Note

On Hypergraphs without Two Edges Intersecting in a Given Number of Vertices

P. FRANKL

CNRS Paris, France

AND

Z. Füredi

Mathematical Institute of the Academy, Budapest, Hungary

Communicated by P. Erdös

Received August 31, 1982

Let X be a finite set of n-elements and suppose $t \ge 0$ is an integer. In 1975, P. Erdös asked for the determination of the maximum number of sets in a family $\mathscr{F} = \{F_1, ..., F_m\}, F_i \subset X$, such that $|F_i \cap F_j| \ne t$ for $1 \le i \ne j \le m$. This problem is solved for $n \ge n_0(t)$. Let us mention that the case t = 0 is trivial, the answer being 2^{n-1} . For t = 1 the problem was solved in [3]. For the proof a result of independent interest (Theorem 1.5) is used, which exhibits connections between linear algebra and extremal set theory.

1. Introduction

For an *n*-element set X we denote by 2^X the set of all the subsets of X. Thus a family \mathscr{F} of subsets of X is just a subset of 2^X . For every integer t, $n \ge t \ge 0$, let us define

$$\mathscr{F}(n,t) = \begin{cases} n+t \text{ odd, } \{A \subseteq X \colon |A| \geqslant (n+t+1)/2\} \\ n+t \text{ even, } \{A \subset X \colon |A \cap (X-x_0)| \geqslant (n+t)/2\}, x_0 \in X \text{ is fixed.} \end{cases}$$

It is easy to check that for $F, F' \in \mathcal{F}(n, t), |F \cap F'| > t$ holds. Following a conjecture of Erdös, Ko, Rado [2], Katona proved 230

0097-3165/84 \$3.00

THEOREM 1.1. (Katona [5]). Suppose $\mathcal{F} \subset 2^X$, an for every $F, F' \in \mathcal{F}$ $|F \cap F'| > t$ holds, then

$$|\mathcal{F}| \leqslant |\mathcal{F}(n,t)|$$

Moreover, if $t \ge 1$, $|\mathcal{F}| = |\mathcal{F}(n, t)|$, then $\mathcal{F} = \mathcal{F}(n, t)$.

The main tool in Katona's proof was the next theorem which is interesting in its own right. To state it we need a definition. Suppose $g \ge 0$ is an integer, $\mathscr{A} \subset 2^X$. Define

$$\mathscr{A}^g = \{B : |B| = g, \exists A \in \mathscr{A}, B \subset A\}$$

THEOREM 1.2 (Katona [5]). If $0 \le g < h$ and $g + t + 1 \ge h$ (g, h, t are integers), and $\mathscr A$ is a family of h-subsets of X such that any two members of $\mathscr A$ intersects in at least t + 1 points. Then

$$|\mathcal{A}^g| \geqslant |\mathcal{A}| \left[\binom{2h-t-1}{g} \middle/ \binom{2h-t-1}{h} \right].$$

Note that in the above theorem one can have equality by taking all the h-subsets of a (2h - t - 1)-set.

In 1975, Erdös [1] proposed the following problem: What happens if in Theorem 1.1 we replace the condition $|F \cap F'| > t$ by the apparently weaker $|F \cap F'| \neq t$? Let us define

$$\mathcal{F}^*(n,t) = \mathcal{F}(n,t) \cup \{A \subset X, |A| < t\}.$$

Then obviously for F, $F' \in \mathscr{F}^*(n,t)$ we have $|F \cap F'| \neq t$. In [3] it was conjectured that this construction is best possible (for $n \geqslant n_0(t)$), and it was proved for the case t = 1. The main tool for the proof was an appropriate generalization of Theorem 1.2.

In this paper we prove this conjecture.

THEOREM 1.3. Suppose $\mathcal{F} \subset 2^X$, $|F \cap F'| \neq t$ for $F, F' \in \mathcal{F}$, $n > n_0(t)$. Then $|\mathcal{F}| \leq |\mathcal{F}^*(n, t)|$, moreover equality holds only if $\mathcal{F} = \mathcal{F}^*(n, t)$.

For the proof we need, again, a generalization of Theorem 1.2. It will be put together from two theorems.

Let $0 \le l \le n$ and $A_1, ..., A_{\binom{n}{l}}$ be all the different l-subsets of X. For $\mathscr{F} \subset 2^X$ we define the lth containment matrix $M(\mathscr{F}, l)$ in the following way. Let $\mathscr{F} = \{F_1, ..., F_m\}$, then M is m by $\binom{n}{l}$ and it has general entry

$$m_{i,j} = 1$$
 if $A_j \subset F_i$
= 0 if $A_i \subset F_i$.

