A NEW EXTREMAL PROPERTY OF STEINER TRIPLE-SYSTEMS

P. FRANKL

E.R. 175 Combinatoire, CNRS, 75270 Paris, France

Z. FÜREDI

Math. Inst. Hungarian Acad. Sci., Budapest 1376 Pf. 428, Hungary

Received 18 March 1983

Suppose \mathcal{S} is a Steiner triple-system on the *n*-element set X, i.e., for every pair of distinct vertices of X there is exactly one triple in \mathcal{S} containing them. Necessarily, $|\mathcal{S}| = n(n-1)/6$ holds. It is easy to see that, for S, T, S', $T' \in \mathcal{S}$, $S \cup T = S' \cup T'$ implies $\{S, T\} = \{S', T'\}$.

We show that, conversely, this condition, for any family \mathscr{S}' of 3-subsets of X, implies $|\mathscr{S}'| \le n(n-1)/6$. A similar type of result is obtained for a weaker union condition. The corresponding problems for graphs are still open.

1. Introduction

Let $n, k \ (n > k)$ be positive integers and let X be an n-element set. We denote by 2^X $\binom{X}{k}$ the family of all subsets (all k-element subsets) of X, respectively. A subset of $\binom{X}{2}$ $\binom{X}{3}$ is called a graph (a triple-system), respectively. We call the family \mathcal{F} union-free if, for every F, G, F', $G' \in \mathcal{F}$, $F \cup G = F' \cup G'$ implies $\{F, G\} = \{F', G'\}$. We call \mathcal{F} weakly union-free if the following weaker condition holds: for any four distinct members F_1 , F_2 , F_3 , F_4 of \mathcal{F} we have $F_1 \cup F_2 \neq F_3 \cup F_4$.

Erdös [5] asked to determine the maximum cardinality of $\mathcal{F} \subset \binom{x}{k}$, \mathcal{F} is union-free. In the case k=2 the question is what the maximum number of edges is in a graph which contains no C_3 or C_4 (C_r is the cycle of length r) as a subgraph (not necessarily induced subgraph). This problem goes back to 1938 [3]. In that paper Erdös also asked to determine the maximum number of edges in a graph without C_4 , i.e., if it is weakly union-free.

Let us introduce two sets of functions.

Definition 1.1. $f_k(n)$ (f(n)) is the maximum number of edges in a union-free family \mathscr{F} , $\mathscr{F} \subset \binom{k}{k}$ $(\mathscr{F} \subset 2^k)$, respectively.

Definition 1.2. $F_k(n)$ (F(n)) is the maximum number of edges in a weakly union-free family \mathscr{F} , $\mathscr{F} \subset \binom{X}{k}$ $(\mathscr{F} \subset 2^X)$, respectively.

0012-365X/84/\$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

Reiman [12] (see also [1]) proved $(1/2\sqrt{2})$ $n^{\frac{3}{2}} < f_2(n) < \frac{1}{2}$ $n^{\frac{3}{2}}$ and it is conjectured that $f_2(n) = ((1+o(1))/2\sqrt{2}))n^{\frac{3}{2}}$ holds [4]. Let us mention for curiosity that Erdös and Simonovits [6] proved the exactitude of this bound if the graph contains no C_4 or C_5 .

It is known (see [2, 7]) that $F_2(n) = (\frac{1}{2} + o(1))n^{\frac{3}{2}}$.

Quite recently, Füredi [8] determined the exact value of $F_2(n)$ for an infinity of values. More exactly, he proved that, for $q = 2^{\alpha}$, $F_2(q^2 + q + 1) = \frac{1}{2}q(q + 1)^2$ holds.

Surprisingly, the determination of $f_3(n)$ and $F_3(n)$ is easier.

Definition 1.3. An $\mathcal{G} \subset \binom{X}{k}$ is called an $S_{\lambda}(n, k, t)$ if, for every $T \in \binom{X}{k}$, there exist exactly λ sets $S_1, \ldots, S_{\lambda} \in \mathcal{G}$ such that $T \subset S_i$ holds, $1 \le i \le \lambda$. An $S_1(n, 3, 2)$ is also called a Steiner triple-system.

It is easy to see that an $S_1(n, 3, 2)$ is always union-free (already, $A \cup B \supset C$ implies A = C or B = C for A, B, $C \in S$, \mathcal{S} an $S_1(n, 3, 2)$). For infinitely many values of n we shall construct $S_2(n, 3, 2)$'s, which are weakly union-free.

