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A N  I N T E R S E C T I O N  P R O B L E M  W I T H  6 E X T R E M E S  

Z. FidIREDI (Budapest) 

I. Introduction 

Let X be a finite set of n elements. A family ~ of the subsets of X is 
intersecting if any two members of ~- intersect. 

Erd6s, Ko and Rado [3] proved that if o ~ is an intersecting set-system of 

r-tuples of X and n>=2r then l~[--- r - 1  " Equality holds in the case n>2r 
if and only if the members of o~ have a common element. 

Let e be a real number, 0<c<=1. The degree of the point (that is an element) 
x in the set-system ~ is denoted by do,(x) or simply d(x)= :I{F: xEFEo~}[. 

Erd6s, Rotschild and Szemer~di [5] raised the following question: How large 
can be the intersecting set-system ~ of r-tuples of X if each point has degree at 
most c[~l? For the case c=2/3, n>no(r) they proved that 

(1) lg [  ~ 

where ~s ,2-={FcX: IFl=r, IFNDt=~2}, ]D[=3. 

Frankl [6] proved that (1) holds for any 2/3<=c<1 if n is large enough 
(n>no(r, e)), and he solved the cases 3/7<e<=3/5 as well, proving the conjectures 
of Erd6s--Rotschild--Szemer6di. The aim of this paper is to settle the missing case 
3/5<c<2/3. 

II. Results 

For a finite set-system o~ the underlying set of which is a subset of X (i.e. 
Ua~'cX),  we write o~ (a f )={FcX:  IFl=r  and there exists an HENt ~ such that 
H c r } ,  ~-(o"/g)={FcX: [FI=r and (FN(Uo~f))Eo~4~ Evidently, o~(~) and 
~-(o~) are intersecting set-systems if o~ is intersecting, and ~(~)c=o~(,gz). 

P. Frankl [6] proved that if 1/2<c<=3/5 and n>no(r, c) then 

' ~ l< - -10 ( :Z~)+15 /n - -6 ]+6{n- -6}  (n--6) 
l,r--4) r--5 + r - -6  = 

n--5 5(n--5]_kfn--5] 
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If equality holds here then there exists a 3-uniform, 5-regular, intersecting set- 
system ~'1 on a 6-element set such that ~ = ~'(scf0. There exists exactly one such 
~r (see Figure 1). 
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We describe 6 hypergraphs. (The elements of the underlying set are denoted 
by positive integers, see also Figure 1.) 

~1 = {123, 124, 345, 346, 156, 256, 135, 146, 236, 245}, 

{123,124,125, 134, 135, 145, 234, 235, 245, 345}, 
o~(f3 = {123, 124, 134, 234, 125, 345, 136, 246, 146, 236}, 

L , . I  

g4=  {123, 124, 125, 134, 136, 235, 236, 156, 246, 345}, 
o~f'5= {123 , 124, 134, 234, 125, 345, 136, 246, 147, 
o~'~= {124, 125, 126, 134, 135, 136, 234, 235, 236, 

THEOREM 1. Let ~ be an intersecting family 
of  X, IXI =n. Suppose that for some 3/5<c<2/3, 
xEX, ds~(x)<=cl~l holds. Then 

237}, 
456}. 

consisting o f  r-element subsets 
for n>no(r,e) and for every 

5 n - 5  
(2) Io~[ < 10 ( : 5 3 ) +  5 ( r_4 )  + ( n - 5 ]  = t r - 5 ) "  

Furthermore equality holds in (2) iff ~--- ~ ( ~ )  for some 1 <=i <= 6. 
Furthermore, if c=1/2 and n>no(r ) then 

n - -  6 ]  
(3) r-~l--<-- lO t r _ 3  ) , 

and equality holds here if and only if ~" = ~176 
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AN INTERSECTION PROBLEM 179 

So the cardinality of a maximum o~ is constant on the whole interval (1/2, 2/3). 
Our theorem differs from the theorem of Frankl because in case 3/5<c<2/3 five 
more extremal systems are allowed. So we have non-isomorphic optimal families. 
This phenomenon is not rare in combinatorics even in the Erd6s--Ko--Rado type 
theorems, cf. the theorem of Hilton--Milner for r = 3 (see [6] or [8]). 