THEOREM 1.4 (Frankl and Singhi [4]). Suppose \mathcal{F} is a family of h-subsets of X, $n \ge h > t \ge 0$, and for every F, $F' \in \mathcal{F}$ we have $|F \cap F'| \ne t$. If h-t has a prime power divisor which is greater than t, then the rows of $M(\mathcal{F}, h-t-1)$ are independent over the rationals.

Note that the conditions of Theorem 1.4 are satisfied if $h-t>\prod_{p^{\alpha} \le t < p^{\alpha+1}} p^{\alpha}$. Set $q(t)=1+t+\prod_{p^{\alpha} \le t < p^{\alpha+1}} p^{\alpha}$.

THEOREM 1.5. Suppose \mathcal{F} is a family of h-subsets of X such that the rows of $M(\mathcal{F}, h-t-1)$ are independent over the rationals, and let g be an integer $0 \le g < h$, $g+t+1 \ge h \ge t+1$. Then

$$|\mathcal{F}^g|\geqslant |\mathcal{F}|\left[\binom{2h-t-1}{g}\right]\!\!\left/\!\binom{2h-t-1}{h}\right].$$

Theorems 1.4 and 1.5 have the following:

COROLLARY 1.6. If $h \geqslant q(t)$ then in Theorem 1.2 one can replace the condition $|A \cap A'| > t$ by $|A \cap A'| \neq t$, and still have the same conclusion.

Let us remark that in [4] it is conjectured that the conclusion of Theorem 1.4 holds whenever $h \ge 2t + 1$. This would imply

Conjecture 1.7. The statement of Corollary 1.6 holds whenever $h \ge 2t + 1$.

2. The Proof of Theorem 1.5

First we consider the case g = h - t - 1. If $G \subset X$, |G| = g, $G \in \mathcal{F}^g$ then in $M(\mathcal{F}, g)$ the column corresponding to G consists of zeros only. Thus we can omit all such columns without diminishing the row-rank of the matrix. Thus we obtain an $|\mathcal{F}|$ by $|\mathcal{F}^g|$ matrix of full row rank, yielding $|\mathcal{F}| \leq |\mathcal{F}^g|$, as desired.

Now we prove the theorem by induction on h. By the preceding case we may assume $g + t + 1 \ge h + 1$, and consequently $g \ge 1$.

For an $x \in X$ let M(x) denote the submatrix of $M(\mathcal{F}, h-t-1)$ spanned by all the $F \in \mathcal{F}$ satisfying $x \in X$ and all the $G \subset X$ satisfying |G| = h-t-1, $x \in G$. Also, set $\mathcal{F}(x) = \{F - \{x\} : x \in F \in \mathcal{F}\}$ Now M(x) is just $M(\mathcal{F}(x), (h-1)-t)$.

Proposition 2.1. $M(\mathcal{F}(x), (h-1)-(t-1)-1)$ has full row-rank.

Proof. Suppose the contrary and let a(B) be rational numbers for

 $B \in \mathcal{F}(x)$ such that the linear combination, with coefficients $\alpha(B)$ of the rows of $M(\mathcal{F}(x), h-1-t)$ is zero. It means that

$$\forall G \subset (X - \{x\}), \qquad |G| = h - t - 1, \sum_{G \subset B \in \mathscr{F}(x)} \alpha(B) = 0. \tag{1}$$

We want to show that the linear combination of the corresponding rows of $M(\mathcal{F}, h-t-1)$, with the same coefficients $\beta(F) = \alpha(B)$ for $F = B \cup \{x\}$, is also zero.

In view of (1), for $G \subset X - \{x\}$, |G| = h - 1 - t we have

$$\sum_{G \subset F \in \mathscr{F}} \beta(F) = \sum_{G \subset B \in \mathscr{F}(x)} \alpha(B) = 0.$$

If $G \subset X$, |G| = h - t - 1, $x \in G$, then, again, applying (1):

$$\sum_{G \subset F \in \mathscr{F}} \beta(F) = |F - G|^{-1} \sum_{y \in (X - G)} \sum_{(G \cup \{y\}) \subset F \in \mathscr{F}} \beta(F)$$

$$= |F - G|^{-1} \sum_{y \in (X - G)} \sum_{(G \cup \{y\} - \{x\}) \subset (F - \{x\}) \in \mathscr{F}(x)} \alpha(F - \{x\}) = 0.$$

Since $M(\mathcal{F}, h-t-1)$ is of full row rank, this is a contradiction, proving the proposition.

