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Let ~- be a family of k-subsets of an n-set. Let s be a fixed integer satisfying k~s~3k. 
Suppose that for Fz, F~, F3 C,'~- LFz U F,_ U F31 ~ s implies Fa f-I Ez f-I F3 ~ 0. Katona asked what is 
the maximum cardinality, f(n, k,s) of such a system. The Erd6s--Ko--Rado theorem implies 

I ,k-1)  for s= 3k and n~2k. In this paper we show that f(n, k, s)= -_ holds for 
n>n0(k) if and only if s~2k. 

Equality holds only if every member of.~- contains a fixed element of the underlying set. 
Further we solve the problem for k= 3, s= 5. n-->3000. This result sharpens a theorem of 

Bollobfi.s. 

1. Introduct ion  

The simplest version of  the E r d 6 s - - K o - - R a d o  theorem is the following 

T h e o r e m  1. [4] Let ,~ be a collection of  k-element subsets of  an n-set X. Suppose 
F(3F" ~O .['or F, F'C.~-. Then Jbr n > 2 k  

( l )  I.~P ~ . _ 1  ' 

and equalio, holds ~ff for  some xE X we hare 

(2) ~ = { r e  XilFI  = k, xC_F}. 

In Frankl  [5] the following is proven 

T h e o r e m  2. Let ~ be a collection qf  k-element subsets of  an n-set X, and let t >=2. 
Suppose that, ./'or every Fl, F,, . . . . .  FtE .~, Fz(-I...(~F,#~J holds. Then for 
n > ( t / t - 1 ) k  ( l )  hohh¢. Equality i.V possible onh' for ~" sati,~v&g (2). 

K a t o n a  raised the following problem, concerning the case t = 3 of Theorem 2. 
What  happens if, for some integer s, we require FtOF.,_NF:~#O only for triples 
satisfying ]FaUF2UFa]<=s? For which values of s does the condi t ion entail (1)? 
In this paper we investigate this problem for n >no(k), and show that  ( l )  holds whene- 
ver s ~ 2 k .  

AMS subject classification (1980): 05 C 35, 05 B 30 
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2 .  R e s u l t s  

Theorem 3. Let .,~17 be a collection Q[ k-element subsets of the n-set X. Suppose t/tat 
.['o1" any 1:1, F,,_, F:;E~, satisfvhTg ]F~UF,,LIF31--2k F~r~F.ar~Fa#O holds. Then 
there is a number n0(k) such t/tat,/or n>n,~(k) 

I:~1:4--- (/`. I 

mzd equatiL!" 17old~' only i / ' ~  is a family consisting of all ttw k-subsets containing 
f ixed elemem. Moreover no(3) = 5, n.(k) ~ k  2+3k. 

It  is somewhat  surprising that  ttle extremal family is unchanged in the range 
2k~s<=3k. 

However  tbr , s<2k the situation is completely different, as it is shown by the 
following construction.  

H Let us consider a parti t ion of  X into k sets ,,~"~ . . . .  , Xk with ~ lXi] :=--- ~- I. 

Let us define 

(3) :W= { 6 ' c , V [ I G C I < I  = I for l ~ i - - -  k}. 

Suppose now G)~'iG.,r~'Ga=O for some G~,G~, Ga~_.~. Then obviously R)r 
every l > i ~ k  we have 

](G~UG.,_UGa)?IX~! ~ 2. 

From this we immediately obtain IGLUGaUGa]~2k, in other words [G~UG,,UGai 
~ 2 k - 1  implies G~(~G2(~G~O, i.e. N satisfies the condit ion of  Katona.  ](4[ 

which is o f  greater order  of  magni tude than k 1 " 

Conjecture. Let .~- be a family of/ , ' -subsets  of  X, IXi=n ,  Suppose F~, F2, Fa¢-~7 
[F~UF2UF,,I>2k-1 implies F~I ' )Fe I - I&~0 .  Then for n~no(k )  and C~ defined 
above  

I~*-I-~ 1% 
with equality iff ~ = { ~ .  

[,,1I,,+  11,,+21 Theorem 4. If  k = 3  and n-=o000 then ./(n, 3, 5 ) = t ~ l t ~ J t - - - - 5 - -  j. 

This result is a sharpening of  the following theorem. 

