Acta Math. Hung.
42 (3—4) (1983), 177—187.

AN INTERSECTION PROBLEM WITH 6 EXTREMES

Z. FUREDI (Budapest)

I. Introduction

Let X be a finite set of n elements. A family & of the subsets of X is
intersecting if any two members of & intersect.

Erdds, Ko and Rado [3] proved that if & is an intersecting set-system of

rtuples of X and n=2r then |# [é(}::i) Equality holds in the case n=>2r
if and only if the members of & have a common element.
Let ¢ be areal number, O<c¢=1. The degree of the point (that is an element)
x in the set-system & is denoted by ds(x) or simply d(x)=:|{F:x€FcF}|.
Erdds, Rotschild and Szemerédi [5] raised the following question: How large
can be the intersecting set-system & of r-tuples of X if each point has degree at
most ¢|#|? For the case ¢=2/3, n>ny(r) they proved that

® |F| = |F,]

where F, ,={FcX:|F|=r, |FND|=2}, |D|=3.

Frankl [6] proved that (1) holds for any 2/3=c¢<!1 if n is large enough
(n=>ny(r, ¢)), and he solved the cases 3/7<c=3/5 as well, proving the conjectures
of Brd8s—Rotschild—Szemerédi. The aim of this paper is to settle the missing case
3/5<c<2/3.

II. Results

For a finite set-system # the underlying set of which is a subset of X (i.e.

Us# cX), we write F(#)={FCX:|F|=r and there exists an HE¢# such that

HCF}, F(#)={FcX:|F|=r and (FN(U#))€x#}. Evidently, #(#) and

F(H) are intersecting set-systems if # is intersecting, and F(#)S F(H#).
P. Frankl [6] proved that if 1/2<c¢=3/5 and n=>nyr, ¢) then

7| < n—6) (n—6} (n——6) (n——6] _
!/,—lo(r——Z’: +15 r—4 +6 r—>5 - r—6)

=101 73)+s( 20+ (023

1* Acta Mathematica Hungarica 42, 1983



178 7. FUREDI

If equality holds here then there exists a 3-uniform, S-regular, intersecting set-
system ## on a 6-element set such that & =% (#,). There exists exactly one such
H#, (see Figure 1).
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We describe 6 hypergraphs. (The elements of the underlying set are denoted
by positive integers, see also Figure 1.)

#,={123, 124, 345, 346, 156, 256, 135, 146, 236, 245},
Hy= [g]: {123, 124, 125, 134, 135, 145, 234, 235, 245, 345},

H#,=1{123, 124, 134, 234, 125, 345, 136, 246, 146, 236},
#,={123, 124, 125, 134, 136, 235, 236, 156, 246, 345},
o#,={123, 124, 134, 234, 125, 345, 136, 246, 147, 237},
He={124, 125, 126, 134, 135, 136, 234, 235, 236, 456}.

THEOREM 1. Let & be an intersecting family consisting of r-element subsets
of X,|X\=n. Suppose that for some 3/5<c<2/3, for n>nyr,c) and for every
x€X, de(x)=c|F| holds. Then

7 = n—S] (n~5] (n-—S]
@ l‘/l'_lo[r—?: +3 r—4 + r—5)°
Furthermore equality holds in (2) iff F =% (#) for some 1=i=6.

Furthermore, if ¢=1/2 and n=nyr) then

©) 1#1=10("79),

and equality holds here if and only if F =% ().
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AN INTERSECTION PROBLEM 179

So the cardinality of a maximum & is constant on the whole interval (1/2, 2/3).
Our theorem differs from the theorem of Frankl because in case 3/5<c<2/3 five
more extremal systems are allowed. So we have non-isomorphic optimal families.
This phenomenon is not rare in combinatorics even in the Erdds—Ko—Rado type
theorems, cf. the theorem of Hilton—Milner for r=3 (see [6] or [8]).

The following is a consequence of Theorem 1.

THEOREM 2. Let & be a family of intersecting r-subsets of X, |X|=n. Suppose

that [Jf[>(10+s)( 2) where >0 is a positive constant. Then for n=>nyr,¢)

there exists an x€X such that d(x)>(2/3—¢&)|F|.

(This is also an improvement of a theorem of Frankl. He proved the lower
bound 3/5+min (0.01, 0.01¢) instead of 2/3—¢.)

