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Let X be a finite set of n-elements and suppose ¢ > 0 is an integer. In 1975, P.
Erdos asked for the determination of the maximum number of sets in a family
F =|Fy,., F,}, F;C X, such that |F,NF,|=t for 1 <i#j<m This problem is
solved for n > ny(r). Let us mention that the case ¢ =0 is trivial, the answer being
2"'. For t=1 the problem was solved in [3]. For the proof a result of
independent interest (Theorem 1.5) is used, which exhibits connections between
linear algebra and extremal set theory.

1. INTRODUCTION

For an n-element set X we denote by 2% the set of all the subsets of X.
Thus a family # of subsets of X is just a subset of 2*. For every integer ¢,
n>t>0, let us define

1) = n+todd, {d S X:|A|> (n+t+1)/2}
T T i reven, {4 S X: AN (X —xp) = (n+1)/2}, x, € Xis fixed.
It is easy to check that for F, F' € #(n, ), |[FNF'| > t holds.

Following a conjecture of Erdds, Ko, Rado [2], Katona proved
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HYPERGRAPHS WITH FORBIDDEN INTERSECTIONS 231

TueoreM 1.1. (Katona [5]). Suppose # < 2%, an for every F, F' € 7
|FNF'| > t holds, then

|F | < F (m, 1)
Moreover, if t > 1, |F | =|F(n, 1), then # =5 (n,1).

The main tool in Katona’s proof was the next theorem which is interesting
in its own right. To state it we need a definition. Suppose g > 0 is an integer,
& < 2%, Define

o ¥=|B:|B|=g,3AE€ % ,BcA}

TueoreMm 1.2 (Katona [5]). If0<g<hand g+t+12>h (g h, tare
integers), and 57 is a family of h-subsets of X such that any two members of
&/ intersects in at least t + 1 points. Then

\Mﬂ%xf\[(M_gt—l>/<2h_htvl>J'

Note that in the above theorem one can have equality by taking all the
h-subsets of a (2h —t — 1)-set.

In 1975, Erdos [1] proposed the following problem: What happens if in
Theorem 1.1 we replace the condition |[F M F'| > ¢ by the apparently weaker
|[FMYF'| # ¢? Let us define

FrEu)=Fm t)J 4 X |A| <th

Then obviously for F, F' € # *(n, t) we have |[FOF'|# ¢ In (3] it was
conjectured that this construction is best possible (for 1 > ny(¢)), and it was
proved for the case t= 1. The main tool for the proof was an appropriate
generalization of Theorem 1.2.

In this paper we prove this conjecture.

THEOREM 1.3. Suppose # < 2%, |[FOF'|#¢ for F, F' € F, n > ny(t).
Then | # | |7 *(n, t)|, moreover equality holds only if # =.# *(n, t).

For the proof we need, again, a generalization of Theorem 1.2. It will be
put together from two theorems.

Let Q<l< n and A‘,...,A(?) be all the different I-subsets of X. For
# < 2% we define the /th containment matrix M(#, [) in the following way.
Let 5 = {F,,..., F,}, then M is m by () and it has general entry

m; =1 if 4;cF,

=0 if A,¢F,.
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THEOREM 1.4 (Frankl and Singhi [4]). Suppose F is a family of
h-subsets of X, n > h >t >0, and for every F, F' € 7 we have |FNF'|# 1.
If h —t has a prime power divisor which is greater than t, then the rows of
M(#, h—t— 1) are independent over the rationals.

Note that the conditions of Theorem 1.4 are satisfied if
h - t > np0<t<p‘1+1pa' Set q(t) = 1 + f + Hpa<l<pa+1pa.

THEOREM 1.5. Suppose .# is a family of h-subsets of X such that the
rows of M{(F, h —t — 1) are independent over the rationals, and let g be an
integer 0L g<h, g+t+12h>t+ 1. Then

s ()T

Theorems 1.4 and 1.5 have the following:

COROLLARY 1.6. If h>q(t) then in Theorem 1.2 one can replace the
condition |[AMA'| >t by |AMA"|+#t, and still have the same conclusion.

Let us remark that in [4] it is conjectured that the conclusion of
Theorem 1.4 holds whenever & > 2¢ + 1. This would imply

CONJECTURE 1.7. The statement of Corollary 1.6 holds whenever
h>2t4 1.

2. THE ProoF oF THEOREM 1.5

First we consider the case g=h—t— 1. If G X, |G|=g, G & F ¢ then
in M(¥, g) the column corresponding to G consists of zeros only. Thus we
can omit all such columns without diminishing the row-rank of the matrix.
Thus we obtain an |.# | by | #*| matrix of full row rank, yielding |.# | <
| #¢1, as desired.

Now we prove the theorem by induction on 4. By the preceding case we
may assume g + ¢+ 1 > h + 1, and consequently g > I.

For an x € X let M(x) denote the submatrix of M(#, h —¢— 1) spanned
by all the F&.¥ satisfying x€X and all the GcX satisfying
|G|=h—t—1, x&G. Also, set .# (x)={F— {x}:x € FE€.F | Now M(x)
is just M(F (x), (h— 1) —¢).

ProposITION 2.1. M(F (x), (h—1)— (¢ — 1) — 1) has full row-rank.

