A NEW GENERALIZATION OF THE ERDŐS-KO-RADO THEOREM

PETER FRANKL and ZOLTÁN FÜREDI

Dedicated to Paul Erdős on his seventieth birthday

Received 10 January 1983

Let \mathscr{F} be a family of k-subsets of an n-set. Let s be a fixed integer satisfying $k \le s \le 3k$. Suppose that for F_1 , F_2 , $F_3 \in \mathscr{F}$ $|F_1 \cup F_2 \cup F_3| \le s$ implies $F_1 \cap F_2 \cap F_3 \ne \emptyset$. Katona asked what is the maximum cardinality, f(n, k, s) of such a system. The Erdős—Ko—Rado theorem implies $f(n, k, s) = \binom{n-1}{k-1}$ for s = 3k and $n \ge 2k$. In this paper we show that $f(n, k, s) = \binom{n-1}{k-1}$ holds for $n > n_0(k)$ if and only if $s \ge 2k$.

Equality holds only if every member of \mathscr{F} contains a fixed element of the underlying set. Further we solve the problem for k=3, s=5, $n \ge 3000$. This result sharpens a theorem of Bollobás.

1. Introduction

The simplest version of the Erdős—Ko—Rado theorem is the following **Theorem 1.** [4] Let \mathcal{F} be a collection of k-element subsets of an n-set X. Suppose $F \cap F' \neq \emptyset$ for $F, F' \in \mathcal{F}$. Then for n > 2k

$$|\mathcal{F}| \le \binom{n-1}{k-1},$$

and equality holds iff for some $x \in X$ we have

$$\mathscr{F} = \{ F \subset X | |F| = k, \quad x \in F \}.$$

In Frankl [5] the following is proven

Theorem 2. Let \mathscr{F} be a collection of k-element subsets of an n-set X, and let $t \geq 2$. Suppose that, for every $F_1, F_2, ..., F_t \in \mathscr{F}, F_1 \cap ... \cap F_t \neq \emptyset$ holds. Then for n > (t/t-1)k (1) holds. Equality is possible only for \mathscr{F} satisfying (2).

Katona raised the following problem, concerning the case t=3 of Theorem 2. What happens if, for some integer s, we require $F_1 \cap F_2 \cap F_3 \neq \emptyset$ only for triples satisfying $|F_1 \cup F_2 \cup F_3| \leq s$? For which values of s does the condition entail (1)? In this paper we investigate this problem for $n \geq n_0(k)$, and show that (1) holds whenever $s \geq 2k$.

2. Results

Theorem 3. Let \mathscr{F} be a collection of k-element subsets of the n-set X. Suppose that for any F_1 , F_2 , $F_3 \in \mathscr{F}$, satisfying $|F_1 \cup F_2 \cup F_3| \leq 2k$ $|F_1 \cap F_2 \cap F_3 \neq \emptyset|$ holds. Then there is a number $n_0(k)$ such that, for $n > n_0(k)$

$$|\mathscr{F}| \leq {n-1 \choose k-1},$$

and equality holds only if \mathscr{F} is a family consisting of all the k-subsets containing a fixed element. Moreover $n_0(3) = 5$, $n_0(k) \le k^2 + 3k$.

It is somewhat surprising that the extremal family is unchanged in the range $2k \le s \le 3k$.

However for s < 2k the situation is completely different, as it is shown by the following construction.

Let us consider a partition of X into k sets $X_1, ..., X_k$ with $\left[\frac{n}{k}\right] \le |X_i| \le \left[\frac{n}{k}\right] + 1$. Let us define

(3)
$$\mathscr{G} = \{G \subset X | |G \cap X_i| = 1 \text{ for } 1 \le i \le k\}.$$

Suppose now $G_1 \cap G_2 \cap G_3 = 0$ for some $G_1, G_2, G_3 \in \mathcal{G}$. Then obviously for every $1 \le i \le k$ we have

$$|(G_1 \cup G_2 \cup G_3) \cap X_i| \ge 2.$$

From this we immediately obtain $|G_1 \cup G_2 \cup G_3| \ge 2k$, in other words $|G_1 \cup G_2 \cup G_3| \le 2k-1$ implies $G_1 \cap G_2 \cap G_3 \ne \emptyset$, i.e. $\mathscr G$ satisfies the condition of Katona. $|\mathscr G| \ge \left\lfloor \frac{n}{k} \right\rfloor^k$ which is of greater order of magnitude than $\binom{n-1}{k-1}$.

