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Suppose 9' is a Steiner triple-system on the n-element set X, i.e., for every pair of distinct 
venice.s of X there is exactly one triple in St containing them. Necessarily, [9' I = n(n-1)/6 
holds. It is easy to see that, for S, T, S', T' ~ 9", S 1.3 T = S' t.J T' implies {S, T} = {S', T'}. 

We show that, conversely, this condition, for any family 9" of 3-subsets of X, implies 
19"l<~n(n-1)/6. A similar type of result is obtained for a weaker union condition. The 
corresponding problems for graphs are still open. 

1. ]lnta'oduction 

Let  n, k (n > k) be  positive integers and let X be  an n -e l emen t  set. W e  deno te  

by 2 × ((x)) the family of  all subsets (all k -e l emen t  subsets) of  X, respectively. A 
subset  of  (x) ((x)) is called a graph (a tr iple-system), respectively. W e  call the 

family ~:  union-free if, for  every  F, G, F ' ,  G '~5~,  F U G = F ' L I  G '  implies 

{F, G}  = {F', G'}. W e  call ~: weakly  union-free if the following weaker  condi t ion 

holds:  for  any four  distinct members  F1, F2, F3, F4 of  ~ we have  F l t 3 F 2 ~  

F3 LI F,,. 
E rd6s  [5] asked to de te rmine  the  m a x i m um cardinali ty of  ~ c ( x ) ,  ~: is 

union-free .  In  the case k = 2 the quest ion is what  the max imum number  of  edges 

is in a graph  which contains  no C3 or  Ca (Cr is the cycle of  length r) as a subgraph 

(not necessarily induced subgraph).  This p rob lem goes back  to 1938 [3]. In  that  

paper  Erd6s  also asked to de te rmine  the m a x i m um number  of  edges in a graph 

wi thout  Ca, i.e., if it is weakly union-free .  

Let  us in t roduce two sets of  functions.  

D e t h N o n  1.1.  fk(n)  0C(n)) is the m a x i m u m  number  of  edges in a union-f ree  
family ~ ,  ~ c (~) ( ~  c 2 x) ,  respectively. 

Defini t ion 1.2.  Fk(n)  (F(n))  is the m a x i m u m  number  of  edges in a weakly 
union-f ree  family ~:, ~ (x) ( ~ c  2x),  respectively. 
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Reiman [12] (see also [1]) proved (1/2,,/2) n~<f2(n)<½ n~ and it is conjectured 
that f2(n)= ((1 +z~(1))/2V~))n~ holds [4]. Let  us mention for curiosity that Erdrs  
and Simonovits [6] proved the exactitude of this bound if the graph contains 

no C,  or  C5. 
It is known (see [2, 7]) that F2(n)= (~+,~(1))n~. 
Quite recently, Fiiredi [8] determined the exact value of F2(n) for an infinity of 

values. More exactly, he proved that, for q = 2% F2(q2+ q + 1) = ½q(q + 1) 2 holds. 
Surprisingly, the determination of f3(n) and F3(n) is easier. 

Definition 1.3. An 5Dc(x) is called an Sx(n, k, t) if, for every T ~  (x), there exist 
exactly )t sets $1 . . . . .  Sx ~ Se such that T c  Si holds, 1 ~< i ~< h. An S~(n, 3, 2) is also 
called a Steiner triple-system. 

It is easy to see that an S~(n, 3, 2) is always union-free (already, A U B D C 
implies A = C or B = C for A, B, C~  S, ,5" an Sx(n, 3, 2)). For  infinitely many 
values of n we shall construct S2(n, 3, 2)'s, which are weakly union-free. 

Theorem 1.4. We have 

f3(n) = [n(n - 1)/6]. • (1) 

Remark 1.5. If n--= 1 or 3 (mod 6), n I>7, then Steiner triple-systems provide 
equality in Theorem 1.4. However,  they are not characterized by the union-free 
property;  many other  examples exist, too. 

Theorem 1.6. V3(n) ~< n(n - 1)/3, and if equality holds for the weakly union-free 
family 9;, then ~; is an S2(n, 3, 2). Moreover, if n ------ 1 (mod 6), then equality holds 
for  n > no. 

Corollary 1.7. I f  n > no, then we have 

n(n - 1)/3 - ~ n  < F3(n) ~ [n(n - 1)/3]. 

We review the known bounds on fk(n), f (n) ,  Fk(n) and F(n) in Section 4. 