Theorem 1.4. We have

$$f_3(n) = [n(n-1)/6].$$
 (1)

Remark 1.5. If $n \equiv 1$ or 3 (mod 6), $n \ge 7$, then Steiner triple-systems provide equality in Theorem 1.4. However, they are not characterized by the union-free property; many other examples exist, too.

Theorem 1.6. $F_3(n) \le n(n-1)/3$, and if equality holds for the weakly union-free family \mathcal{F} , then \mathcal{F} is an $S_2(n, 3, 2)$. Moreover, if $n \equiv 1 \pmod{6}$, then equality holds for $n > n_0$.

Corollary 1.7. If $n > n_0$, then we have

$$n(n-1)/3 - \frac{10}{3}n < F_3(n) \le [n(n-1)/3].$$

We review the known bounds on $f_k(n)$, f(n), $F_k(n)$ and F(n) in Section 4.

2. The proof of the upper bounds

Let \mathscr{F} be any triple system, i.e., $\mathscr{F} \subset \binom{X}{3}$. Let us define, for every $i, 0 \le i \le n-2$,

$$\mathscr{G}_i = \{\{x, y\} \in \binom{X}{2} : |\{z \in X, \{x, y, z\} \in \mathscr{F}\}| = i\}.$$

With words, $A \in \binom{X}{2}$ is in \mathcal{G}_i if there are exactly *i* sets in \mathcal{F} which contain A. Set $g_i = |\mathcal{G}_i|$.

Of course, $\mathscr{G}_0, \mathscr{G}_1, \ldots, \mathscr{G}_{n-2}$ form a partition of $\binom{x}{2}$. Thus we have

$$\sum_{0 \le i \le n-2} g_i = \binom{n}{2}. \tag{3}$$

Counting the number of pairs (A, F), $A \subseteq F \in \mathcal{F}$, |A| = 2, in two ways, we obtain

$$\sum_{0 \le i \le n-2} ig_i = 3 |\mathscr{F}|. \tag{4}$$

For $A \in \binom{X}{2}$, define $T(A) = \{z \in X : (A \cup \{z\}) \in \mathcal{F}\}$.

Claim 1. If \mathcal{F} is (weakly) union-free, then for $A, A' \in \binom{X}{2}$,

$$\binom{T(A)}{2} \cap \binom{T(A')}{2} = \emptyset$$

holds.

Proof. Suppose the contrary and let $\{z, z'\}$ belong to the intersection. Then $A \cup \{z\}$, $A \cup \{z'\}$, $A' \cup \{z\}$, $A' \cup \{z'\}$ are four different members of \mathscr{F} and $(A \cup \{z\}) \cup (A' \cup \{z'\}) = (A \cup \{z'\}) \cup (A' \cup \{z\})$, a contradiction. \square

Thus, for a weakly union-free family \mathcal{F} , we have

$$\sum_{2 \le i \le n-2} {i \choose 2} g_i \le {n \choose 2}. \tag{5a}$$

Adding (3) and (5a), we obtain

$$\sum_{0 \le i \le n-2} \left(1 + {i \choose 2}\right) g_i = \sum_{0 \le i \le n-2} i g_i + \sum_{0 \le i \le n-2} \left(1 + {i \choose 2} - i\right) g_i \le n(n-1). \tag{6}$$

In the middle part of (6) the first term is, by (4), just $3 |\mathcal{F}|$, while the second is non-negative. Thus $|\mathcal{F}| \leq n(n-1)/3$ follows, giving the upper bound of Theorem 1.6. To have equality, equality must hold in (5a) and also

$$\sum_{0 \le i \le n-2} \left(1 + \binom{i}{2} - i \right) g_i = 0.$$

This latter condition implies $g_0 = g_3 = g_4 = \cdots = g_{n-2} = 0$. Putting this back into the first one, we obtain $g_2 = \binom{n}{2}$, i.e., \mathscr{F} is an $S_2(n, 3, 2)$.

Claim 2. If \mathscr{F} is union-free, then, for every $A \in \binom{X}{2}$, $\binom{T(A)}{2} \subseteq \mathscr{G}_0$ holds.