Conjecture. Let \mathscr{F} be a family of k-subsets of X, |X|=n. Suppose F_1 , F_2 , $F_3 \in \mathscr{F}$ $|F_1 \cup F_2 \cup F_3| \le 2k-1$ implies $|F_1 \cap F_2 \cap F_3| = \emptyset$. Then for $|n| \ge n_0(k)$ and \mathscr{G} defined above

$$|\mathscr{F}| \subseteq |\mathscr{G}|,$$

with equality iff $\mathcal{F} = \mathcal{G}$.

Theorem 4. If k=3 and $n \ge 3000$ then $f(n, 3, 5) = \left[\frac{n}{3}\right] \left[\frac{n+1}{3}\right] \left[\frac{n+2}{3}\right]$.

This result is a sharpening of the following theorem.

Theorem 5. (Bollobás [1]) Let \mathscr{F} be a family of 3-subsets of X, |X| = n. Suppose that for F_1 , F_2 , $F_3 \in \mathscr{F}$ we have $F_1 \wedge F_2 \oplus F_3$ (\wedge denotes the symmetric difference). Then $|\mathscr{F}| \leq |\mathscr{G}|$ with equality holding only if \mathscr{F} is isomorphic to \mathscr{G} .

Thus Bollobás excludes the configuration when F_1 , F_2 , F_3 are three different 3-subset of a 4-set, while Theorem 4 permits it. However Bollobás's result holds for every n while we assume $n \ge 3000$, and our theorem is definitely not true for $n \le 10$.

As for k=3, $s \le 4$, trivially $f(n, 3, s) = \binom{n}{3}$ holds, therefore Katona's problem is solved for k=3, except when s=5, n < 3000.

3. The proof of Theorem 3

When k=2, \mathscr{F} is a simple graph containing no triangles or path of length 3, so it is the union of vertex disjoint stars, thus Theorem 3 is true. From now on assume that $k \ge 3$.

We proceed in a similar way as in Frankl [6]. First we prove that (1) holds asymptotically. Let m(n, k, 1) denote the maximum number of k-subsets of an n-set, such that no two intersect in a singleton.

Then we have:

Lemma 1. If F satisfies the conditions of Theorem 3, then

$$|\mathscr{F}| \leq \binom{n}{k-1} + m(n, k, 1).$$

Proof. Let \mathscr{F}_0 be the family of those subsets of \mathscr{F} which contain a (k-1)-subset not contained in any other member of \mathscr{F} , i.e. $\mathscr{F}_0 = \{F \in \mathscr{F} | \exists G \subset F, |G| = k-1, G \subset F' \in \mathscr{F} \text{ implies } F' = F\}$, and define $\mathscr{F}_1 = \mathscr{F} - \mathscr{F}_0$.

Clearly $|\mathscr{F}_0| \leq \binom{n}{k-1}$. Hence it suffices to prove $|\mathscr{F}_1| \leq m(n,k,1)$. Suppose the contrary, then we can find $F_1, F_2 \in \mathscr{F}_1$ such that $|F_1 \cap F_2| = 1$. Let $F_1 \cap F_2 = \{x\}$. As $F_1 \notin \mathscr{F}_0$ there is an $F_3 \in \mathscr{F}$, $F_1 \neq F_3$ such that $(F_1 - \{x\}) \subset F_3$. But in this case $F_1 \cap F_2 \cap F_3 = \emptyset$ and $|F_1 \cup F_2 \cup F_3| \leq |F_1 \cup F_2| + 1 = 2k$, a contradiction.