2. The proof of the upper bounds 

Let ~: be any triple system, i.e., ~ c  (_~). Let  us define, for every i, 0 ~  < i ~< n - 2 ,  

With words, A ~ (x) is in ~d~ if there are exactly i sets in ~ which contain A. Set 

g, = I ,1 

Of course, cg0, ~1 . . . . .  ~d,-2 form a partition of (x). Thus we have 

0~i~rt--2 
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Counting the number of pairs (A, F), A c F ~ ,  JAJ = 2, in two ways, we obtain 

ig~ = 3  I~J. (4) 
0 ~ i ~ n - - 2  

For A c(x),  define T(A)={z  ~ X : ( A  O{z})~:}.  

Claim 1. I f  ~ is (weakly) union-free, then for A, A '  ~ (x), 

holds, 

Proof. Suppose the contrary and let {z, z'} belong to the intersection. Then 
AU{z},  AU{z'},  A'U{z}, A'O{z'} are four different members of ~ and 
(A U{z}) U (A' U{z'}) = (A U{z'}) U (A' U{z}), a contradiction. [] 

Thus, for a weakly union-free family ~:, we have 

(') 
2 gi ~< • (5a) 

2 ~ i ~ r t - - 2  

Adding (3) and (5a), we obtain 
( ( i ) )  ( ( ; ) )  

1+ gi = ~ ig,+ ~ 1+ - i  gi<~n(n-1). (6) 
o~i~n-2 2 o ~ i ~ n - 2  o~i~,-2 

In the middle part of (6) the first term is, by (4), just 3 I~1, while the second is 
non-negative. Thus I~:J ~< n ( n -  1)/3 follows, giving the upper bound of Theorem 
1.6. To have equality, equality must hold in (5a) and also 

This latter condition implies go = g3 = g4 . . . . .  gn-2----0. Putting this back into 
the first one, we obtain g2 = (~), i.e., ~ is an S2(n, 3, 2). 

Claim 2,. If  ~; is union-free, then, for every A ~ (x), (r(2A)) c ~30 holds. 

Proo[. Suppose the contrary and take some {z, Z'}~(T(2A)) such that {z, z '}¢~o 
holds. Then, for some i > 0 ,  {z, z'}~qdl and consequently, for some z"~X,  
{z, z', z"} 6 ~: holds. However, (A U {z}) U {z, z', z"} = (A U {z'}) U {z, z', z"}, a 
contradiction. []  

In view of Claim 1 and Claim 2 the sets (r~2a~) are pairwise disjoint in ~o for 
A ~ (~2 U ~a U • • • U ~,_2). Thus we have 

(') ~ 2 gi ~ go. (5b) 
2 ~--~-i ~ n -- 2 
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Putting back (5b) into (3), we obtain 

(') = E  g i ~ E  gi + E  gi 
0 ~ i ~ n - - 2  2 ~ i ~ n - - 2  2 l ~ i ~ r t - - 2  

l ~ i ~ n - - 2  l ~ i ~ n - - 2  \ k z ~ /  / 

Again, the first term on the right-hand side of (7) is just 3 [~l while the second is 
non-negative. Thus I~1~<~(~) follows. Since I~:[ is an integer, we obtain I~1<~ 
I n ( n - 1 ) / 6 ] ,  proving the upper bound of Theorem 1.4. Note that in case of 
equality the second term in the right-hand side of (7) must be zero and thus 
g3 =g4 . . . . .  g,-2 = 0. Also, equality must occur in (5b), yielding go = g2- 

3. The constructions 

We say that 9O c ((x)U (x)) is a quasi-design, OSl(n, {3, 4}, 2), if IS n S'I <~ 1, for 
every S, S' c 9O, and there exists at most one set A e (x) which is not contained in 
any member of 9'. 

Proposition 3.1. Suppose ~1 c (ax), ~z  c (x) and 9:1U 3:2 is a OSl(n, {4, 3}', 2). 
For Fe~;2, let A ( F )  and B(F)  be two distinct 3-subsets of F. Then ~;= 
~1U{A(F)  : F e  ~2} U{B(F) : F ~  :~2} is union-free and I~1 = [n(n - 1)/6] holds. 

Proof. As ~ U ~ 2  is a quasi-design 0S1(n ,{4 ,3} ,2) ,  we have ( ~ ) - 1 ~  < 
3 I~d + 6 1~21 ~ M. Hence, I~1 -- I~d + 2 1~21 -- I n(n - 1)/6] holds, proving the sec- 
ond part of the proposition. 