The following is a consequence of Theorem 1. 

THEOREM 2. Let ~ be a family of intersecting r-subsets of X, ]Xl=n. Suppose 
[ ,,) \ 

where ~>0 is a positive constant. Then for n>no(r, e) that 

there exists an xEX such that d(x)>(2/3-e)[o~ I. 
(This is also an improvement of a theorem of Frankl. He proved the lower 

bound 3/5+rain (0.01, 0.01~) instead of 2/3-~.) 

III .  D e f i n i t i o n s  and l e m m a s  

Define an edge-contraction as the following operation on a set-system our: 
we substitute an edge EEoY( by a smaller, nonempty E'~E ,  and thus we get the 
set-system ~ - { E } U { E ' } .  An intersecting set-system is v-critical if it has no multiple 
edges and the hypergraph obtained by contracting any of its edges is non-inter- 
secting. That is 

(4) For all EEOC', xEE there exists an FEo"4 ~ such that ENF={x}.  

Every v-critical intersecting set-system is a Sperner-family, that is 

(5) If EEo~ and F ~  E then F~ ogr 

Erd6s and Lov~isz proved the following theorem [4]: 

(6) If J f  is a v-critical intersecting set-system and max {[El: EE~f}=k, then 
l l kk 

We can get a v-critical intersecting set-system from any intersecting set-system o~ by 
contracting its edges as far as possible and deleting all but one copy o f  the appearing 
multiple edges. This ~ is called the nucleus of the set-system ~ .  Split ~ according 
to the cardinality of its members: ~ - - ~ U J f 2 U . . . U ~ "  where EEo~ ~ implies 
IEI =i.  

Denote by N the nucleus of o~lU ~2  U A eS. In what follows N is called 
the nucleus of rank 3 Of ~ .  Of course, ~ is not unique, but this is not important. 

(7) If o~- is an r-uniform, v-critical intersecting set-system with underlying set 
X, [XI =n, then there exists a set-system N such that 

(a) ~ is v-critical, intersecting and for all BEN, IB[<_-3 (possibly N =  O); 
(b) I ~ ' -  ~'(~)1 <_- r'(n_--4). 

Indeed, applying (6) we get 

i=~ i=a r - 4  = ~ r - 4 1 "  
Q.E.D. 
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IV. The first part of the proof of Theorem 1. The main lemma 

We shall consider the whole interval [1/2, 2/3), thus we will prove the above 
mentioned theorem of Frankl at the same time. So let 1/2<=c<2/3 be fixed and let 

be an r-uniform intersecting set-system on X with max {ds~(x): xCX}<=c]~]. 
We are looking for ~ with maximal cardinality, hence we may suppose I 1= > 

n - 6  

Write N for the nucleus of rank 3 of ~ .  For each FC~-No~(~) let us 
choose a B~N with BcF.  Let ~ denote the set of those members of ~" for 
which B is chosen. Thus l~-I= Z Define a weight w(B) 

BEN 
( ~ n - 3  (n 4~ 

of B by w ( B ) = [ ~ l / [ r _ 3  ). Since by ( 7 b ) I ~ - o ~ ( ~ ) l < = r ' [ r - 4 J  we get 

10 [n-6~ f ( n - 4 ]  
I,r-31 ( r -4 )  

(8) Z, w (B) => > 9.9 

r--3 r - 3  

provided n is large enough (n>10r'+l). Moreover for any x~X we have 

2 
Z w(B) < -yZw(B). (9) 

Indeed 

~ w(B) ~ w(B)(n-3)  
B 3 x  ~--- B 3 x  r--3 
Z w (B) 

Z I&[ dr(x) c 2 B ~ x  ~ . ~  .<  _ _  

n--3 w 0 n - 4  

provided n>no(r, c) (n> (2/3)-c 10rr+l)" 
1 

The following lemma is the crucial point of the proof. 

MAIN LEMMA. Suppose that ~ is a v-critical, intersecting set-system of rank 3. 
Suppose further that there exists a non-negative weight function w: N-*R such that 
(8) and (9)hold and w(B)<=l if [B]=3. Then N=-o~t] for some 1~i<-6 (see 
Figure 1). 