Theorem 5. (Bollob~s [I]) Let :~ be a jctmily o/" 3-subsets o/ X, tX[=n.  Suppose 
that )or F~, F.,_, &~ .~  we have 1:1 ~ F 2 ~ Fa ( ~ denotes the symmetric d~ference). 
Then i~7[ ~j~] with equality holding only (f ..~ is isomorphic to ~. 

Thus  Bollobdts excludes the configuration when F1, Fz, F a are three different 
3-subset o f a  4-set, while Theorem 4 permits it. However  Bollob~s's result holds for 
every n while we assume n_>3000, and our  theorem is definitely not true for n g  10. 

Ibr k =  3, s :~ 4. trivially / (n ,  3. s') = [ n } holds, therefore Katona ' s  pro- 
% 

As 
' L3 

b!cm i s so lx td  for k = 3 .  except when s = 5 ,  n<3000.  



A N E W  G E N E R A L I Z A T I O N  O F  T H E  E R D O S - - - K O - - R A D O  T H E O R E M  343 

3. The proof of Theorem 3 

When k =  2, o~ is a simple graph containing no triangles or path of length 3, 
so it is the union of vertex disjoint stars, thus Theorem 3 is true. From now on assume 
that k_->3. 

We proceed in a similar way as in Frankl [6]. First we prove that (1) holds 
asymptotically. Let m(n, k, 1) denote the maximum number of k-subsets of an n-set, 
such that no two intersect in a singleton. 

Then we have: 

Lemma 1. If  .Y satisfies the conditions of Theorem 3, then 

n )-I-m(n,k, 1). (4) l--~l ~ k -  l 

Proof. Let -~o be the family of those subsets of .~- which contain a (k - 1)-subset not 
contained in any other member of ~ ,  i.e. :70= {FC:Yl3Gc F, IGl=k-  1, G c  F ' E ~  
implies F ' =  F}, and define J a = . ~ - - . 7 o .  

Clearly ].~o]~[kn l / .  _ _ Hence it suffices to prove !,~-~l~m(n,k, 1). Suppose 
f N 

the contrary, then we can find G ,  FzE'f~ such that IFt(~ F~I = 1. Let G (q F2= {x}. 
As F~¢,~o there is an FaE-~, FtgF3 such that (F t - {x} )cFa .  But in this case 
FafqF2OFa=f) and IF~UF2UFa]<-IgtdF4+l=2k, a contradiction. 1 

The problem of determining re(n, k, 1) was raised by Erd6s and S6s (see [2]), 
who determined m(n, 3, 1), in particular they proved re(n, 3, l )~n ,  and conjectured 

n,(,,, k, l ) : [ k ~ 2  j forn=>2k. This was proved by Frankl [7]for n>n0(k). Since 

k -  1 = [ k - l J + t k - 2 r  Lemma I yields 

Corollary 1. I f  ~ satisfies the conditions of Theorem 3, then .for n>no(k) 

n - 1 n - 

In the proof of Lemma I we used only: 

Proposition 0. I f  F~, F.,.G~ and Ft r-q F~= {x} then there are no sets F," o1' F~ in 
satisfying (F1-- {x}) c F t or ( & -  {x}) c F2'. 1 

For xEX let ~(x)  denote the family of sets FE.-~- with x¢F, and g0(x) 
the family of sets FE.~ with x~.F such that F - { x }  is not contained in any other 
F'@~. Let further [@(x)[=d(x), I~o(x)l=d,(x). Clearly we have 

(6) Z d(x) = klJI, 
xEX 

In] (7) Z d , , (x )  ~ . 
~cx k - 1  
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In view of Proposition 0 we have 

Proposition 1. &q~pose F1, F,2E,~ and FI~/F2={x}. Then F1, F2E2o(X). | 

Let us set ag (x )~{F-{x} l  F E ( ~ ( x ) - ~ o ( X ) ) } = { F - { x } I x E F E ~  and 
?F'~.N with ( F - - { x } ) c F } .  Then Proposition 1 yields: 

Proposition 2. For A , A ' E d ( x )  we have A(3A'=~O. | 

We will use the following theorem of Hilton and Milner: 

Theorem 6. [9] Let sd be a collection of r-element subsets of an n-set, n~2r.  Sup- ' " ' )  F " )  
pose that A~A' ,~O ./br A,A'E~¢ and t ~ ¢ ] > t r _ l  - r - 1  +1.  Then there 

exists an element y such that yEA for eveo" AE.s¢. | 

Proposition 3. / f  r ~-- 2, n ~_ 2r, then 

,,, (,; ,)_( , 
l l ' - -  

Proof. It follows from 

- 1 ) - {  r - I  i=0 I, r - 2  | 

n -- 3) 
Proposition 4. / f  [,~?(x)l>k k - 3  then there exists y E ( X - x )  such that .vE F .for 

ever)' FE~ (x). 