Proof. Suppose the contrary and take some $\{z, z'\} \in \binom{T(A)}{2}$ such that $\{z, z'\} \notin \mathcal{G}_0$ holds. Then, for some i > 0, $\{z, z'\} \in \mathcal{G}_i$ and consequently, for some $z'' \in X$, $\{z, z', z''\} \in \mathcal{F}$ holds. However, $(A \cup \{z\}) \cup \{z, z', z''\} = (A \cup \{z'\}) \cup \{z, z', z''\}$, a contradiction. \square

In view of Claim 1 and Claim 2 the sets $\binom{T(A)}{2}$ are pairwise disjoint in \mathscr{G}_0 for $A \in (\mathscr{G}_2 \cup \mathscr{G}_3 \cup \cdots \cup \mathscr{G}_{n-2})$. Thus we have

$$\sum_{3 \le i \le n-2} {i \choose 2} g_i \le g_0. \tag{5b}$$

Putting back (5b) into (3), we obtain

$${n \choose 2} = \sum_{0 \le i \le n-2} g_i \ge \sum_{2 \le i \le n-2} g_i {i \choose 2} + \sum_{1 \le i \le n-2} g_i$$

$$= \sum_{1 \le i \le n-2} i g_i + \sum_{1 \le i \le n-2} \left(1 + {i \choose 2} - i\right) g_i. \tag{7}$$

Again, the first term on the right-hand side of (7) is just $3|\mathcal{F}|$ while the second is non-negative. Thus $|\mathcal{F}| \leq \frac{1}{3}\binom{n}{2}$ follows. Since $|\mathcal{F}|$ is an integer, we obtain $|\mathcal{F}| \leq \lfloor n(n-1)/6 \rfloor$, proving the upper bound of Theorem 1.4. Note that in case of equality the second term in the right-hand side of (7) must be zero and thus $g_3 = g_4 = \cdots = g_{n-2} = 0$. Also, equality must occur in (5b), yielding $g_0 = g_2$.

3. The constructions

We say that $\mathcal{G} \subset (\binom{X}{3} \cup \binom{X}{4})$ is a quasi-design, $QS_1(n, \{3, 4\}, 2)$, if $|S \cap S'| \leq 1$, for every $S, S' \in \mathcal{G}$, and there exists at most one set $A \in \binom{X}{2}$ which is not contained in any member of \mathcal{G} .

Proposition 3.1. Suppose $\mathscr{F}_1 \subset {X \choose 3}$, $\mathscr{F}_2 \subset {X \choose 4}$ and $\mathscr{F}_1 \cup \mathscr{F}_2$ is a $QS_1(n, \{4, 3\}, 2)$. For $F \in \mathscr{F}_2$, let A(F) and B(F) be two distinct 3-subsets of F. Then $\mathscr{F} = \mathscr{F}_1 \cup \{A(F): F \in \mathscr{F}_2\} \cup \{B(F): F \in \mathscr{F}_2\}$ is union-free and $|\mathscr{F}| = |n(n-1)/6|$ holds.

Proof. As $\mathscr{F}_1 \cup \mathscr{F}_2$ is a quasi-design $QS_1(n, \{4, 3\}, 2)$, we have $\binom{n}{2} - 1 \le 3 |\mathscr{F}_1| + 6 |\mathscr{F}_2| \le \binom{n}{2}$. Hence, $|\mathscr{F}| = |\mathscr{F}_1| + 2 |\mathscr{F}_2| = \lfloor n(n-1)/6 \rfloor$ holds, proving the second part of the proposition.

Suppose $F, G, F', G' \in \mathscr{F}$ and $F \cup G = F' \cup G'$ holds, but $\{F, G\} \neq \{F', G'\}$. By symmetry we may assume $F' \notin \{F, G\}$ holds. As $F' \subset F \cup G$, $|F \cap F'|$ or $|G \cap F'|$ is at least 2. By symmetry assume $|F \cap F'| \geq 2$. But $\mathscr{F}_1 \cup \mathscr{F}_2$ is a $QS_1(n, \{3, 4\}, 2)$, thus the only possibility is $F, F' \subset H$, for some $H \in \mathscr{F}_2$. Then $G' \notin H$, consequently $|G' \cap F| \leq 1$. We deduce $|G \cap G'| = 2$ and consequently, for some $K \in \mathscr{F}_2$, $G, G' \subset K$ holds. $F \cup G = F' \cup G'$ implies $(F - F') \subset G'$, $(F' - F) \subset G$. Thus $H \cap K$ contains F - F' and F' - F. Since $\mathscr{F}_1 \cup \mathscr{F}_2$ is a $QS_1(n, \{3, 4\}, 2)$, H = K must hold, yielding $|\{F, F', G, G'\}| \leq 2$, a contradiction. \square

Corollary 3.2. If a $QS_1(n, \{3, 4\}, 2)$ exists, then $f_3(n) \ge \lfloor n(n-1)/6 \rfloor$ holds.