The problem of determining m(n, k, 1) was raised by Erdős and Sós (see [2]), who determined m(n, 3, 1), in particular they proved $m(n, 3, 1) \le n$, and conjectured $m(n, k, 1) = \binom{n-2}{k-2}$ for $n \ge 2k$. This was proved by Frankl [7] for $n > n_0(k)$. Since $\binom{n}{k-1} = \binom{n-1}{k-1} + \binom{n-1}{k-2}$, Lemma 1 yields

Corollary 1. If \mathscr{F} satisfies the conditions of Theorem 3, then for $n > n_0(k)$

(5)
$$|\mathcal{F}| \le {\binom{n-1}{k-1}} + {\binom{n-1}{k-2}} + {\binom{n-2}{k-2}} < (1+3k/n) {\binom{n-1}{k-1}}.$$

In the proof of Lemma 1 we used only:

Proposition 0. If F_1 , $F_2 \in \mathcal{F}$ and $F_1 \cap F_2 = \{x\}$ then there are no sets F_1' or F_2' in \mathcal{F} satisfying $(F_1 - \{x\}) \subset F_1'$ or $(F_2 - \{x\}) \subset F_2'$.

For $x \in X$ let $\mathcal{D}(x)$ denote the family of sets $F \in \mathcal{F}$ with $x \in F$, and $\mathcal{D}_0(x)$ the family of sets $F \in \mathcal{F}$ with $x \in F$ such that $F - \{x\}$ is not contained in any other $F' \in \mathcal{F}$. Let further $|\mathcal{D}(x)| = d(x)$, $|\mathcal{D}_0(x)| = d_0(x)$. Clearly we have

(6)
$$\sum_{\mathbf{x} \in X} d(\mathbf{x}) = k|\mathcal{F}|,$$

(7)
$$\sum_{x \in X} d_0(x) \leq \binom{n}{k-1}.$$

In view of Proposition 0 we have

Proposition 1. Suppose $F_1, F_2 \in \mathcal{F}$ and $F_1 \cap F_2 = \{x\}$. Then $F_1, F_2 \in \mathcal{D}_0(x)$.

Let us set $\mathscr{A}(x) = \{F - \{x\} | F \in (\mathscr{D}(x) - \mathscr{D}_0(x))\} = \{F - \{x\} | x \in F \in \mathscr{F} \text{ and } \exists F' \in \mathscr{F} \text{ with } (F - \{x\}) \subset F'\}$. Then Proposition 1 yields:

Proposition 2. For $A, A' \in \mathcal{A}(x)$ we have $A \cap A' \neq \emptyset$.

We will use the following theorem of Hilton and Milner:

Theorem 6. [9] Let \mathscr{A} be a collection of r-element subsets of an n-set, $n \ge 2r$. Suppose that $A \cap A' \ne \emptyset$ for $A, A' \in \mathscr{A}$ and $|\mathscr{A}| > \binom{n-1}{r-1} - \binom{n-r-1}{r-1} + 1$. Then there exists an element y such that $y \in A$ for every $A \in \mathscr{A}$.

Proposition 3. If $r \ge 2$, $n \ge 2r$, then

(8)
$$\binom{n-1}{r-1} - \binom{n-r-1}{r-1} + 1 = r \binom{n-2}{r-2} + 1.$$

Proof. It follows from

$$\binom{n-1}{r-1} - \binom{n-r-1}{r-1} = \sum_{i=0}^{r-1} \binom{n-2-i}{r-2}.$$

Proposition 4. If $|\mathcal{A}(x)| > k \binom{n-3}{k-3}$ then there exists $y \in (X-x)$ such that $y \in F$ for every $F \in \mathcal{D}(x)$.

Proof. In view of Propositions 2 and 3 we can find $y \in (X - x)$ such that $y \in A$ for every $A \in \mathscr{A}(x)$. Suppose that for some $F \in \mathscr{D}_0(x)$ we have $y \notin F$. In view of Proposition 1 for every $A \in \mathscr{A}(x)$ we have $A \cap F \neq \emptyset$, yielding $|\mathscr{A}(x)| \leq k \binom{n-3}{k-3}$, a contradiction.

Call the point $x \in X$ good if there exists a $y \neq x$ such that $x \in F \in \mathcal{F}$ entails $y \in F$. If x is good then fix one such y and denote it by f(x).

Corollary 2. If
$$|\mathscr{A}(x)| > k \binom{n-3}{k-3}$$
 then x is good.

