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Let & be a family of k-subsets of an s-set. Let s be a fixed integer satisfying k=s=3k.
Suppose that for Fy, £, F,¢F |F,UF,UF|=s implies F,NF,NF,=0. Katona asked what is
the maximum cardinality, f(n, k,s) of such a system. The Frdés—Ko—Rado theorem implies
fln, k, )= [2:1]] for s=3k and n=2k. In this paper we show that f(n, k, s)= (Z: }] holds for
n=ny(k) if and only if s=2k.

Equality holds only if every member of % contains a fixed element of the underlying set.

Further we solve the problem for k=3, s=5, n=3000. This result sharpens a theorem of
Bollobas.

1. Introduction

The simplest version of the Erdés—Ko—Rado theorem is the following

Theorem 1. [4] Let F be a collection of k-element subsets of an n-set X. Suppose
FOF' 20 for F,F'¢F. Then for n=2k

n—1
1 F| =
m 7= (171,
and equality holds iff for some xcX we have
2 F ={FC X||F|=k, x¢F}.

In Frank] [5] the following is proven

Theorem 2. Let F be a collection of k-clement subsets of an n-set X, and let t=2.
Suppose  that, for every F,, F,...., Fc%, F,N..NF.#0 holds. Then for
n=>=(t/t =1k (1) holds. Equality is possible only for & satisfving (2).

Katona raised the following problem, concerning the case =3 of Theorem 2.
What happens if, for some integer s, we require F,NF,NF,#@ only for triples
satisfying |F,UF,UF;|=5? For which values of s does the condition entail (1)?
In this paper we investigate this problem for r=n,(k), and show that (1) holds whene-
ver s=2k,
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2. Results

Theorem 3. Let # be a collection of k-element subsets of the n-set X. Suppose that
for any Fi, F,, F,6 %, satisfving |F\JF,UF|=2k FNF,NF;#0 holds. Then
there is a number ny(k) such that, for n=n.(k)

7 - [n—l]
’ k—1)°

and equality holds only if F is a family consisting of all the k-subsets containing a
Jixed element. Moreover ny(3)=5, n,(k)=k*43k.

I

It is somewhat surprising that the extremal family is unchanged in the range
2k =5=3k.

However for s<2k the situation is completely different, as it is shown by the
following construction.

Let us consider a partition of X into k sets X,. ..., X, with [-’;—] =X = [%] + 1.

Let us define
3) G={GCcX||GNX,]=1 Tor 1=iz=k}

Suppose now G,(1G,MNG;=0 for some G,, Gy, G;69. Then obviously for
every l=/=k we have

(G,UG, UGN X, = 2.

From this we immediately obtain |G,\JG,'JG,|=2k, in other words |G, JG,UGy]|
=2k—1 implies G,NG,NG,=0, iLe. ¥ satisfies the condition of Katona. |¥|

n |t S - . n—1
E[T] which is of greater order of magnitude than (/» ]
e —

Conjecture. Let .# be a family of k-subsets of X, |[X|=n. Suppose F,, F,, 367
|[FLUF,UF=2k—1 implies F\NF,NF==0. Then for nzny(k) and ¥ defined
above

7| = 1%|.
with equality Il 7 =%.

Theorem 4. 7/ k=3 and n=3000 then f(u, 3, 5):[2—][’1—_{;]—"”%2]
This result is a sharpening of the following theorem.

Theorem 5. (Bollobas [1]) Let F be a family of 3-subsets of X, \X|=n. Suppose
that for Fy. F., F,€F we have F) A\ F, & F, (A denotes the symmetric difference).
Then [F|=|9| with equality holding only if 7 is isomorphic to %.

Thus Bollobas excludes the configuration when F;, Fp, F; are three different
3-subset ol a 4-set, while Theorem 4 permits it. However Bollobas’s result holds for
every # while we assume #=3000, and our theorem is definitely not true for n=10.

. . . n

As for k=3,s=4, trivially f{n, 3. S):[2

blem is sohvad for k=3, except when s=35, n<3000.

] holds, therefore Katona’s pro-
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3. The proof of Theorem 3

When k=2, & is a simple graph containing no triangles or path of length 3,
so it is the union of vertex disjoint stars, thus Theorem 3 is true. From now on assume
that k=3.