By (6) 1N[~27 thus the proof of this lemma is reduced to the investigation of 
finitely many '"small" set-systems. After this lemma the proof of Theorem I is 
not hard. But we cannot hope for a simple proof of the lemma because its conclusion 
is somewhat complicated, and any proof must yield a description of the structures 
of the o~?s. 

The following two parts of this paper (Chapters V and VI) contain only the 
proof of the Main Lemma. If the reader believies that the author has examined 
all (finitely many) cases of the v-critical intersecting set-systems of rank 3, then he 
or she can continue reading Chapter VII. 
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AN INTERSECI"ION PROBLEM 181 

V. The first part of the proof of the lemma. 
The nucleus of rank 3 of a maximal ~ is 3-uniform 

The formula (9) yields that ~ has no member with 1 element, since then 
IN] = 1. We will show that 

(10) ~ is 3-uniform. 

We will prove this by way of contradiction. Denote by N~ the members of 
with 2-elements. In what follows the points of  the underlying set of ~ will be 

denoted by the positive integers. 
If l,~21_->4 then its edges have a common point since N2 is intersecting. 

E.g. BI= {1, 2}, B2= {1, 3}, B3= {1, 4}, B~= {1, 5}. (See Figure 2.) By (4) there 
exists an edge Bn not containing the point 1. But B5 intersects B~, B~, B3 and 
B4 thus {2, 3, 4, 5}cB5. This is a contradiction. 

If  IN2[=3 and the edges of N~ have a common point then let this be e.g. 
the point 1 and B1 = {1, 2}, B2= {1, 3}, B3= {1, 4}. (See Figure 3.) Since there 
exists an edge B4 not containing the point 1 we get that B4= {2, 3, 4}. There are 
no other edges of  N which do not contain the point 1. Moreover there is no other 
edge of r162 which contains 1 because it would contain some Bi (1-<_i<_-3) contra- 
dicting (5). Thus in this case N = {B1, B2, B3, B~}. Considering (9) at point 1 we 

2 
have (WI"~W2"~W3)<T(WIJI-w2+w3Jvw4). This and the inequality w~<=l give 

that Z w , < 3 .  This contradicts (8) (w,=w(B,)). 
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If [N~[=3 and the edges of N2 have no a common point then they form a 
triangle, i.e. B1 = {1, 2}, B2 = {1, 3}, B 3 = {2, 3}. The set-system N = {Ba, B2, B3}, 
similarly to the above mentioned cases, is a maximal v-critical intersecting system. 
(I.e. if N'  is a v-critical intersecting set-system and N c N '  then ~ = N ' . )  However 
for the triangle (9) does not hold. 
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I f  [~2[=2 then let BI={1, 2}, B2={1, 3} (see Figure 4). By (4) there exists 
an edge B3 not containing the point 1, B3={2, 3, 4}. There exists an edge B4 
meeting B3 only in the point 4, i.e. 2,3r 4CB4, thus B4={1,4,5}. 
There exists an edge Bn which meets B~ only in the point 5, i.e. 1,4r 
5CB5, thus B5={2, 3, 5}. The set-system N has no further edges containing 
the point t, and it has no further edges not containing the point 1. Hence the 
set-system obtained above is maximal v-critical, i.e. N={B1, ..., Bs}. Applying 

2 
(9) at the point 1 we have (wl+w~+w4)< ~(wl+w2+w3+w~+w~). Moreover 

w3, w4, w5<= 1 hence ~wi<6 ,  but that contradicts (8). 

Finally if 1~21=1 then let BI={1, 2}. Applying (9) at the points 1 and 2 
z~ 1 

and summing we get 2Wl+(~wi)<%(Zwi) .  From this wl<~(z~wi)  and 
- - -  - D - -  i>i Z i ~ 1  