Now we want to apply the induction hypothesis to $\mathscr{F}(x)$ with h'=h-1, g'=g-1, t'=t-1. We still have $(g-1)+(t-1)+1=g+t-1\geqslant h-1$ (since $g+t+1\geqslant h+1$), i.e., $g'+t'+1\geqslant h'$. As $h\geqslant t+1$, $h'\geqslant t'+1$ and $g\geqslant 1$ implies $0\leqslant g'\leqslant h'$. Thus we have

$$|\mathcal{F}(x)^{g-1}| \geqslant |\mathcal{F}(x)| \left[\binom{2h-t-2}{g-1} \middle/ \binom{2h-t-2}{h-1} \right]$$

$$= |\mathcal{F}(x)| \frac{g}{h} \left[\binom{2h-t-1}{g} \middle/ \binom{2h-t-1}{h} \right]. \tag{2}$$

Since, obviously

$$g|\mathcal{F}^g| = \sum_{x \in X} |\mathcal{F}(x)^{g-1}|; \qquad \sum_{x \in X} |\mathcal{F}(x)| = h|\mathcal{F}|$$

using (2) we deduce

$$\begin{split} |\mathcal{F}^g| \geqslant & \frac{1}{g} \sum_{x \in X} |\mathcal{F}(x)| \frac{g}{h} \left[\binom{2h-t-1}{g} \middle/ \binom{2h-t-1}{h} \right] \\ = & |\mathcal{F}| \left[\binom{2h-t-1}{g} \middle/ \binom{2h-t-1}{h} \right]. \quad \blacksquare \end{split}$$

3. The Proof of Theorem 1.3

Let us define for $0 \le i \le n$

$$\mathcal{F}_i = \{F \in \mathcal{F} : |F| = i\}, \qquad f_i = |\mathcal{F}_i|, \qquad \bar{\mathcal{F}}_i = \{X - F : F \in \mathcal{F}_i\}.$$

Proposition 3.1. For $t + 1 \le i \le (n + t)/2$

$$\mathcal{F}_i^{i-t} \cap \mathcal{F}_{n+t-i} = \emptyset.$$

Proof. Suppose the contrary, i.e., there exist G, F such that $G \subset F \in \mathscr{F}$, |F-G|=t, $(X-G) \in \mathscr{F}$. But $(X-G) \cap F = F-G$ contradicting $|F' \cap F| \neq t$ for F, $F' \in \mathscr{F}$.

Consequently $|\mathscr{F}_i^{t-t}| + |\mathscr{F}_{n+t-i}| \leq {n \choose i-t}$.

In view of Theorems 1.4 and 1.5 this inequality yields

$$\frac{i}{i-t}f_i + f_{n+t-i} \leqslant \binom{n}{i-t}, \qquad q(t) \leqslant i < \frac{n+t}{2}$$
 (3)

$$f_{(n+t)/2} \leqslant (n-t)/2n \left(\frac{n}{(n+t)/2}\right)$$

$$= \binom{n-1}{(n+t)/2} \quad \text{if} \quad n+t \text{ is even.}$$
 (4)

Obviously we have also

$$f_j \leqslant \binom{n}{j}, \qquad 0 \leqslant j < q(t), \qquad n+t-q(t) \leqslant j \leqslant n.$$
 (5)

If $f_j = 0$ for $t \le j < q(t)$ then summing up the inequalities (3), (5) and for n + t even also (4) we obtain

$$|\mathcal{F}| \leqslant |\mathcal{F}^*(n,t)| - \sum_{q(t) \leqslant i \leqslant (n+t)/2} \frac{t}{i-t} f_i, \tag{6}$$

yielding the desired bound, for t > 0, $|\mathcal{F}| = |\mathcal{F}^*(n, t)|$ is possible only if $f_i = 0$ for $q(t) \le i < (n+t)/2$ and consequently $\mathcal{F} = \mathcal{F}^*(n, t)$, here in the case n+t even we use the fact that equality holds in (4) iff $\mathcal{F}_{(n+t)/2} = \mathcal{F}^*(n, t)_{(n+t)/2}$ (cf. [2]).