We assume from now on that $|\mathscr{F}| \ge {n-1 \choose k-1}$ and that there is no vertex $z \in X$ which is contained in every member of \mathscr{F} .

Lemma 2. If x is good then
$$d(x) \le \binom{n-2}{k-2} - (k-1) \binom{n-k-2}{k-3}$$
.

Proof. By the indirect assumption there exists $F_0 \in \mathcal{F}$ with $f(x) \notin F_0$. As x is good and $f(x) \notin F_0$ we have $x \notin F_0$. Let us consider k-subsets of the following form: $F = G \cup \{y\} \cup \{x, f(x)\}$, where $y \in F_0$, $G \subset X - (F_0 \cup \{x, f(x)\})$, |G| = k - 3. The total number of such k-sets is $k \binom{n-k-2}{k-3}$. As for given G_0 and $g_1, g_2 \in F_0$ the intersection

of the three sets F_0 , $G_0 \cup \{y_1, x, f(x)\}$, $G_0 \cup \{y_2, x, f(x)\}$ is empty and their union of cardinality less than 2k, so at most one set of the form $G_0 \cup \{y, x, f(x)\}$ ($y \in F_0$) belongs to \mathscr{F} . Consequently, at most $\binom{n-k-2}{k-3}$ sets of the form $\{G \cup \{y, x, f(x)\}\}$ $y \in F_0$, $G \subset (X - F_0 \cup \{x, f(x)\})$, $|G| = k-3\}$ belong to \mathscr{F} . This means that at least $(k-1)\binom{n-k-2}{k-3}$ sets are missing from the $\binom{n-2}{k-2}$ possible k-sets containing $\{x, f(x)\}$.

Lemma 3. If $n > k^2 - k$ then there exists at least one good vertex x.

Proof. Suppose the contrary then using (6), (7) and Corollary 2 we deduce

$$k \binom{n-1}{k-1} \leq k |\mathscr{F}| = \sum_{x \in X} d(x) = \sum_{x \in X} d_0(x) + \sum_{x \in X} |\mathscr{A}(x)| \leq \binom{n}{k-1} + nk \binom{n-3}{k-3}.$$

It is easy to see that the right hand side is less than $k \binom{n-1}{k-1}$ for $n > k^2 - k$, a contradiction.

We prove Theorem 3 for k=3, $n \ge 5 = n_0(3)$. For n=5, 6 it follows from Theorem 2. We apply induction on n.

Let \mathscr{F} be a family satisfying the assumptions but not the statement. As $n \ge 7$, by Lemmas 2 and 3, wa can find $x \in X$ with d(x) < (n-2). Then $\mathscr{F} - \mathscr{D}(x)$ is a family satisfying the assumptions on $X - \{x\}$. We may use the induction hypothesis $|\mathscr{F} - \mathscr{D}(x)| \le \binom{n-2}{2}$, yielding $|\mathscr{F}| < \binom{n-2}{2} + (n-2) = \binom{n-1}{2}$ which concludes the proof.

From now on we assume that $k \ge 4$. Let us suppose $n > k^2 - k$. Suppose the statement of the theorem is false for \mathscr{F} . Then by $n > k^2 - k$ there exists $x \in X$ with $d(x) \le \binom{n-2}{k-2} - (k-1) \binom{n-k-2}{k-3}$. Let $X_1 = X - \{x\}$, and $\mathscr{F}_1 = \mathscr{F} - \mathscr{D}(x)$. If X_i , \mathscr{F}_i are defined with $|\mathscr{F}_i| > \binom{|X_i|-1}{k-1}$ then let $x \in X_i$ with $d(x) \le \binom{|X_i|-2}{k-2} - (k-1) \cdot \binom{|X_i|-k-2}{k-3}$ (such a vertex exists certainly for $|X_i| > k^2 - k$.)