3 By (8) y ,  hence Conseqnently atleast 7 member  

of ~ with 3 elements intersect BI. Thus at least 4 edges (B2...Bs) contain the 
point 1 (and by (5) they do not contain the point 2). There are no three sets from 
B2X{1}, B3\{1}, B4{1}, Bs\{1 } which have a common point because if we suppose 
on the contrary that (see Figure 5a) B2= {1, 3, 4} B3 = {1, 3, 5}, B4= {1, 3, 6} 
then we get a contradiction applying (4) to the edges B~ at the point 4. Consequently 
among the sets Bi-{1} (2-<i=<5) there are two disjoint, e.g. B2={1, 3, 4}, B3= 
= {1, 5, 6} (see Figure 5b and 5c). If the edge B4 (or Bs) would contain a further 
point (say 7) then we immediately get a contradiction applying (4) to the edge 
B4 (or B5) at the point 7 (see Figure 5b). Thus B4\{1 }, B5\{1}=(3, 4, 5, 6) and 
they are disjoint (see Figure 5c). Consequently there is no further edge containing 
the point 1. The edges not containing 1 contain the point 2 and intersect (3, 4, 5, 6) 
in (3, 6) or (4, 5). Thus there are only at most six 3-element edges of N which 
contradicts the assumption ( ~  wl) >6. 

i > 1  

Consequently N2= O and this completes the proof of (10). 

VI. Proof  of  the main lemma (last part). 
The nucleus of  rank 3 of  a maximal  ~ is ~ / ( 1  = z = 6) 

By (9) there is no point contained in all the edges of N. Further there is no 
pair {x, y} covering all the edges of N (i.e. VB6N, {x, y}OB# fg). Indeed, if we 
suppose the contrary then joining the edge {x, y} with weight 0 to ~ we get 
an intersecting set-system which satisfies the assumptions of the Lemma. But (10) 
says that this is impossible. Consequently 

(11) For all the points x ,y  there exists an edge BEYr such that BA{x,y}=O" 

Since ( Z  w~)>9 we get [N[=>lO. Then we can apply a theorem of Deza [1] which 
in this case states: If at least 8 3-element sets are given so that any two of them 
intersect in exactly 1 element, then all the sets have a common point. Consequently 

has two edges (B1 and B~) intersecting in 2 elements. E.g. BI= {1, 2, 3}, B2= 
= {1, 2, 4} (see Fig. 6). 
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Firstly, suppose that 

(12) there do not exist B', B", B ' E N  such that [B'f-'IB"F'IB"I=2. 

We will prove that in this case &=o~f~. 
By (11) there exists an edge /?3 such that 1, 2 ~/?3, say /73= {3, 4, 5}. We 

will show that d~(1)=<5 (and similarly d~(2)=<5). Indeed, if d~(1)~6, then there 
exists at least 4 edges (B4, Bs, B6, B0 which contain the point 1 and by (12) do not 
contain the point 2. Also by (12) there are no two of them which contain the point 3 
(or the point 4) (see Figure 6a). Thus there are two edges (B6,/77) which do not 
contain the points 3, 4 (and 2) e.g. B~ = {1, 5, 6}, BT= {1, 5, 7}, see Fig. 6b. Then 
there is no edge not containing the points {I, 5}; however it meets all the edges 
/?t , /?9, /73, /76, /?7 . This contradicts (11). 

1 2 3  4. ,5 1 2 3 4 5  5 7  1 2 3 4 5 6  

',_ 1 Bz : �9 B2[@O �9 B z O � 9  �9 
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- B 6 �9 �9 @ 

o) b) c )  

Fig. 6 

Thus, by 1~[~10 and d(1), d(2)=<5, there are at least (and by (12) at most) 
two edges which are disjoint from the points {1, 2}. They contain the points 3 and 4 
(see Figure 6c) Bz={3, 4, 5}, Ba={3, 4, 6}. Since IB3ClB, I--2 we again can say 
that d(3)~5, d(4)=<5 and there exists exactly two further edges (B~, B6) which 
are disjoint from {3, 4}. Consequently Bs= {5, 6, 1}, 176= {5, 6, 2}. Then the minimal 
number of points covering the system {B1...B6} is 3, hence the set {1, 2, ..., 6} 
contains all the edges of &. Thus d(1) . . . . .  d(6)=5 and [~[=10. For each pair 
of points from {1 . . . .  ,6} there is an edge Bi (1=<i=<6) containing it, thus by (12) 
all the intersections B~IRB~ (7=<~, #=<10) have only 1 point in common. Moreover 
B, (7 =< e =<10) intersects each of the sets {1, 2}, {3, 4}, {5, 6} in one point only. 
This last two properties (up to isomorphisms) uniquely define the edges Br . . . .  , Bx0. 
(Since the edges /?7, ..., B10 and the sets {1, 2, x}, {3, 4, x}, {5, 6, x} form the 
finite projective plane of order 2.) So we get ~ .  

