have
Ga— o> <fy(n) <ggn’.
In general we have:
Theorem 4.3.

cn T4k/31/2 fk (n) <c.n [4k/31/2

where [ | denotes upper integer part.

Proposition 4.4. For n>>1000 we have
1.19" <3(27/19)"2 < f(n) <2v2".

Proposition 4.5. For n>30 we have
1.25" <2("_W3<F(n)<2-8"/4.
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Conjecture 4.6. There exists a positive £ such that, for n>n,,
F(n)/f(n)>(1+¢)"

holds.
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