Next, we want to show that a $QS_1(n, \{3, 4\}, 2)$ exists for almost all values of n. For this we shall use an important theorem of Ray-Chaudhuri and Wilson [11].

Definition 3.3. Suppose \mathcal{G} is an $S_1(6t+3,3,2)$, $t \ge 1$, and $\mathcal{G} = \mathcal{G}_1 \cup \cdots \cup \mathcal{G}_{3t+1}$ with each \mathcal{G}_i being a partition of X, i.e., $|\mathcal{G}_i| = 2t+1$ and $\bigcup_{\mathcal{G} \in S_i} S = X$ hold for $1 \le i \le 3t+1$. Then \mathcal{G} is called a *Kirkman design* and the \mathcal{G}_i its parallel classes.

Theorem 3.4 ([11]). Kirkman designs exist for every n = 6t + 3, $t \ge 1$.

Proposition 3.5. A $QS_1(n, \{3, 4\}, 2)$ exists for every n = 5, 6, 8 and eventually n = 20, 32.

Proof. If n = 1, 2, take $\mathscr{F} = \varnothing$. If f = 3, 4, take $\mathscr{F} = \{X\}$. If n = 7, take the unique $S_1(7, 3, 2)$, the lines of the projective plane of order 2. In the remaining cases, $n \ge 9$. Suppose $n \ne 14$, n = 6t + 3 + i with $0 \le i \le 5$, $t \ge 1$.

Let $X = \{1, 2, ..., n\}$ and let \mathcal{G} be a Kirkman design on $\{i+1, ..., n\}$ with parallel classes $\mathcal{G}_1, ..., \mathcal{G}_{3t+1}$.

Define $\mathcal{G}_i' = \{S \cup \{j\} : S \in \mathcal{G}_i\}$ if $0 \le j \le i$. Then $\mathcal{G}' = \mathcal{G}_1' \cup \cdots \cup \mathcal{G}_i' \cup \mathcal{G}_{i+1} \cup \cdots \cup \mathcal{G}_{3t+1}$ is a $QS_1(6t+3+i,3,2)$ if i=0,1 or 2 while for i=3 or 4 we can take $\mathcal{G}' \cup \{\{1,2,\ldots,i\}\}$.

If n=6t+8, we write n as 6(t-1)+3+11. Suppose first $t \ge 5$. Let $\mathcal G$ be a Kirkman design on $\{12,13,\ldots,n\}$ with parallel classes $\mathcal G_1,\ldots,\mathcal G_{3(t-1)+1}$. Define $\mathcal G_j'=\{S\cup\{j\}:S\in\mathcal G_j\}$ for $j=1,\ldots,11$. Let $\mathcal F$ be a $QS_1(11,\{3,4\},2)$ on $\{1,\ldots,11\}$. Then $\mathcal G'=\mathcal G'_1\cup\cdots\cup\mathcal G'_{11}\cup\mathcal G_{12}\cup\cdots\cup\mathcal G_{3(t-1)+1}\cup\mathcal F$ is a $QS_1(n,\{3,4\},2)$.

Four cases remain, n = 14, 20, 26, 32. If m = 12r + 4, then, by a theorem of Hanani [9], there exists \mathcal{G} , an $S_1(m, 4, 2)$ on $\{1, 2, ..., m\}$. Let S_0 be the unique set in \mathcal{G} containing $\{m-1, m\}$. Then $\mathcal{G}' = \{S \cap \{1, 2, ..., m-2\} : S \in \mathcal{G}, S \neq S_0\}$ is a $QS_1(m-2, \{3, 4\}, 2)$. Setting r = 1 or 2 we obtain a $QS_1(n, \{3, 4\}, 2)$ for n = 14 or 26.

For the cases n = 20, 32 we could not decide whether a $QS_1(n, \{3, 4\}, 2)$ exists or not. \square

Now Proposition 3.5 implies, in view of Corollary 3.2, $f_3(n) \ge \lfloor n(n-1)/6 \rfloor$, unless n = 5, 6, 8, 20 or 32.

For these cases we give a direct construction.