II1. Definitions and lemmas

Define an edge-contraction as the following operation on a set-system J¢:
we substitute an edge E€# by a smaller, nonempty E’&E, and thus we get the
set-system o —{E}U{E’}. An intersecting set-system is v~-crizical if it has no multiple
edges and the hypergraph obtained by contracting any of its edges is non-inter-
secting. That is

(4) For all E€s#, xcE there exists an FE such that ENF={x}.
Every v-critical intersecting set-system is a Sperner-family, that is
(5) If E€s# and FGE then F¢H#.
Erd8s and Lovész proved the following theorem [4]:

(6) If o is a v-critical intersecting set-system and max {|E|: E€ #}=k, then
|| =k

We can get a v-critical intersecting set-system from any intersecting set-system # by
contracting its edges as far as possible and deleting all but one copy of the appearing
multiple edges. This J# is called the nucleus of the set-system . Split # according
to the cardinality of its members: #=#1U#2U...U#" where Ecs#' implies
|\E|=i.

Denote by # the nucleus of #'Us#2U#3. In what follows # is called
the nucleus of rank 3 of #. Of course, # is not unique, but this is not important,

(D I % is an r-uniform, v-critical intersecting set-system with underlying set
X, |X|=n, then there exists a set-system % such that

(a) # is v-critical, intersecting and for all Bed, |B|=3 (possibly #=@);
— n—4
(b) If—f(ﬂ)[ér'[r_“).
Indeed, applying (6) we get

\F 5 (B)| = g’;f NF ) = 3|7 ()] = ;,m(”:“] ér’[l:::].
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180 Z. FUREDI

IV. The first part of the proof of Theorem 1. The main lemma

We shall consider the whole interval [1/2, 2/3), thus we will prove the above
mentioned theorem of Frankl at the same time. So let 1/2=c¢<2/3 be fixed and let
ZF be an r-uniform intersecting set-system on X with max {dz(x): x€X}=c|ZF|.
We are looking for & with maximal cardinality, hence we may suppose |#|=

n—=6
=|F ()= 10(,, _ 3].

Write % for the nucleus of rank 3 of #. For each Fe# NF(#) let us
choose a Be# with BCF. Let % denote the set of those members of # for
which B is chosen. Thus |F|= 3 |F|+|F ~F(#B)|. Define a weight w(B)

Bea

of B by w(B)=|%| /(’r’:g) Since by (7b) 197—9@)19'[’::2) we get

(73 (7

(®) 2> w(B)= - >9.9
Bc n—3 n—3
6 (r-—3] [r—S]
provided n is large enough (n=>10r"*). Moreover for any x€X we have
©) 3 w(B) <3 3 w(B).
B>x
Indeed
n—3 -
2" _B;xW(B)[ 3 A2 e e 2
2w(B) =3y D%l T FnF@ 4 n—4) 3
ZW(B)(r—3) s Ens@ ""i"O[[r~4]]
rovided n=>nyr, c) (n >——i—— 10r""1]
P o P —c ‘

The following lemma is the crucial point of the proof.

MAIN LEMMA. Suppose that % is a v-critical, intersecting set-system of rank 3.
Suppose further that there exists a non-negative weight function w: #—R such that
(8) and (9) hold and w(B)=1 if |B|=3. Then B=; for some 1=i=6 (see
Figure 1).

By (6) |#|=27 thus the proof of this lemma is reduced to the investigation of
finitely many “small” set-systems. After this lemma the proof of Theorem lis
not hard. But we cannot hope for a simple proof of the lemma because its conclusion
is somewhat complicated, and any proof must yield a description of the structures
of the #’s.

The following two parts of this paper (Chapters V and VI) contain only the
proof of the Main Lemma. If the reader believies that the author has examined
all (finitely many) cases of the v-critical intersecting set-systems of rank 3, then he
or she can continue reading Chapter VIL
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AN INTERSECTION PROBLEM 181

V. The first part of the proof of the lemma.
The nucleus of rank 3 of a maximal % is 3-uniform

The formula (9) yields that # has no member thh 1 element, since then
|B|=1. We will show that

(10) £ is 3-uniform.

We will prove this by way of contradiction. Denote by #%? the members of
% with 2-elements. In what follows the points of the underlying set of # will be
denoted by the positive integers.

If |#* =4 then its edges have a common point since %% is intersecting.
E.g. B,={1,2}, B,={l, 3}, B;={l,4}, B,={l,5}. (See Figure 2.) By (4) there
exists an edge B; not containing the point 1. But By intersects B,, By, By and
B, thus {2,3,4,5}cB,. This is a contradiction.