We proceed in a similar way as in Frankl [6]. First we prove that (1) holds
asymptotically. Let m(n, k, 1) denote the maximum number of k-subsets of an n-set,
such that no two intersect in a singleton.

Then we have:

Lemma 1. If & satisfies the conditions of Theorem 3, then

4 (F| = (k’—ll ]-I—m(n, k1.

Proof. Let %, be the family of those subsets of % which contain a (k —1)-subset not
contained in any other member of &, ie. #,={F¢F|A3GCF, |Gl=k—1, GCF'e#F
implies F'=F}, and define % =% —%,.

Clearly |.970|§(kﬁ Hence it suffices to prove |#|=m(n, k, 1). Suppose

N
the contrary, then we can find F,, F,€# such that |F,NF,)|=1. Let F,NF,={x}.
As Fi¢ %, there is an Fy,¢ %, Fy=F,; such that (F,—{x})c F;. But in this case
FNENF=0 and |FUFRUF|=|FUF|+1=2k, a contradiction. J]

The problem of determining m1(n, k, 1) was raised by ErdGs and Sés (see [2]),
who determined m(n, 3, 1), in particular they proved m(n, 3, 1)=n, and conjectured

m(n, k, 1)2[2:3) for n=2k. This was proved by Frankl {7] for n=ny(k). Since

n n—1 n—1 )
[k—I]_[/c—l]+(k_2]a Lemma 1 yields

Corollary 1. If & satisfies the conditions of Theorem 3, then for n=ny(k)

(3) [fié(z:i]Jr(Z:;]-k[Z:é]<(1+3k/n)(z:i].

In the proof of Lemma | we used only:

Proposition 0. If F,, F,€¢.% and F, N\ Fy={x} then there are no sets F, or Fy in &
satisfying (Fy—{x}))C F| or (F,—{xDcF;. |

For x¢X let 9(x) denote the family of sets FEF with x¢F, and Z4(x)
the family of sets Fe.# with x€F such that F—{x} is not contained in any other
F'e#. Let further |2(x)|=d(x), |[Zy(x)|=d,(x). Clearly we have

(6) > d(x) = k| 7|,
xeX

(7) / [ " ]
ngc,,(x): 1)
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In view of Proposition 0 we have
Proposition 1. Suppose F\, Fo¢ F and FINF,={x}. Then F,, F,€24(x). |}

Let us set ()={F—{x}| FE(F(x)=Do(x))}={F—{x}| x¢ F¢F and
SF e with (F—{xhc F’}. Then Proposition 1 yields:

Proposition 2. For A, A'c¢a/(x) we have ANA=0. ||

We will use the following theorem of Hilton and Milner:
Theorem 6. [9] Let of be a collection of r-element subsets of an n-set, n=2r. Sup-
pose that ANA#0 for A, A€o and 1&1|>(I:':i]——[n:izl)+i. Then there
exists an element y such that y€A for every Acsf. ||

Proposition 3. If r=2, n=2r, then

®) (';:i]-(”::l]Jrl -i:r[’r’:g)ﬂ.

Proof. 1t follows from

n—1 (n—r~])_ ’*1[11—2—i]

[r—l)_ r—1 _,-g(,' r—2 ) i

. -3

Proposition 4. [/ | </ (x)|=k [2_3] then there exists y€(X —x) such that yv€F for
every FE9(x).
Proof. In view of Propositions 2 and 3 we can find y€(X—x) such that y€A for
every A€ (x). Suppose that for some FeZ,(x) we have y¢ F. In view of Propo-
... . . -3
sition | for every A</ (x) we have A F=0, yielding | (x)|=k (2_3), a con-
tradiction. ]

Call the point x€X good 1f there exists @ y=x such that x€F€F entuils
y€ F. 1f x 1s good then fix one such 3 and denote it by f(x).

Corollary 2. /f | (x)|=k [:,\1:%] then x is good. |}

o (n—1 .
We assume from now on that | 7| z{k‘ 1] and that there is no vertex z€X

which 1s contained in every member of #.

— —f—2
Lemma 2. If x is good then d(x) E[Z _22] —(k—=1) (” i f 3 ~].