- (i) n = 5. Take $\mathscr{F} = \{\{1, 2, i\} : i = 3, 4, 5\}$.
- (ii) n = 6. Take $\mathcal{F} = \{\{1, i, i+1\}: i = 2, 3, 4, 5\} \cup \{\{1, 2, 6\}\}.$
- (iii) n = 8. Let \mathcal{F} be the family given by the rows of the following incidency matrix,

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

(iv) n = 20 or 32. Let \mathcal{G} be a Kirkman design on $\{6, \ldots, n\}$ with parallel classes $\mathcal{G}_1, \ldots, \mathcal{G}_{(n-6)/2}$. Define again $\mathcal{G}_i' = \{S \cup \{i\} : S \in \mathcal{G}_i\}$ and let \mathcal{F}_i denote the triple-system which we obtain from \mathcal{G}_i' by replacing each of its members by two of its 3-subsets. Take $\mathcal{F} = \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_5 \cup \mathcal{G}_6 \cup \cdots \cup \mathcal{G}_{(n-6)/2} \cup \{\{1, 2, j\} : j = 3, 4, 5\}$.

Weakly union-free systems.

Let p be an odd prime power, p > 7, $p \equiv 1 \pmod{3}$. Let further X = GF(p), and 1, g, g^2 be the solutions of $x^3 = 1$. Let us define

$$\mathcal{F} = \{\{a, b, c\} \in \binom{X}{3}: a + bg + cg^2 = 0\}.$$

Proposition 3.6. \mathcal{F} is an $\mathcal{S}_2(p,3,2)$ and \mathcal{F} is weakly union-free.

Proof. Suppose $\{x, y\} \in \binom{x}{2}$. Then $\{x, y, z\} \in \mathscr{F}$ if and only if $z = -gx - g^2y$ or $z = -g^2x - gy$, and $-gx - g^2y = -g^2x - gy$ would imply $(x - y)(g^2 - g) = 0$, i.e., x = y. Thus \mathscr{F} is an $S_2(p, 3, 2)$, in particular, $|\mathscr{F}| = p(p-1)/3$.

Now we suppose indirectly that F_1 , F_2 , F_3 , F_4 are four different sets in $\mathscr F$ and $F_1 \cup F_2 = F_3 \cup F_4$ holds. We want to derive a contradiction. As $F_3 \subset (F_1 \cup F_2)$, we may assume $|F_1 \cap F_3| = 2$. Let $\{x, y\}$ be this intersection. Again, by symmetry, we may assume

$$F_1 = \{x, y, -xg - yg^2\}, \qquad F_3 = \{x, y, -xg^2 - yg\},$$

and, consequently, $(-xg-yg^2) \in F_4$, $(-xg^2-yg) \in F_2$. Suppose $F_2 = \{v, w, -xg^2-yg\}$. We distinguish 3 cases:

(i) $F_4 = \{v, w, -xg - yg^2\}$. Eventually exchanging v, w, we may assume

$$-vg - wg^2 = -xg - yg^2$$
, $-vg^2 - wg = -xg^2 - yg$,

and thus v = x, w = y, i.e., $F_1 = F_4$, $F_2 = F_3$, a contradiction.

(ii) $|F_1 \cup F_2| = 4$. By symmetry we may assume

$$F_2 = \{x, -xg - yg^2, -xg^2 - yg\}, \qquad F_4 = \{y, -xg - yg^2, -xg^2 - yg\},$$

and

$$x + g(-xg - yg^2) + g^2(-xg^2 - yg) = 0.$$

Consequently, using $g^3 = 1 = -g - g^2$, we have 2(x - y) = 0, i.e., x = y, a contradiction.

(iii) Neither (i) nor (ii) holds. Then $|F_1 \cup F_2| = 5$. By symmetry we may assume v = x, $w \neq y$. Since (i) does not hold we must have $F_4 = \{y, w, -xg - yg^2\}$. Using $F_4 \in \mathcal{F}$, $F_4 \neq F_1$, we obtain $-yg - wg^2 = -xg - yg^2$. Using $F_2 \in \mathcal{F}$, $F_3 \neq F_2$, we obtain $-xg - wg^2 = -xg^2 - yg$. Taking the difference of the two equations we infer $(x-y)(2g+g^2)=0$, i.e., x=y $(2g+g^2=g-1\neq 0)$, the final contradiction. \square

Proposition 3.7. Suppose $n \equiv 1 \pmod{6}$ and $n > n_0$. Then there exists a weakly union-free $\mathscr{F} \subset \binom{X}{3}$ with $|\mathscr{F}| = n(n-1)/3$.