If %% =3 and the edges of #* have a common point then let this be e.g.
the point 1 and B,={1,2}, B,={l,3}, B;={l,4}. (See Figure 3.) Since there
exists an edge B, not containing the point 1 we get that B,={2, 3, 4}. There are
no other edges of # which do not contain the point 1. Moreover there is no other
edge of # which contains 1 because it would contain some B; (1=i=3) contra-
dicting (5). Thus in this case #={By, B,, B;, B,}. Considering (9) at point 1 we

have (w;+ w2+w3)<—§-(w1+ wo+ws+w,). This and the inequality w,=1 give
that >w;<3. This contradicts (8) (w;=w(B)).

12345 12345
B ®® B [ee
B, o @ B, (@ @
By |@ ° B;|-00e
o B,je--e@@
- -00-@
Fig. 4
1234567 123456
B, lee B [e®
B;jle ee B,l@ ®e
B; l@ oo B; |@ Y )
B,le ® ° B, 1@ o @
- - ° B |@ L)
b) Be| @® e
B,L® @@
c)
Fig. 5

If |#*|=3 and the edges of %* have no a common point then they form a
triangle, i.e. B;={l1,2}, B,={1, 3}, Bs-{Z 3}. The set- -system = {Bl, B,, By},
similarly to the above mentioned cases, is a maximal v-critical intersecting system.
(I.e.if %’ is a v-critical intersecting set-system and #c %’ then #=4".) However
for the triangle (9) does not hold.
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182 Z. FUREDI

If |#%=2 then let B;={l,2}, B,={l, 3} (see Figure 4). By (4) there exists
an edge B; not containing the point 1, B;={2, 3,4}. There exists an edge B,
meeting B; only in the point 4, ie. 2,3¢B,, 4¢B,, thus B,={l,4,5}.
There exists an edge B; which meets B, only in the point 5, ie. 1,44 B;,
5€B;, thus B;=1{2,3,5}. The set-system % has no further edges containing
the point 1, and it has no further edges not containing the point 1. Hence the
set-system obtained above is maximal v-critical, i.e. #={By, ..., Bs}. Applying

. 2
(9) at the point 1 we have (w +wy+wy)< ?(w1+w2+w3+w4+ ws). Moreover
ws, Wg, Wws=1 hence >'w;<6, but that contradicts (8).

Finally if |#%=1 then let B;={l,2}. Applying (9) at the points 1 and 2
and summing we get 2w;+(> wi)<%(2’ w;). From this w1<-%—(2' w;) and
i>1 i>1

3
(Zw,-)<i (2 wy). By (8) > w;=9 hence ( 3 w;)=>6. Consequently at least 7members
i>1 i>1

of # with 3 elements intersect B,. Thus at least 4 edges (B,...B;) contain the
point 1 (and by (5) they do not contain the point 2). There are no three sets from
B\{1}, B:\{1}, B,{1}, B;\{1} which have a common point because if we suppose
on the contrary that (see Figure 5a) B,={l, 3,4} B,={1,3,5}, B,={1,3, 6}
then we get a contradiction applying (4) to the edges B, at the point 4. Consequently
among the sets B;—{1} (2=i=5) there are two disjoint, e.g. B;={l, 3,4}, B;=
={1, 5, 6} (see Figure 5b and 5c). If the edge B, (or B;) would contain a further
point (say 7) then we immediately get a contradiction applying (4) to the edge
B, (or B;) at the point 7 (see Figure 5b). Thus B\ {1}, B\{1}<=(3, 4,5, 6) and
they are disjoint (see Figure 5¢). Consequently there is no further edge containing
the point 1. The edges not containing 1 contain the point 2 and intersect (3, 4, 5, 6)
in (3, 6) or (4,5). Thus there are only at most six 3-element edges of # which
contradicts the assumption (2 w;)=6.
i>1

Consequently %%= and this completes the proof of (10).

VI. Proof of the main lemma (last part).
The nucleus of rank 3 of a maximal # is #; (1=i=6)

By (9) there is no point contained in all the edges of #%. Further there is no
pair {x, y} covering all the edges of # (i.e. YBEA, {x, y} B &). Indeed, if we
suppose the contrary then joining the edge {x, y} with weight 0 to # we get
an intersecting set-system which satisfies the assumptions of the Lemma. But (10)
says that this is impossible. Consequently

(11) For all the points x,y there exists an edge BER such that BN{x, y}=&"

Since (3 w;)=>9 we get |#|=10. Then we can apply a theorem of Deza [1] which
in this case states: If at least 8 3-element sets are given so that any two of them
intersect in exactly 1 element, then all the sets have a common point. Consequently
% has two edges (B, and B,) intersecting in 2 elements. E.g. B,={l, 2, 3}, B;=
={1, 2, 4} (see Fig. 6).
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AN INTERSECTION PROBLEM 183

Firstly, suppose that
(12) there do not exist B’, B”, B”¢# such that |[B'NB"NB”|=2.