Let $X_{i+1} = X_i - \{x\}$, $\mathscr{F}_{i+1} = \mathscr{F}_i - \mathscr{D}(x)$. Let j be the index for which $|X_j| = k^2 - k$, i.e., $j = n - k^2 + k$. Then we have

$$(9) \quad |\mathscr{F}_{j}| \ge |\mathscr{F}| - \sum_{i=0}^{j-1} \left(\binom{n-2-i}{k-2} - (k-1) \binom{n-k-2-i}{k-3} \right) \ge \binom{n-1}{k-1} - \sum_{i=0}^{j-1} \binom{n-2-i}{k-2} + (k-1) \sum_{i=0}^{j-1} \binom{n-k-2-i}{k-3} = \binom{k^2-k-1}{k-1} + (k-1) \left(\binom{n-k-1}{k-2} - \binom{k^2-2k-1}{k-2} \right).$$

On the other hand \mathscr{F}_j is a family of k-subsets of the (k^2-k) -element set X_j , thus by Lemma 1

(10)
$$|\mathscr{F}_j| \le {\binom{k^2 - k}{k - 1}} + m(k^2 - k, k, 1).$$

Proposition 5. For n > 2k we have

$$m(n, k, 1) \leq \frac{n}{k} {n-2 \choose k-2}.$$

Proof. Let \mathscr{G} be a family of k-subsets of an n-set which does not contain two members intersecting in a singleton. Then for every vertex x, $\mathscr{G}_x = \{G - \{x\}: x \in G \in \mathscr{G}\}$ is an intersecting family of (k-1)-subsets of an (n-1)-set. Thus by the Erdős—Ko—Rado theorem (Theorem 1) we have $|\mathscr{G}_x| \leq \binom{n-2}{k-2}$. Therefore

$$|\mathscr{G}| = \frac{1}{k} \sum_{x} |\mathscr{G}_{x}| \le \frac{n}{k} \binom{n-2}{k-2}. \quad \blacksquare$$

Combining (10) with Proposition 5, we obtain

(11)
$$|\mathscr{F}_j| \le {k^2 - k \choose k - 1} + (k - 1) {k^2 - k - 2 \choose k - 2}.$$

However, for $n \ge k^2 + 3k$, (11) contradicts (9), which concludes the proof of Theorem 3.

Remark 1. Proposition 4 remains true for $|\mathcal{A}(x)| > \binom{n-2}{k-2} - \binom{n-k-1}{k-2} + 1$. Using this one can prove Lemma 3 for $n > k^2/(1.5 \log k)$ and in this way the upper bound $n_0(k) \le k^2 + 3k$ can be improved to $n_0(k) < k^2/\log k$. But it is still far from the real value of $n_0(k)$ which we conjecture to be $\lceil 3k/2 \rceil$. We can prove this for k = 4, 5.

4. The proof of Theorem 4.

With the family \mathcal{F} let us associate the graph \mathcal{A} whose vertex set is X and whose edges are all the 2-sets which are contained in some $F \in \mathcal{F}$.

Let us recall now a result of Erdős [3]. For simplicity we state it only for a special case.

Theorem 7. [3] Let \mathscr{F} be a family of 3-subsets of X, |X| = n. Suppose that \mathscr{A} contains no complete subgraph on 4 vertices. Then for \mathscr{F} the assertion of Theorem 4 holds.

Let s be the greatest number for which \mathcal{A} contains a complete subgraph on s vertices.

If s=3 then Theorem 7 yields the statement of our theorem. For $s \ge 4$ we will proceed in a similar way as with the proof of Theorem 3. Let $t=\min(s, 5)$. Let $x_1, ..., x_t$ be the vertices of a complete subgraph of \mathscr{A} . By Turán's theorem [9] we have for t=s=4

$$|\mathscr{A}| \leq \frac{3}{8} n^2,$$

Let $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ be the collection of members B of \mathcal{F} for which $|B \cap \{x_1, ..., x_t\}|$

= 1, 2, 3, respectively. Obviously, we have

$$(13) |\mathscr{B}_3| \leq {t \choose 3},$$

and

$$|\mathscr{B}_2| \leq {t \choose 2}(n-t).$$

For $1 \le i < j \le t$, let us choose $z_{i,j} \in X$ such that $\{x_i, x_j, z_{i,j}\} \in F$. This is possible since $\{x_i, x_j\} \in \mathcal{A}$. Let Z be the set of different $z_{i,j}$'s. Of course $|Z| \le {t \choose 2}$.