Proof. By Wilson's existence theorem [13] there exists an $S_1(n, \{13, 19\}, 2)$, \mathscr{S} on X (this means that $\mathscr{S} \subset \binom{X}{13} \cup \binom{X}{19}$ and for every $T \in \binom{X}{2}$ there exists exactly one set $S \in \mathscr{S}$ such that $T \subset S$ holds). By Proposition 3.6 on 13 (on 19) points there exists a weakly union-free family of size $(13 \cdot 12)/2$ ($(19 \cdot 18)/2$), respectively. Replace every block of \mathscr{S} by some such family. The new family is easily seen to be weakly union-free and has size n(n-1)/3. \square

Now, to prove the lower bound of Corollary 1.7 for any $n > n_0$, let n' be the greatest integer satisfying $n-5 \le n' \le n$ and $n' \equiv 1 \pmod{6}$. Take a weakly union-free family of size n'(n'-1)/3 on $\{1, \ldots, n'\}$; such a family exists in view of Proposition 3.7 and

$$n'(n'-1)/3 \ge (n-5)(n-6)/3 > (n^2-n)/3 - \frac{10}{3}n$$
.

Remark 3.8. It would be very interesting to know for which values of n a weakly union-free $S_2(n, 3, 2)$ exists. We believe that, for $n > n_0$, the condition $3 \mid n(n-1)$ is sufficient—as for the existence of $S_2(n, 3, 2)$ (see [10]).

4. The case $k \ge 4$ and the non-uniform case

We shall return to these problems in a later paper. Here we only list the existing results.

The next proposition shows that $f_k(n)$ and $F_k(n)$ are of the same order of magnitude.

Proposition 4.1. $f_k(n) \leq F_k(n) \leq (k^k/k!) f_k(n)$.

Theorem 4.2. We have

$$(\frac{1}{24} - o(1))n^3 < f_4(n) < \frac{1}{24}n^3$$
.

In general we have:

Theorem 4.3.

$$c_k n^{\lceil 4k/3 \rceil/2} \leq f_k(n) \leq c_{k'} n^{\lceil 4k/3 \rceil/2}$$

where [] denotes upper integer part.

Proposition 4.4. For n > 1000 we have

$$1.19^{n} < \frac{1}{2}(27/19)^{n/2} < f(n) < 2\sqrt{2}^{n}.$$

Proposition 4.5. For n > 30 we have

$$1.25^{n} < 2^{(n-1)/3} < F(n) < 2 \cdot 8^{n/4}.$$

Conjecture 4.6. There exists a positive ε such that, for $n > n_0$,

$$F(n)/f(n) > (1+\varepsilon)^n$$

holds.

References

- [1] Blanchard, Bull. Assoc. Proc. Math. 300 (1975) 538.
- [2] W.G. Brown, On graphs that do not contain a Thomsen graph, Bull. Canad. Math. Soc. 9 (1966) 281-288.
- [3] P. Erdös, On sequences of integers no one of which divides the product of two others and some related prolems, Mitt. Forschungsinst. Math. und Mech. 2 (1938) 74-82.
- [4] P. Erdös, Problems and results in combinatorial analysis, in: Colloq. Internat. Sulle Teorie Combinatorie Vol. 2 (Acad. Naz. Lincei, Roma, 1976) 3-17.
- [5] P. Erdös, Problems and results in combinatorial analysis, in: Proc. 8th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XIX (Baton Rogue 1977, Lousiana State Univ., LA) 3-12.
- [6] P. Erdös and M. Simonovits, Compactness results in extremal graph theory, Combinatorica 2 (1982) 275-288.
- [7] P. Erdös, A. Rényi and V.T. Sós, On a problem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 215–235.
- [8] Z. Füredi, Graphs without quadrilaterals, J. Combin. Theory (B) 34 (1983) 187-190.
- [9] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961) 361-386.
- [10] H. Hanani, On resolvable balanced incomplete block designs, J. Combin. Theory (A) 17 (1974) 275–289.
- [11] D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman's schoolgirl problem, T.S. Motzkin, ed., in Proc. of Symp. in Pure Math. XIX, Combinatorics (1971) 187–203.
- [12] I. Reiman, Über ein problem von Zarankiewicz, Acta Math. Acad. Sci. Hungar. 9 (1958) 269-278.
- [13] R.M. Wilson, An existence theory for pairwise balanced designs I-III. J. Combin. Theory (A) 13 (1972) 220-273 and 18 (1973) 71-79.