Suppose F, G, F', G'  ~ ~ and F U G = F' U G' holds, but {F, G} ~ {F', G'}. By 
symmetry we may assume F '¢{F,  G} holds. As F ' c F U G ,  IFNF'I or [GAF'I is 
at least 2. By symmetry assume [FAF'[~>2. But ~ U ~ 2  is a OS1(n, {3, 4}, 2), 
thus the only possibility is F, F'  c H, for some H ~ ~:z- Then G' ¢ H, consequently 
IG'OFI~I.  We deduce [ G N G ' [ = 2  and consequently, for some K ~ : z ,  G, 
G ' c K  holds. F U G = F U G '  implies ( F - F ' ) c G ' ,  ( F ' - F ) c G .  Thus H f q K  
contains F - F '  and F ' -  F. Since ~:~ I.J~: 2 is a QS~(n, {3, 4}, 2), H = K must hold, 
yielding I{F, F',  G, G'}I ~< 2, a contradiction. []  

Corollary 3.2. I f  a OS~(n, {3, 4}, 2) exists, then f3(n)>~ [n(n - 1)/6] holds. 

Next, we want to show that a QSI(n, {3, 4}, 2) exists for almost all values of n. 
For this we shall use an important theorem of Ray-Chaudhuri and Wilson [11]. 

D e l h ~ o n  3.3. Suppose 9° is an S1(6t + 3, 3, 2), t ~> 1, and g' = 9°1U • • • U 9O3,+1 
with each 9oi being a partition of X, i.e., 19oi[=2t+1 and Use~s ,S=X hold for 
l~< i<~3 t+ l .  Then 9O is called a Kirkman design and the 9ol its parallel classes. 



A new extremal property of Steiner triple-systems 2 0 9  

T h e o r e m  3 . 4  ([11]). Kirkman designs exist for every n = 6t + 3, t ~ 1. 

Fropos i t i on  3.5.  A QSI(n ,  {3, 4}, 2) exists for every n except n = 5, 6, 8 and eventu- 
ally n = 20, 32. 

P r o o L  If  n = 1, 2, t ake  ~; = O .  If  f = 3, 4, t ake  ~: = {X}. If  n = 7, t ake  the  unique 
$1(7, 3, 2), the lines of  the  p ro jec t ive  p l ane  of o rde r  2. In the  remain ing  cases, 
n>~9. Suppose  n ~ 1 4 ,  n = 6 t + 3 + i  with 0~<i<~5, t>~l .  

Le t  X = { 1 ,  2 . . . . .  n} and  let ,5" be  a K i r k m a n  design on  { i+  1 . . . . .  n} with 
paral le l  classes 9°1 . . . . .  9O3,+1. 

Def ine  5 e ~ = { S O { j } : S ~ }  if O<<-]<~i. T h e n  9 O ' = g o l U ' " U g o ' i U g o i + I U  

• • • O 9O3,+1 is a QSI(6t  + 3 + i, 3, 2) if i = 0, 1 or  2 while  for  i = 3 or  4 we  can t ake  
9o' u { { 1 ,  2 . . . . .  i}}. 

I f  n = 6 t + 8 ,  we wr i te  n as 6 ( t - 1 ) + 3 + 1 1 .  Suppose first t ~ 5 .  Let  9O be a 

Kirkrnan design on  {12, 13 . . . . .  n} with paral lel  classes S" 1 . . . . .  9O3¢,-1~+1. Def ine  
9O} = {S U {j}:S e 3 }  for  ] = 1 . . . . .  11. Le t  if" be  a Q S I ( l l ,  {3, 4}, 2) on {1 . . . . .  11}. 
T h e n  5 e ' = S e [ O - . .  Ugo~xUgo12U • • • Ugo3(,_~)+~Ogr is a QSl(n,  {3, 4}, 2). 

Four  cases remain ,  n =  1 4 , 2 0 , 2 6 , 3 2 •  If  m = 1 2 r + 4 ,  then,  by  a t h e o r e m  of 
H a n a n i  [9], the re  exists 9O, an S~(m, 4, 2) on  {1, 2 . . . . .  m}. Le t  So be  the  unique 
set  in ,5" conta ining {m - 1, m}. T h e n  S °' = {S A {1, 2 . . . . .  m - 2}: S e ~e, S # So} is a 
OSl (m  - 2 ,  {3, 4}, 2). Set t ing r = 1 or  2 we  ob ta in  a OSl(n, {3, 4}, 2) for  n = 14 or  
26. 

For  the  cases n = 20, 32 we  could not  decide  w h e t h e r  a QSI(n, {3, 4}, 2) exists 
o r  not.  [ ]  

N o w  Propos i t ion  3.5 implies,  in view of Coro l la ry  3.2, / 3 (n )w  [ n ( n - 1 ) / 6 ] ,  
unless n = 5, 6, 8, 20 or  32. 