Now we suppose that (12) does not hold, i.e. tBxfq/?~fqB31=2, BI={1, 2, 3}, 
B2 = {1, 2, 4}, B3 = {1, 2, 5}. (See Figure 7.) By (11) there exists an edge B, which 
does not contain 1 and 2, thus B4= {3, 4, 5}. An arbitrary other edge B of 

1 2  3z,  5 

B2 
B3 

B" u 7 "  I.: 
Fig. 7 
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is called inner or outer according to whether it is contained in {1, 2, 3, 4, 5} or not. 
I.e. either [B(~{1, 2}1=1 and Igfq{3, 4, 5}1=2 or [BN{1, 2}l=lBrq{3, 4, 5}1= 
= [B\{1, ..., 5}1--- 1, respectively. 

First of all we show that there are no two outer edges B', B" which intersect 
{1, ..., 5} at the same points. Suppose on the contrary that B ' =  {1, 3, x}, B " =  
= {1, 3, y} (x, y>5)  then applying (11) to the points 1 and 3 we get a contradiction 
(see Fig. 7). Hence the number of outer edges (and the number of inner edges, 
too) is at most 6. These 6 and 6 sets form 6 complementary pairs (e.g. the complement 
of the outer edge {1, 4, x} is the inner edge {2, 3, 5}). Naturally, N contains at 
most one member of each complementary pair, thus [~-{B1,  B2, B~, B~}[<=6. 
It follows that 1~1<=10, thus 
(13)  = a0. 

This yields d~(x)<=6 for all points x, because d(x)~7 would imply ~ w(B)<=3 
BCx 

thus writing (9) at the point x we get 

B ~ x  J g g x  

i.e. Z w(B)<6, and this contradicts (8). All the edges B5, ..., B10 intersect the 
B g x  

set {1, 2} in (exactly) one element, hence we get d~(1)=d~(2)=6. Let us denote 
the number of outer edges containing the points 1 and 2 by e and fi, respectively. 
By (13) one member of each complementary pair (consisting of one outer and inner set) 
belongs to N. Thus there are exactly 3 - f i  outer sets containing 1 belonging to N. 
Hence 6=de~(1)=3+e+(3-/?) ,  consequently e=p .  

If e=/?=0,  i.e. every edge of r is inner then we get ~f'2, the set-system of 
all 3-tuples of the underlying-set {1, 2, ..., 5} (see Fig. 1). 

I f  e = / ? = l  then let the unique outer edge containing the point 1 be Bs (see 
Fig. 8a), e.g. B5= {1, 3, 6}. By (4) there is an edge B6 such that 1, 3 ~ Be, 6 EB6, 
i.e. B6= {2, 4, 6}. All the other edges are inner and determined uniquely. Hence 
we get ]r 

If cr then there are only two inner edges (B5 and B6, see Fig. 8bc). 
As c~=]~ the edges B5 and Be intersect {1, 2} in different points. There are two 
cases. First case: IBsNB6]=2, e.g. Bs={1, 3, 4}, Be={2, 3, 4}, see Fig. 8b. Then 
the traces of the outer edges of N on the set {1, ..., 5} are {1, 3}, (2, 4}, {2, 3} 
and {1, 4}. Here the first two traces are disjoint, and the last two are disjoint, too. 
Thus they have a common outer point, i.e. B 7--= {1, 3, x}, B 8= {2, 4, x} and B9= 
={2,3,  y}, B1o={1,4, y}. If x=y then we get o~f' 3 again and if x r  we get 
,~5(x, y>5). Second case: IBsAB,I=I, e.g. Bs={1, 3, 4}, B6={2, 3, 5}, see Fig. 8c. 
The traces of the outer edges on {1, ..., 5} are: {1, 3}, {2, 4}, {2, 3}, {1, 5}. The 
outer edges corresponding to these traces are {1, 3, x}, {2, 4, x}, {2, 3, y}, {1, 5, y}. 
Hence if x coincides with y we get the set-system ~ ,  and if they are different 
(x >y  >5) we get again ~5. 