Proposition 6. If for $1 \le i < j \le t$, and for $y_1, y_2 \in X$ both $\{x_i, y_1, y_2\}$ and $\{x_j, y_1, y_2\}$ belong to \mathscr{F} , then either y_1 or y_2 belongs to Z.

Proof. Let us write $z=z_{i,j}$. By definition $\{x_i, x_j, z\} \in \mathscr{F}$. Then $|\{x_i, x_j, z\} \cup \{x_i, y_1, y_2\} \cup \{x_j, y_1, y_2\}| \le 5$, consequently the intersection of the 3 sets is non-empty, i.e., $z=y_1$ or $z=y_2$, as desired.

Proposition 7.

(15)
$$|\mathcal{B}_1| < 2\left(\frac{t}{2}\right)(n-t) + \frac{t-1}{8}n^2.$$

Proof. Our first claim is that the first term is an upper bound for the number of $F \in \mathcal{F}$ with $|F \cap \{x_1, ..., x_t\}| = 1$, $F \cap Z \neq \emptyset$. For $z \in Z$ let m(z) denote the multiplicity of Z, i.e. the number of pairs (i, j), $1 \leq i < j \leq t$ with $z = z_{i, j}$. For $z \in Z$ and $y \in X - \{x_1, ..., x_t\}$ let D(z, y) denote the set of x_i , $1 \leq i \leq t$ such that $\{z, y, x_t\} \in \mathcal{F}$. If $y \notin Z$ then by Proposition 6 for $x_i, x_j \in D(z, y)$ we have $z = z_{i, j}$. If $y \in Z$ then the only other possibility is $y = z_{i, j}$. Thus for $y \notin Z$ we have $m(z) \geq {|D(z, y)| \choose 2}$, in particular $2m(z) \geq |D(z, y)|$ holds. Similarly, if $y \in Z$ then $2m(z) + 2m(y) \geq |D(z, y)|$. Summing up these inequalities for all pairs $z \in Z$, $y \in X - \{x_1, ..., x_t\}$, considering the pairs with $y \in Z$ only once and taking into consideration $\sum_{z \in Z} m(z)$

= $\binom{t}{2}$ we obtain our first claim. In view of Proposition 6 and (12) the second term is an upper bound for $|\mathscr{A}|$, which is at least the number of $F \in \mathscr{F}$ with $|F \cap \{x_1, ..., x_t\}| = 1$, $F \cap Z \neq \emptyset$.

Now summing (13), (14) and (15) we obtain

(16)
$$\min_{1 \le i \le t} d(x_i) \le \frac{1}{t} \sum_{i=1}^{t} d(x_i) = \frac{1}{t} (3|\mathcal{B}_3| + 2|\mathcal{B}_2| + |\mathcal{B}_1|)$$

$$\le \begin{cases} \frac{3}{32} n^2 + 6n - 21 & \text{for } t = 4 \\ \frac{1}{10} n^2 + 8n - 37 & \text{for } t = 5 \end{cases} \le \frac{1}{10} n^2 + 8n - 37 \quad (\text{if } n \ge 8).$$

Suppose now that n > 3000, $|\mathscr{F}| \ge \left\lfloor \frac{n}{3} \right\rfloor \left\lfloor \frac{n+1}{3} \right\rfloor \left\lfloor \frac{n+2}{3} \right\rfloor$ and the theorem is false. By (16) we can take an $x_1 \in X$, $X_1 = X - \{x_1\}$ and $\mathscr{F}_1 = \{F \in \mathscr{F} | x_1 \notin F\}$ such that $d(x_1) \le \frac{1}{10}n^2 + 8n - 37$. Then, in view of (16), $|\mathscr{F}_1| > \left\lfloor \frac{n-1}{3} \right\rfloor \left\lfloor \frac{n}{3} \right\rfloor \left\lfloor \frac{n+1}{3} \right\rfloor = |\mathscr{G}_{n-1}|$ and we can argue in the same way for \mathscr{F}_1 as we did for \mathscr{F} . Let q be the first integer with $|X_q| \le 750$. Then q = n - 750. For the cardinality of \mathscr{F}_q we deduce