We will prove that in this case #=2.

By (11) there exists an edge B, such that 1,2¢B;, say B;={3,4,5}. We
will show that da(1)=5 (and similarly ds(2)=5). Indeed, if du(1)=6, then there
exists at least 4 edges (B,, Bs, By, B;) which contain the point 1 and by (12) do not
contain the point 2. Also by (12) there are no two of them which contain the point 3
(or the point 4) (see Figure 6a). Thus there are two edges (Bg, B;) which do not
contain the points 3, 4 (and 2) e.g. Be={l, 5, 6}, B;={1, 5,7}, see Fig. 6b. Then
there is no edge not containing the points {1, 5}; however it meets all the edges
B,, By, By, Bs, B;. This contradicts (11).
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Thus, by |#|=10 and d(1), d(2)=5, there are at least (and by (12) at most)
two edges which are disjoint from the points {1, 2}. They contain the points 3 and 4
(see Figure 6c) B;={3,4,5}, B,={3,4,6)}. Since |B;N\B,|=2 we again can say
that d(3)=5, d(4)=5 and there exists exactly two further edges (B,, Bs) which
are disjoint from {3, 4}. Consequently B;={5, 6, 1}, B;={5, 6, 2}. Then the minimal
number of points covering the system {B,...Bg} is 3, hence the set {1,2,..., 6}
contains all the edges of #. Thus d(1)=...=d(6)=5 and |%#|=10. For each pair
of points from {1, ..., 6} there is an edge B; (1=i=6) containing it, thus by (12)
all the intersections B, B, (7=a, §=10) have only 1 point in common. Moreover
B,(7=a=10) intersects each of the sets {1, 2}, {3, 4}, {5, 6} in one point only.
This last two properties (up to isomorphisms) uniquely define the edges B;, ..., By,.
(Since the edges By, ..., By, and the sets {1,2,x}, {3,4,x}, {5,6,x} form the
finite projective plane of order 2.) So we get .

Now we suppose that (12) does not hold, i.e. |BNB,NB;|=2, B;={1, 2,3},
B,={1,2,4}, B,={1, 2, 5). (See Figure 7.) By (11) there exists an edge B, which
does not contain 1 and 2, thus B;={3,4,5}. An arbitrary other edge B of &
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184 Z. FUREDI

is called inner or outer according to whether it is contained in {1, 2, 3, 4, 5} or not.
Le. either |BN{l,2}|=1 and |BN{3,4,5}|=2 or |[BN{l,2}|=|BN{3,4,5}|=
=|B\{L, ..., 5}|=1, respectively.

First of all we show that there are no two outer edges B’, B” which intersect
{1, ..., 5} at the same points. Suppose on the contrary that B’={l,3,x}, B"=
={1, 3, y} (x,y>5) then applying (11) to the points 1 and 3 we get a contradiction
(see Fig. 7). Hence the number of outer edges (and the number of inner edges,
too) is at most 6. These 6 and 6 sets form 6 complementary pairs (e.g. the complement
of the outer edge {1, 4, x} is the inner edge {2, 3, 5}). Naturally, # contains at
most one member of each complementary pair, thus |#—{B,, B;, Bs, B,}|=6.
It follows that |#|=10, thus

(13) |2] = 10.

This yields dg(x)=6 for all points x, because d(x)=7 would imply > w(B)=3
Béx

thus writing (9) at the point x we get

2 2
(gx w(B)) < 3 (B%,CW(B)+B%: w(B)) = 3 (B% w(B)+3),

i.e. 2 w(B)<6, and this contradicts (8). All the edges B;, ..., By, intersect the

B3x
set {l,2} in (exactly) one element, hence we get dyz(1)=dyz(2)=6. Let us denote
the number of outer edges containing the points 1 and 2 by « and B, respectively.
By (13) one member of each complementary pair (consisting of one outer and inner set)
belongs to 4. Thus there are exactly 3—f outer sets containing 1 belonging to 4.
Hence 6=dz(1)=3+a-+(3—p), consequently «=p.

If «=B=0, ie. every edge of # is inner then we get #,, the set-system of
all 3-tuples of the underlying-set {1, 2, ..., 5} (see Fig. 1).

If a=p=1 then let the unique outer edge containing the point 1 be B; (see
Fig. 8a), e.g. B;={l, 3, 6}. By (4) there is an edge B, such that 1,3¢ Bs, 6¢Bs,
ie. Bg={2,4,6}. All the other edges are inner and determined uniquely. Hence
we get 5.