Proof. In view of Propositions 2 and 3 we can find y E ( X - x )  such that )'EA for 
every AEsg(x). Suppose that for some FE2o(x) we have y¢  F. In view of Propo- 

( , , - 3 )  
sition 1 f orevery A~.~(x) wehave A2!F~O, yielding IsJ(x)l<=k k - - 3 '  a con- 

tradiction. II 

Call the point x ~ X  good if there exists a 3"~x such that x<F,~,Y 7 entails 
yC F. If x is good then fix one such y and denote it byf(x) .  

(n 3~ 

X / 

. ~  > m - - l /  
We assume from now on that i,~" ] = ~ k -  1J and that there 

which is contained in every member of ,~. 

Lemma 2. I f  x is good the,,., d(x) <= (k - 2J - ( k -  1) 

is no vertex zqX  

Proof. By the indirect assumption there exists Fo E~  with f (x)~  F 0. As x is ,good 
and J'(x)E F0 we have .v~: F,. Let us consider k-subsets of the following form: 
F=GU {y}U {x,f(x)}, where r< Fo, G c X -  (FoU {x, f(x)}) ,  I G l = k - 3 .  The total 

'- ". as for given Coand ,,,, y.,< Uothe intersoc,o. number of such k-sets is 
k , ,  o ] 
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of the three sets F0, G0U {.)'~, x,.f(x)}, G0U {3'2, x, f(x)} is empty and their union 
of  cardinality less than 2k, so at most one set of the form GoU {y, x, f(x)}  O,EF0) 

belongs to o~. Consequently, at m o s t "  " [ n k k 3 2  j _  sets of the form {GU {y, x,f(x)}] 

yEFo, G c  (X-FoU {x,f(x)}), IGl=k-3 i belong to ,~-. This means that at least 

( k - l )  n 2 sets are missing from the I k - 2 )  possible k-sets containing 

{x, f(x)}. I 
Lemma 3. I f  n > k Z - k  then there exists at least one good vertex x. 

Proof. Suppose the contrary then using (6), (7) and Corollary 2 we deduce 

{"/ k 1 <- k[~l = "9 d(x) = ~ do(x)+ -v Id(x)j ~ +nk zA. xEX xCX xEX k l 
. [ n -  1 "1 

It is easy to see that the right hand side is less than k [ k _  1) for n > k ' - k ,  a contra- 

diction. | 

We prove Theorem 3 lbr k = 3 ,  n-~5=n0(3). For n=5 ,  6 it lbllows from 
Theorem 2. We apply induction on 17. 

Let ~- be a family satisfying the assumptions but not the statement. As 
n~7 ,  by Lemmas 2 and 3, wa can find x~X with d ( x ) < ( n - 2 ) .  Then . ~ - ~ ( x )  
is a family satisfying the assumptions on X -  {x}. We may use the induction hypothesis 

]~ -@(x) ] ' - - - (n72) ,  yielding I . ~ - ] < ( n 2 2 1 + ( n - 2 ) = ( n 2  I) which concludes the 

proof. 
From now on we assume that k ~ 4 .  Let us suppose n>k"--k. Suppose the 

statement of the theorem is false for .~. Then by n > k 2 - k  there exists xEX with 
[ '"--2/  (~ 

d (x )g  i , / c _ 2 ) - ( k - I  ) K _ a 2 ) .  Let X , = Y - { x } ,  and ~ .~l=~-~(a- ) .  If x , , <  7I,~ / 

, (]Xil- 1/J xGXi ( {I-22 ) defined with ~ ! > / k ± l  then let with d(x)>  I ~ k ~  1~ ~ are 

.[]Xik- % - "  ' ' 2}" ( s u c h  a v e r t e x  e x i s t s  certainly for ]X]l>k"--k.) 
% 

Let X, .+~=&-{x},  a g + , = N - ~ ( x ) .  Let j be the index for which IXjl 
= k " - k ,  i.e., j = n - k " + k .  Then we have 