For  these  cases we  give a direct  construct ion.  
(i) n = 5. T a k e  :~ = {{1, 2, i}: i = 3, 4, 5}. 

(ii) n = 6. T a k e  ~: = {{1, i, i + 1}: i = 2, 3, 4, 5} U {{1, 2, 6}}. 
(iii) n = 8. Le t  ~ be  the  family given by  the  rows of  the fol lowing incidency 

matr ix ,  

" 1 1 1 0 0 0 0 0 "  

1 1 0 1 0 0 0 0  

1 1 0 0 1 0 0 0  

0 0 1 0 0 0 1 1  

0 0 0 1 0 1 0 1  

0 0 0 0 1 1 1 0  

1 0 1 0 0 1 0 0  

1 0 0 1 0 0 1 0  

1 0 0 0 1 0 0 1  
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(iv) n = 20 or  32. Le t  9O be  a Ki rkman  design on {6 . . . .  , n} with parallel  classes 
9O~ . . . . .  9O(,-6)/2- Def ine  again 9O'I={SU{i}:Se9O~} and let ~:~ deno te  the triple- 

system which we obtain  f rom 9O'~ by replacing each of  its member s  by two of  its 

3-subsets.  T a k e  ~: = ~x U • • • O ~:s U 9O6 U • • • U 9°(,_6)/2 U {{1, 2, ]}: j = 3, 4, 5}. 

Weakly union-free systems. 
Let  p be  an odd  pr ime power ,  p > 7, p ---- 1 (mod 3). Le t  fur ther  X = GF(p) ,  and 

1, g, g2 be  the solutions of  x 3 =  1. Le t  us define 

~: = {{a, b, c} e (3 x) : a + bg + cg 2 = 0}. 

l ~ o l ~ s i l i o n  3.6.  ~: is an 9O2(P, 3, 2) and ~ is weakly union-free. 

l ~ r ~ t .  Suppose  {x, y}e(2x). T h e n  {x, y, z } e ~ :  if and only ff z = - g x - g 2 y  or  
z = - g a x -  gy, and - g x -  g2y = _g2  x _  gy would  imply ( x -  y ) (g2_  g) = 0, i.e., 

x = y. Thus  ~: is an S2(p, 3, 2), in particular,  I~1 = p(p - 1)/3. 
N o w  we suppose  indirectly that  /;1, F2,/73, F4 are  four  different sets in ~ and 

/71 U F2 = F3 U/ ;4  holds. W e  want  to derive a contradict ion.  As  F3 c (Ft  U F2), we 

may  assume IF1 n F31 = 2. Le t  {x, y} be  this intersection. Again ,  by  symmet ry ,  we 

may  assume 

F~ = {x, y, - x g  - yg2}, F3 = {x, y, - x g  2 -  yg}, 

and, consequent ly ,  ( - x g  - yg2) e/ ;4,  ( - x g  2 -  yg) ~/=2. Suppose  /72 = 

{v, w, - x g  2 -  yg}. W e  distinguish 3 cases: 

(i) /;4 = {v, w, - x g -  yg2}. Eventua l ly  exchanging v, w, we may  assume 

- v g  - wg 2 = - x g  - yg2, - v g  2 -  wg = - x g  2 -  yg, 

and thus v = x, w = y, i .e . , / ;1  = / ;4 , / ; 2  = F3, a contradict ion.  

(ii) 1/71 U/;21 = 4. By symmet ry  we m a y  assume 

F2 = {x, - x g  - yg2, _ x g 2 _  yg}, F4 = {y, - x g  - yg2, _ x g 2 _  yg}, 

and 
x + g ( - x g  - yg2) + g 2 ( _ x g 2 _  yg) = 0. 

Consequent ly ,  using g 3  = 1 = - - g  - -  g 2  we have  2(x - y) = 0, i.e., x = y, a contradic-  

tion. 

(iii) Nei ther  (i) nor  (ii) holds. T h e n  I/;1 U/72[ = 5. By symmet ry  we may  assume 

v = x, w ~  y. Since (i) does not  hold  we must  have F4 = {y, w , - x g -  yg2}. Us ing  