If a=p=2 then there are only two inner edges (B; and B;, see Fig. 8bc).
As a=f the edges B; and B, intersect {l,2} in different points. There are two
cases. First case: |B;(\Bg|=2, e.g. B;={l, 3,4}, Be=1{2, 3, 4}, see Fig. 8b. Then
the traces of the outer edges of # on the set {1,...,5} are {1, 3}, (2,4}, {2,3}
and {1, 4}. Here the first two traces are disjoint, and the last two are disjoint, too.
Thus they have a common outer point, i.e. B,={1,3, x}, By={2,4, x} and By=
={2, 3,5}, Bp={1,4,y}. If x=y then we get #, again and if x=y we get
Hy(x, y=5). Second case: |B;NBg|=1, e.g. B;={l, 3,4}, B;=1{2, 3, 5}, see Fig. &c.
The traces of the outer edges on {l,...,5} are: {l,3}, {2,4}, {2,3}, {1, 5}. The
outer edges corresponding to these traces are {1, 3, x}, {2, 4, x}, {2, 3, »}, {1, 5, y}-
Hence if x coincides with y we get the set-system 2, and if they are different
(x>y=5) we get again ;.

If a=f=3, ie. all the edges B;(5=i=10) are outer then we can order the
6 traces in such a way that any trace is disjoint from its successor e.g. {l,3}, {2,4},
{1,5}, {2,3}, {1,4}, {2, 5} (see Figure 8d). This implies that all B, (5=i=10)
have a common outer peoint. This gives .
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VII. Proof of Theorem 1 (last part)

The Main Lemma implies that if |# [510[’::2) and n=>nyr, ¢) then the
v-critical nucleus B of rank 3 of &# is #; (for some 1=i=6). As > w(B)=9.9
by (8) we have that w(B)=>0.9 for each B€s#. This means that [{F€F: FOB}|=
z[.%,|>0.9(:,l:g). Let us choose Fyc¢&# arbitrarily. If FyN\B=¢g for some
Bes#, then since & is intersecting we get

0.9 (’::3] <|{FeF: FoB)| = GZF {FeF: FoBU{x}}| = r[’:::).

This leads to a contradiction if n=>ny(r). Hence
(14) If Best; and FEF then BNF#3.

It is easy to see (it follows from the constructions described in Chapter VI) that if
a set F intersects all the edges of #; then it contains one of them. (This fact is
trivial for #,. Let i=1,3,4 or 6, i.e. s a set-system on 6 points. If F does
not contain edges of #; then (UJs#£)\F meets all the edges of 5, too. Hence
[FN(UH) | =|(UH#)\F|=3. However one of these two sets is an edge of ;.
This leads to a contradiction. Finally if F meets all the edges of #; (see Fig. 1)
then |FN{1,2,3,4}{=2. If |FN{1,2,3,4}|>2 then we are ready, and if
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186 Z. FUREDI

[FN{1,2,3,4}]=2 then |FN{5,6,7} =1 and it is easy to check that there is
a Beciy with BCF.) Hence

(15) If FEF then there exists a BEH, such that BCF. That is F CF(H).

Clearly
d s@=10(23)+ G022+ G)2I)
an

FBy=7=7T=#F=10(3+(5) (=8--I () =9)
and

{903 B1 )

An easy computation shows that these three numerical expressions are equal. Thus
Theorem 1 is proved.

VIII. Summary, remarks

As a matter of fact we have proved a more general theorem.

THEOREM 3. Let & be a family of intersecting r-subsets of X, |X|=n. Suppose
that for some 1/2=c<2/3 and for every x¢X,dg|x|=c|F|, and that

-3 20 n-—
7 =9|? Y e
171 = 9[r—3]+ @B —c’ (;~-4)'

Then F CF(H) for some 1=i=6 (See Fig. ).

If ¢=1/2 then the extremal set-system is F(#). If ¢ is a little bit greater
than 1/2 then for the extremal set-system & we get: F(HNCF CF (3%). However
if ¢>1/24+r/n then the extremal set-system is the whole &% (3%) since
(r&agc dy(z)(x))/lﬁ(%)|<l/2+r/n if n>nyr). F(#,) is the unique extremum

aslongas cg—g-, and there are five further extrema only if ¢=3/5.

In fact the proof presented above is a slight improvement of a method due to
P. Frankl. The crucial observation is that the nucleus # of F is v-critical in this
proof. P. Frankl used a different nucleus which was not v-critical. Indeed, in
Chapters IV—VI we built up the set-systems 3£, ..., #, using (4). Further results
can be found in the paper |7].
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