,'[{ } ,,( n - k - 2 - - i  - 1  - 
(9) I~1 ¢ I.~l-,=uZ k - - 2  / , - 3  1} = --1 --,  I, k - - 2  ) 

+ ( k -  l) Z - = + ( k - -  I1 - . 
i=0 k 3 l, k - I  k - 2  - 

On the other hand .',~j is a family of k-subsets of the (k'-'-k)-element set X), thus by 
Lemma 1 

(10) [~.l =- k -  +m(k"--k, k, I). 
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Proposition 5. For n > 2k we /tare 
,, ( . - 2 /  

re(n, k, 1) --~ ~ k - 2 ) "  

Proof. Let c~ be a family of  k-subsets of  an n-set which does not  contain two members  
intersecting in a singleton. Then for every vertex x, cg,= { G - { x } :  xEGEC#} is an 
intersecting family of  ( k -  1)-subsets of  an ( in-  1)-set. Thus  by the E r d 6 s - - K o - - R a d o  

_ ( , , - 2 ~  
theorem (Theorem 1) we have I~d ~ [ k -  2)" Therefore  

,,~,, 1 vlc#.~l ~ n f n - 2 ]  
I-! = T . ~  ' T t k - 2 ) "  I 

Combining  (10) with Proposi t ion 5, we obtain 

(k 2 -  k - 2}. 
( t l )  t~al --- {ke-k]+(k-l)[k-l ) k - 2  

However ,  for n :-k"-+3k, (11) contradicts  (9), which concludes the p roo f  o f  Theo-  
rem 3. 

( n - 2 ~  ( n - k  1) 
Remark  1. Proposit ion 4 re,nains true for 1~e / ( .¥ ) [>1/¢_2) - [  k - 2  +1 .  Using 

this one can prove Lemma 3 for n > k e / ( I . 5  log k) and in this way the upper  bound 
no(k)~k2+3k can be improved to no(k)<k~/log k. But it is still far f rom the real 
value of  n0(k) which we conjecture to be [3k/21. We can prove this for k = 4 ,  5. 

4. The proof of Theorem 4. 

With the lamily .Y let us associate the graph J whose vertex set is X and 
whose edges are all the 2-sets which are contained in some FE-~.  

Let us recall now a result o f  Erd6s [3]. For  simplicity we state it only for a spe- 
cial case. 

Theorem 7. [3] Let ~ be a .fimlily of 3-subsets of X, IXl=n. Suppose that ~ 
contah~s no complete ,¢ubgraph on 4 rertices. Then )Cor ,,~ the assertion of Theorem 4 
holds. 

Let s be the greatest  number  lot which ~ contains a complete  subgraph on s 
vertices. 

I f  s = 3  then Theorem 7 yields the s ta tement  of  our  theorem. For  s ~ 4  we 
will proceed in a similar way as with the p roo f  of  Theorem 3. Let t = rain (s, 5). Let  
Xl . . . . .  x, be the vertices o f  a complete  subgraph of  ~¢. By Turfin's theorem [9] we 
have for t = s = 4  

3 
(12) IsCl ~ %-. ~, 

Let M1, ~2 ,  :~a be the collection of  members  B of  ~-  for which [B~I {x~ . . . . . .  r,}] 
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= 1 , 2 , 3 ,  

1.13) 

and 

(14) 

respectively. Obviously, we have 

2 • 

For l:4i<.j----t, let us choose z~uEX such that {x~, xj, zi.j}4F. This is possible 
l - - k  

s , ce x, l<.o" Z the set co rse 

Proposition 6. Iffor 1 <=i<.j~t, and for yt,  y2,CX both {x~, y, ,  y~} and {xj, y, ,  3'~} 
belong to "if, then either .r, or y.,_ belongs to Z. 

Proof. Let us write z=zi.s. By definition {x;,xj,  z}-C~. Then I{x~,xj, z} 
CI {x~, y~,y,,}U {xj., yL, Y~}I ~-5, consequently the intersection of the 3 sets is non- 
empty, i.e., z=3'~ or z=.ve, as desired. | 

Proposition 7. 