(17)
$$|\mathcal{F}_{q}| > |\mathcal{F}| - \sum_{i=0}^{q-1} \left(\frac{1}{10} (n-i)^{2} + 8(n-i) - 37 \right)$$

$$= |\mathcal{F}| - \frac{1}{10} \frac{n(n+1)(2n+1)}{6} - 4n(n+1) + 37n + \frac{1}{10} \frac{750 \cdot 751 \cdot 1501}{6} + 4 \cdot 750 \cdot 751 - 37 \cdot 750.$$

Now using the assumption $|\mathcal{F}| \ge \frac{1}{27}(n^3 - 3n - 2)$ we obtain from (17), for n > 3000, $|\mathcal{F}_q| > \frac{1}{270}n^3 - 4.1n^2 + 16\ 000\ 000 > {750 \choose 3}$, a contradiction, proving the theorem.

5. Concluding remarks

Remark 2. Theorem 4 is not only a sharpening of Theorem 5, but the proof is entirely new.

Remark 3. The problems considered in this paper belong to the so-called Turán-type problems, i.e. what is the maximum number of k-subsets of an n-set if it contains no sub-system isomorphic to one member of a set of k-graphs $\{\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_q\}$. This maximum is usually denoted by ext $(n, \{\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_q\})$.

Let us define $\mathcal{H}_1 = \{\{x_1, x_2, ..., x_k\}, \{x_1, x_2, ..., x_{k-1}, x_{k+1}\}, \{x_{k+1}, x_{k+2}, ..., x_{2k}\}\}$, $\mathcal{H}_2 = \{\{x_1, x_2, ..., x_k\}, \{x_1, x_2, ..., x_{k-1}, x_{k+1}\}, \{x_k, x_{k+1}, ..., x_{2k-1}\}\}$. In this terminology we proved (Theorem 4) for k = 3 ext $(n, \{\mathcal{H}_2\}) = \left[\frac{n}{3}\right] \left[\frac{n+1}{3}\right] \left[\frac{n+2}{3}\right]$. Moreover, the proof of Theorem 3 yields for $n > n_0(k)$ the stronger result ext $(n, \{\mathcal{H}_1, \mathcal{H}_2\}) = \binom{n-1}{k-1}$.

Refining the argument we could even obtain

Theorem 8. For $n > n_1(k)$ we have $\operatorname{ext}(n, \{\mathcal{H}_1\}) = \binom{n-1}{k-1}$.

Finally a special case of a result of the first author gives

Theorem 9. [8] Let $\mathcal{H} = \{H_1, H_2, H_3\}$ be an arbitrary k-graph satisfying $|H_1 \cup H_2 \cup H_3| \ge 2k, \ H_1 \cap H_2 \cap H_3 \ne \emptyset$. Then for every n, ext $(n, \{\mathcal{H}\}) < 3en^{k-1}$.

References

- [1] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8 (1974) 21-24.
- [2] P. Erdős, Problems and results in graph theory and combinatorial analysis, Proc. Fifth British Comb. Conf. 1975, Aberdeen 1975 (Utilitas Math. Winnipeg (1976), 169-172.
- [3] P. Erdős, On the number of complete subgraphs contained in a certain graphs, Publ. Math. Inst. of the Hungar. Acad. Sci. (SerA) 7 (1962) 459-464.
- [4] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (Ser. 2) 12 (1961) 313—320.
- [5] P. FRANKL, On Sperner families satisfying an additional condition. J. Combinatorial Th. A 20 (1976) 1-11.
- [6] P. FRANKL, On a problem of Chvátal and Erdős, J. Combinatorial Th. A, to appear.
- [7] P. FRANKL, On families of finite sets no two of which intersect in a singleton, Bull. Austral. Math. Soc. 17 (1977) 125—134.
- [8] P. Frankl, A general intersection theorem for finite sets, Proc. of French-Canadian Combinato-
- rial Coll., Montreal 1979, Annals of Discrete Math. 8 (1980), to appear.

 [9] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart J. Math. Oxford (2) 18 (1967) 369—384.
- [10] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452 (in Hungarian).

Peter Frankl

C.N.R.S.54 Bld. Raspail 75270 Paris, Cedex 06 France

Zoltán Füredi

Mathematical Inst. of the Hungarian Academy of Sci. 1395 Budapest, Pf. 428 Hungary