Proof. Suppose the contrary and let o(B) be rational numbers for
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B € .7 (x) such that the linear combination, with coefficients a(B) of the
rows of M{(F (x), h — 1 — 1) is zero. It means that

VG (X —ix}), |Gl=h—t~1, Y aB)=0 (1)
GeBe.F(x)
We want to show that the linear combination of the corresponding rows of
M(#, h—t— 1), with the same coefficients f(F) = a(B) for F =B U {x}, is
also zero.
In view of (1), for G X — {x}, |G|=h—1 -t we have

Y o= Y aB)=0.

—

GcocFe# GcoBe #{x)

If Ge X, |G|=h—1t—1, x € G, then, again, applying (1):

N =IF-G7 N S BE)
GcoFe# YE(X—G) (GU(yhcFe 7
=F-G|"t N A a(F = {x})=0.

VEX —G) (GUy]={xDeF—[xe. F(x)

Since M{#, h—1t— 1) is of full row rank, this is a contradiction, proving
the proposition.

Now we want to apply the induction hypothesis to # (x) with A’ =h — 1,
g =g—-1,t'=t—1 Westillhave (g— 1)+ (t—1)+1 ~g+t— 1>h—1
(since g+t+12h+1)ie, g+ + 120 . Ash2t+1, h t’+1 and
g>1 implies 0 L g’ < A'. Thus we have

|j""(x)g‘1>|f(x)|[(2h;j;2)/<2hh_j;2>J

:If(x)l%[(2h—gt—1)/<2h—ht”1”. @)

Since, obviously

gl =X 7@ X

xXeX xeX

[ x) = |7

using (2) we deduce

e g e (/)]

)
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3. THe PROOF OF THEOREM 1.3
Let us define for 0 i n
Fi={FEF |F|=i}, fi=|Fl, F={(X—F:F€ 7.
ProproOSITION 3.1. For t+ 1 <ig (n+1)/2

FriINF =2

Progf. Suppose the contrary, i.e., there exist G, F such that Gc F&.7,
|F-G|=t, X—G)E.#., But ([X—-G)NF=F-G contradicting
\F'"N\F|+tfor F, F' €.7.

Consequently |71 !| +|.7,,,_,| < (,",).

In view of Theorems 1.4 and 1.5 this inequality yields

S P A e @)
Juean S (n=1)/2n ( (n +nt)/2 )
_ ( (nn+_t)1/2 > if n+tiseven. (4)

Obviously we have also
n
s<(h) o<ican nii-qu<ign (5)

If f;=0 for 1<j <gq(t) then summing up the inequalities (3), (5) and for
n+ ¢ even also (4) we obtain

AT - Y Q)

qu<icnina L

yielding the desired bound, for 7> 0, |.#|=|# *(n, t)| is possible only if
fi=0 for g(t) <i<(n+1)/2 and consequently .# =.# *(n, 1), here in the
case n+t even we use the fact that equality holds in (4) iff
T nrnn =T (1 D ipp (Cf [2]).

Thus, we may assume now that there exists Fy € #, t <|Fy| < q(¢). Let us
set a=|F|, b=[(n+t+2)/2]. Then there are (9)(}-9) b-subsets B of X
with | B ﬂF | = t. Of course, none of these sets is in #. Thus

Ay )= (G0 0
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Setting f, = (7) —m, from (3) we obtain [, ,_, < [(n—b)/(n+t—b)|m;
thus, in view of (7),

ferth< (3 )= () (0 (520) @

Summing up the inequalities (3) for ¢(¢) <i < [(n+ ¢+ 2)/2], (4), (5) and
(8) we obtain

e s ()0 5, ()

In (9) for ¢ fixed the first term in the bracket is growing exponentially in
n(b=|[(n+t+2)/2]) while the second is bounded by n’“. Thus for
n>ny(t), | F | <|F*m 0. 1

Let us note that more careful calculation shows that if Theorem 1.4 holds
for h > hy(f), then Theorem 1.5 holds also for n > 3Ay(f). Thus Conjec-
ture 1.7 would imply Theorem 1.5 for n > 6t.

Remark 3.2. The same proof yields that for given ¢/, 1, 0 <t <t and
n>ny(t), any # < 2% satisfying |FOF'| <t' or |[FOF'| >t for every F,
F'€.# has | 7| < | F (1) + Yocier (1) This was conjectured in [3].

4. APPENDIX

Here—for completeness’ sake—we sketch the proof of Theorem 1.4. Let
g =p° the prime power dividing 7 —¢ and satisfying g > ¢. Let us suppose
that some linear combination of the rows of M(F#,h—1t—1) is zero, let ¢;
denote the coefficient of the row of F,, the ¢;’s can be supposed to be integers
and such that not all of them are divisible by p. By symmetry assume pfc,.
This linear dependence is equivalent to

/

N ;=0 forevery T'€ ( (10)

h—z—l)'

If S€ (%), s<h—1t—1, then (10) implies

Zci:[1/< h=s >4‘ N e
ScF; h—t—1—s SeTcF Tl=h-t-1

h—s .
= v ‘/‘ L= U, i
[1/<h—z‘1_S>Js‘?T T?F,Cl 0 ()
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Summing up (11) for S € (/') we obtain

s FiNF; v
0= N Y= X Ci( : l‘) (12)
se(F)S=Fi 1<i<m §

Let the rational numbers a,,0 <i<h —1— I, be defined by

N e LI A R

0<s<h—1—1 S =D Zich

Now p(x)=0 if t <i<h and p(j)=(";7;") for j=0,..,t— L. All these
numbers are divisible by p. However, p(h) = (—1)"~'~'. Summing up (12)
for 0 <s < h—t—1 with coefficients a, we infer 0= (—1)""""' ¢, (mod p),
a contradiction. 1§
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