(15) I?Z~, 2 [ ~ / ( , , -  
t - I  

< ~zx t )+- -g- -n- .  
o 

Proof. Our first claim is that the first term is an upper bound for the number of 
F~.Y" with [FN{.xt . . . . .  x,}l=l,  F ~ Z # O .  For z~.Z let m(z)denote the multipli- 
city of Z, i.e. the number of pairs (i,j),  l ~ i < j ~ t  with z=z,.j .  For zCZ and 
yCX-{xa . . . . .  x,} let D(z,y) denote the set ofx~, l ~ i ~ t  such that {z, y, x~}E.~. 
If y ~ Z  then by Proposition 6 for .v~, xjC~D(z,y) we have z=z~,.i. If 3'~Z then 

the only other possibility is , '=z~,,. Thus for y ~ Z  we have m(z)~[ID( 2 , ' -  Y)/J,' 

in particular 2m(z)>=[D(z,y)] holds. Similarly, if yCZ then 2m(z)+2mO') 
>=ID( z, Y)I. Summing up these inequalities for all pairs z~Z, yEX-{Xl ,  ..., x,}, 
considering the pairs with )'<Z only once and taking into consideration z~7 re(z) 

zCzZ 
f = N  

=12] weobtain our first claim. In viewof Proposition 6 and (12)the second term is 

an upper bound for l,~I, which is at least the number of F~,N with [FA {x~ . . . . . .  v,}t 
= 1, F(hZ~O. l 

Now summing (13), (14) and (15) we obtain 

(16) rain d(xi) :~ d(x;) = (3[~a1+2[~.,[±[~,[) 
l ~ i ~ t  - 7 -  - i , i = 1  

-Ts-n=+6n-21 for t = 4 

~5 
n'-'+8,1--37 for t 5 

@0 n ~ + 8 n - 3 7  (if n ~ 8). 
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Suppose now that n>3000, I,~]~ f f  and the theorem is false. By 

(16) we can take an xa~X, X~=X-{xl}  and ~ = { F ~ o ~ l x l ~ F  } such that d(xO 

~2-i-~tf+8n-37. Then, in view of (16), I-~11> =[~¢,,-1i and we 

can argue in the same way for ~ as we did for ~'.  Let q be the first integer with IXo] 
~750. Then q = n - 7 5 0 .  For the cardinality of ~ we deduce 

(17) I"J,,I > I ~ ] -  ~ ( n - i ) ~ + 8 ( n - - i ) - - 3 7  
i = 0  

1 n ( n + l ) ( 2 n + l )  1 750.751. 1501 
= ]~l 10 6 4 n ( n + l ) + 3 7 n +  1---O 6 

+ 4 .  750. 751--37.750. 

Now using the assumption [ g l ~  2 ~ ( n a - 3 n - 2 )  we obtain from (17), for n>3000, 

1 , [ 7 /  I.~] >-~-~n' - 4 .  In' + 16 000 000> , a contradiction, proving the theorem. 

5.  C o n c l u d i n g  r e m a r k s  

Remark 2. Theorem 4 is not only a sharpening of Theorem 5, but the proof is entirely 
n e w .  

Remark 3. The problems considered in this paper belong to the so-called Tur~in-type 
problems, i.e. what is the maximum number of k-subsets of an n-set if it contains no 
sub-system isomorphic to one member of a set of k-graphs { ~ ,  ~.2, ..., o"4eq}, This 
maximum is usually denoted by ext (n, {)fl, :~,,~ . . . .  , ,¢gq}). 

Let us define J f l={{xl ,  a2 . . . .  , ~(k}, {-X'I, 2c2; . . . ,  .X 'k_l ,  X k + l }  , {Xk+ 1- Xk+  2 . . . .  
. . ,  x d},  ri={lx , x., . . . .  , xg}, {x~, a-z . . . . .  xk_~, xk+~}, {xk, .x-k+~ . . . .  , X2k-~}}- In this 

. n n + l  n + 2  
terminology we proved (Theorem 41) for k = 3 e x t  (n, {..Yt52})=[-~-] [ ~ ]  [ - 7 - - ] .  

Moreover, the proof of Theorem 3 yields for n>n0(k) the stronger result 

ext (n, {J4~l,,,Yf:2})=(~--ll). 

Refining the argument we could even obtain 

Theorem 8. For n > n2 (7") we have ext (n, {,~/]})= k -  1 " 

Finally a special case of a result of the first author gives 

Theorem 9. [8] Let ,Y{',= {H~, H2. H.~} be an arbitrary k-graph sati,~ring 
[Ha U H2 U H,~] ~ 2k, 1-11 N H2 (~ H.~ ~ O. Then for every n, ext (n, {Yg}) < 3en k-1. 
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