I f  e=/?=3,  i.e. all the edges B~(5Ni<=10) are outer then we can order the 
6 traces in such a way that any trace is disjoint from its successor e.g. {1, 3}, {2, 4}, 
{1, 5}, {2, 3}, {1, 4}, {2, 5} (see Figure 8d). This implies that all B, (5<_-/<=10) 
have a common outer point. This gives g(~. 
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VII. Proof  of  Theorem 1 (last part) 

(n6) 
The Main Lemma implies that if I~'1_ -> 10 r - 3  and n>no(r, c) then the 

v-critical nucleus B of  rank 3 of o~ is ~ (for some 1-<_i<-6). As Z w ( B ) > 9 . 9  
by (8) we have that w(B)>0.9 for each B E ~ .  This means that [{FE~-: F D B } I =  > 

-->1~1>0"9 r - 3  " Let us choose FoEo~ arbitrarily. I f  F o A B = O  for some 

BEo~ then since ~ is intersecting we get 

[ )  (._4) 
0.9 n--3r_3 < I{FE~: F~B}I <--- z~ F E ~ :  F D B U { x  <- r r - 4  " 

xEF o 

This leads to a contradiction if  n>no(r). Hence 

(14) I f  BE~t~ and FEo ~ then B f ~ F ~ O .  

It is easy to see (it follows from the constructions described in Chapter VI) that if 
a set F intersects all the edges of  ~ then it contains one of them. (This fact is 
trivial for 3/t~ Let i = 1, 3, 4 or 6, i.e. o~ is a set-system on 6 points. I f  F does 
not contain edges of  ~ then ( U ~ ) \ F  meets all the edges of ~ ,  too. Hence 
1 F A ( U ~ ) I = [ ( U ~ ) \ F [ = 3 .  However one of these two sets is an edge of ~ .  
This leads to a contradiction. Finally if  F meets all the edges of Yg5 (see Fig. 1) 
then [Ffq {1, 2, 3, 4}[_-->2. If  1FN{1,2,3,4}1>2 then we are ready, and if 
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[FA{1, 2, 3, 4}I=2 then [FN{5, 6, 7}I_->1 
a BCo~fn with BcF. )  Hence 

(15) I f  F E ~  then there exists a B E ~  

Clearly 

and 

and it is easy to check that there is 

such that B c F. That is ~ c o~(o~i ). 

n--5 5 n--5 5 n--5 

n - 6  6 n - 6  6 n - 6  6 n - 6  
~(~'1) = ~'(~-8) = ~ ( ~ ) =  ~'(~-~8)= l0 ( r - 3 1  + ( 4 ) j r - 4 )  + ( 5 ) ( r - 5 )  + (61( r -6  / 

and 
- -  n - 7  7 7 n - 7  7 n - 7  7 n - 7  

~176 10 ( r - 3 1 +  [(41-10} (nr-~1)+(5)(r -5)+(6)(r -6)+f7) (r -7)"  

An easy computation shows that these three numerical expressions are equal. Thus 
Theorem 1 is proved. 

VIII. Summary, remarks 

As a matter of fact we have proved a more general theorem. 

THEOREM 3. Let ~ be a family of intersecting r-subsets of X, [Xl=n. Suppose 
that for some 1/2~c<2/3 and for every xCX, d lxl<-cl l, and that 

--> 9 t r - 3 )  (2/3)------S , ' - 4  " 

. . :=7  " . < 7  Then ~ c ~ ( ~ . ~ )  for some l = t  =6 (See Fig. 1). 

If c=  1/2 then the extremal set-system is ~(]f l) .  If  c is a little bit greater 
than 1/2 then for the extremal set-system ~- we get: ~-(5r ~ c ~-(~1). However 
if e>l/2+r/n then the extremal set-system is  the whole ~(Jf~) since 
(max doc(~b(x))/l~(~)l<l/2+r/n if n>no(r). ~(~--) is the unique extremum 

3 
as long as c<_-y, and there are five further extrema only if c>3/5. 

In fact the proof presented above is a slight improvement of a method due to 
P. Frankl. The crucial observation is that the nucleus N of oj is v-critical in this 
proof. P. Frankl used a different nucleus which was not v-critical. Indeed, in 
Chapters IV--VI we built up the set-systems ~ . . . . .  o~fn using (4). Further results 
can be found in the paper 17]. 
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