Thus, we may assume now that there exists $F_0 \in \mathscr{F}$, $t \leqslant |F_0| \leqslant q(t)$. Let us set a = |F|, b = [(n+t+2)/2]. Then there are $\binom{a}{t}\binom{n-a}{b-t}$ b-subsets B of X with $|B \cap F_0| = t$. Of course, none of these sets is in \mathscr{F} . Thus

$$f_b \leqslant \binom{n}{b} - \binom{a}{t} \binom{n-a}{b-t}. \tag{7}$$

Setting $f_b = \binom{n}{b} - m$, from (3) we obtain $f_{n+t-b} \leq [(n-b)/(n+t-b)] m$; thus, in view of (7),

$$f_{n+t-b} + f_b \leqslant \binom{n}{b} - \frac{t}{n+t-b} m \leqslant \binom{n}{b} - \frac{t}{n+t-b} \binom{a}{t} \binom{n-a}{b-t}.$$
 (8)

Summing up the inequalities (3) for $q(t) \le i < [(n+t+2)/2]$, (4), (5) and (8) we obtain

$$|\mathcal{F}| \leq |\mathcal{F}^*(n,t)| - \left(\frac{t}{n+t-b} \binom{a}{t} \binom{n-a}{b-t} - \sum_{t \leq i < q(t)} \binom{n}{i}\right). \tag{9}$$

In (9) for t fixed the first term in the bracket is growing exponentially in $n(b = \lfloor (n+t+2)/2 \rfloor)$ while the second is bounded by $n^{q(t)}$. Thus for $n > n_0(t)$, $|\mathcal{F}| < |\mathcal{F}^*(n,t)|$.

Let us note that more careful calculation shows that if Theorem 1.4 holds for $h \ge h_0(t)$, then Theorem 1.5 holds also for $n > 3h_0(t)$. Thus Conjecture 1.7 would imply Theorem 1.5 for $n \ge 6t$.

Remark 3.2. The same proof yields that for given t', t, $0 \le t' \le t$ and $n \ge n_0(t)$, any $\mathscr{F} \subset 2^X$ satisfying $|F \cap F'| < t'$ or $|F \cap F'| > t$ for every F, $F' \in \mathscr{F}$ has $|\mathscr{F}| \le |\mathscr{F}(n,t)| + \sum_{0 \le i < t'} \binom{n}{i}$. This was conjectured in [3].

4. APPENDIX

Here—for completeness' sake—we sketch the proof of Theorem 1.4. Let $q = p^s$ the prime power dividing h - t and satisfying q > t. Let us suppose that some linear combination of the rows of $M(\mathcal{F}, h - t - 1)$ is zero, let c_i denote the coefficient of the row of F_i , the c_i 's can be supposed to be integers and such that not all of them are divisible by p. By symmetry assume $p \nmid c_1$.

This linear dependence is equivalent to

$$\sum_{T \in F_i} c_i = 0 \qquad \text{for every } T \in \binom{X}{h-t-1}. \tag{10}$$

If $S \in \binom{x}{s}$, $s \leqslant h - t - 1$, then (10) implies

$$\sum_{S \subseteq F_i} c_i = \left[1 \middle/ \binom{h-s}{h-t-1-s} \right] \sum_{S \subseteq T \subseteq F_i, |T| = h-t-1} c_i$$

$$= \left[1 \middle/ \binom{h-s}{h-t-1-s} \right] \sum_{S \subseteq T} \sum_{T \subseteq F_i} c_i = 0. \tag{11}$$

Summing up (11) for $S \in \binom{F_1}{s}$ we obtain

$$0 = \sum_{S \in (F_1)} \sum_{S \subset F_i} c_i = \sum_{1 \leq i \leq m} c_i \left(\frac{|F_1 \cap F_i|}{s} \right). \tag{12}$$

Let the rational numbers a_s , $0 \le i \le h-t-1$, be defined by

$$\sum_{0 \leqslant s \leqslant h-t-1} a_s \binom{x}{s} = \frac{1}{(h-t-1)!} \prod_{t < i < h} (i-x) \stackrel{\text{def}}{=} p(x).$$

Now p(x) = 0 if t < i < h and $p(j) = \binom{h-j-1}{t-j}$ for j = 0,..., t-1. All these numbers are divisible by p. However, $p(h) = (-1)^{h-t-1}$. Summing up (12) for $0 \le s \le h-t-1$ with coefficients a_s we infer $0 \equiv (-1)^{h-t-1} c_1 \pmod{p}$, a contradiction.

REFERENCES

- P. Erdős, Problems and results in graph theory and combinatorial analysis, Proceedings, Fifth British Combinatorial Conference, Abderdeen, 1975, Congressus Numerantium, 15, Utilitas Math., 169–192.
- P. Erdös, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313-320.
- 3. P. FRANKL, An intersection problem for finite sets, Acta Math. Acad. Sci. Hung. 30 (1977), 371-373.
- 4. P. Frankl and N. M. Singhi, Linear dependencies among subsets of a finite set, European J. Comb. to appear.
- G. O. H. KATONA, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hung. 15 (1964), 329–337.