F 4 e ~ : ,  F4~F1,  we obta in  - y g - w g 2 = - x g - y g  2. Using F 2 e ~ ,  Fa~F2,  we 

obtain  - x g  - wg 2 = - x g  2 -  yg. Tak ing  the difference of  the two equat ions  we infer 
(x - y)(2g + g2) = 0, i.e., x = y (2g + g2 = g _ 1 ~ 0), the  final contradict ion.  [ ]  

l~mlmsilion 3.7. Suppose n ~ 1 (mod 6) and n > n o. Then there exists a weakly 
union-free ~ ; c ( x )  with I~1 = n ( n - 1 ) / 3 .  
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ProoL By Wilson's existence theorem [13] there exists an Sl(n, {13, 19}, 2), ,9' on 
X (this means that 5° c (x)  U (x) and for every T E (x) there exists exactly one set 
S ~ Se such that T =  S holds). By Proposition 3.6 on 13 (on 19) points there exists 
a weakly union-free family of size (13.12)/2 ((19.18)/2), respectively. Replace 
every block of ,9° by some such family. The new family is easily seen to be weakly 
union-free and has size n ( n - 1 ) / 3 .  [ ]  

Now, to prove the lower bound of Corollary 1.7 for any n > no, let n' be the 
greatest integer satisfying n - 5 ~< n' ~< n and n' -- 1 (mod 6). Take a weakly union- 
free family of size n ' ( n ' - l ) / 3  on {1 . . . . .  n'}; such a family exists in view of 
Proposition 3.7 and 

n'(n' - 1)/3 I> (n - 5)(n - 6)/3 > (n z -  n)/3 - ~n.  

Remark 3.8. It would be very interesting to know for which values of n a weakly 
union-free Sz(n, 3, 2) exists. We believe that, for n > no, the condition 3 [ n(n - 1) 
is sufficient--as for the existence of Sz(n, 3, 2) (see [10]). 

4. The case k ~ 4 and the non-uniform case 

We shall return to these problems in a later paper. Here  we only list the 
existing results. 

The  next proposition shows that fk(n) and Fk(n) are of the same order  of 
magnitude. 

Proposit ion 4.1. [k (n) <~ Fk (n) <<- ( k k/k !)[k (n ). 

Theorem 4.2. We have 

(~-- o(1))n 3 </4(n) < ~ n  3. 

In general we have: 

Theorem 4.3. 

CEll " [4kl3]12 ~ fk ( n )  ~ Ck,n [4kl3"[12 

where [ ] denotes upper integer part. 

Proposit ion 4.4.  For n > 1000 we have 

1.19" < ½(27 / 19)"/2 < f(n ) < 2,,/-2". 

l ~ l ~ i t i o n  4.5. For n > 30 we have 

1.25" < 2  ~"- t)/3 < F(n) < 2 . 8  "/4. 
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Conjecture 4.6.  There exists a positive e such that, for n > no, 

F(n)lf(n) > (1 + e)" 

holds. 

References 

[1] Blanchard, Bull. Assoc. Proc. Math. 300 (1975) 538. 
[2] W.G. Brown, On graphs that do not contain a Thomsen graph, Bull. Canad. Math. SOc. 9 (1966) 

281-288. 
[3] P. Erd6s, On sequences of integers no one of which divides the product of two others and some 

related prolems, Mitt. Forschungsinst. Math. und Mech. 2 (1938) 74-82. 
[4] P. Erd6s, Problems and results in combinatorial analysis, in: Colloq. Internat. Sulle Teorie 

Combinatorie Vol. 2 (Acad. Naz. Lincei, Roma, 1976) 3-17. 
[5] P. Erd6s, Problems and results in combinatorial analysis, in: Proc. 8th Southeastern Conf. on 

Combinatorics, Graph Theory and Computing, Congressus Numerantium XIX (Baton Rogue 
1977, Lousiana State Univ., LA) 3-12. 

[6] P. Erdtis and M. Simonovits, Compactness results in extremal graph theory, Combinatorica 2 
(1982) 275-288. 

[7] P. Erd6s, A. R6nyi and V.T. Sos, On a problem in graph theory, Studia Sci. Math. Hungar. 1 
(1966) 215-235. 

[8] Z. Fiiredi, Graphs without quadrilaterals, J. Combin. Theory (B) 34 (1983) 187-190. ° 
[9] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. 

Statist. 32 (1961) 361-386. 
[10] H. Hanani, On resolvable balanced incomplete block designs, J. Combin. Theory (A) 17 (1974) 

275-289. 
[11] D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kh'krnan's schoolgirl problem, T.S. Motzkin, 

ed., in Proc. of Symp. in Pure Math. XIX, Combinatorics (1971) 187-203. 
[12] I. Reiman, Uber ein problem yon Zarankiewicz, Acta Math. Acad. Sci. Hungar. 9 (1958) 

269-278. 
[13] R.M. Wilson, An existence theory for pairwise balanced designs I-III. J. Combin. Theory (A) 13 

(1972) 220-273 and 18 (1973) 71-79. 