Proof. By the indirect assumption there exists F, € # with f(x)¢ Fy. As x is good
and f(x)4 F, we have x¢ F,. Let us consider k-subsets of the following form:
F=GU {3}U{x, f("}. where y¢F,, GcX— (F,U{x, f(x)}), |G|=k—3. The total

. . n—k—2 N . .
number of such k-sets is k[ k-3 ] . As for given Gy and 1, v,€ F, the intersection
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of the three sets Fy, GoU{}y, x, /(X)}, GoU{),, x, f(x)} is empty and their union
of cardinality less than 2k, so at most one set of the form G, {y, x, f(x)} (p€Fy)

belongs to #. Consequently, at most [ k kEZ) sets of the form {GU {y, x, f(x)}|
yEF, Gc (X— FoU{x, f()}), |G]=k—3} belong to #. This means that at least
(k—1) ;_g sets are missing from the (k _22) possible k-sets containing
{x. /) 1

Lemma 3. [f n=k%—k then there exists at least one good vertex Xx.

Proof. Suppose the contrary then using (6), (7) and Corollary 2 we deduce

2 )+ 3 |/ = [ ’ ) ””[k ;]

A( xEX

n—l] i
: =kFl =¥
k(k—l = K|F| xé.\'d(X)

It is easy to see that the right hand side is less than k(k . 1) for n=k*—k, a contra-
diction. |

We prove Theorem 3 for k=3, n=5=n,(3). For n=35,6 it follows from
Theorem 2. We apply induction on n.

Let &% be a family satisfying the assumptions but not the statement. As
n=7, by Lemmas 2 and 3, wa can find x€X with d(x)<@-2). Then F —2Z(x)
is a Tamily satisfying the assumptions on X — {x}. We may use the induction hypothesis

I?—@(.X)E[n;z), yielding l/|<(' ]—{—(}?—2)—( I] which concludes the

proof.
From now on we assume that k=4. Let us suppose n=k*—k. Suppose the
statement of the theorem is talse for #. Then by n=>k®—k there exists x€X with

d(x)= (A 2] (k—l)(nk/;;J Let X;=X—{x}, and #F=F-2(x). If X;,#

are defined with ]%]>[J}X</i!__ll] then let x€X; with af(\)\(l il ] k=1)-

X —
[] " 3 ) (such a vertex exists certainly for |[X;|=k*—k.)
Let X, =X,—{x}, #.,=%—P(x). Let j be the index for which |X/]

=k>—k, le., /—n—k~+k Then we have
I ((r—-2—i n—k—Z—i] (n—l] f—l(n—Z—iJ
Fl=l7F|l— ¥ —(k— —
© 1E=17- 2 [[ k— 2] (k ”( k=3 ] k—1)-2 U is

+<k—1>;20’("‘:‘§*“)=[kf,:l‘r‘lw«—w[(”;f;‘J—(‘”;";k;lll-

On the other hand #; is a family of k-subsets of the (k*—k)-element set X, thus by
Lemma 1

(10) 7| = [’;f‘:"]ﬂz(/\-hk, k, 1).
o

1t
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Preposition 5. For n>=2k we have

min, k, 1) = %(::3)

Proof. Let 4 be a family of k-subsets of an #-set which does not contain two members
intersecting in a singleton. Then for every vertex x, 4,={G—{x}: x€G¢%} is an
intersecting family of (k — 1)-subsets of an (#— 1)-set. Thus by the Erd6s—Ko—Rado

theorem (Theorem [} we have 1(4x|;3(;i_2). Therefore

Combining (10) with Proposition 5, we obtain

K=k k2—k—=2
¢n ""&"—f|§(1=1}+“"”)( k-2 )

However, for nz=k*+3k, (11) contradicts (9), which concludes the proof of Theo-
rem 3.

.. . -2 —k— .
Remark 1. Proposition 4 remains true for \y/(x)[>(;\7,#2] — [ﬂkﬁz 1]+ 1. Using
this one can prove Lemma 3 for n=£*/(1.5 log k) and in this way the upper bound

ma{k)=k*4 3% can be improved to n,(k)<£A&*/log k. But it is still far from the real
value of m,{k) which we conjecture to be J3k/2]. We can prove this for k=4, 5.

4, The proof of Theorem 4.

With the family # let us associate the graph < whose vertex set is X and
whose edges are all the 2-sets which are contained in some FE£F.

Let us recall now a result of Erdds [3). For simplicity we state it only for a spe-
cial case.

Theorem 7. [3] Let F be a family of 3-subsets of X,|X|=n. Suppose that <o
contains no complete subgraph on 4 vertices. Then for F the assertion of Theorem 4
holds.

Let s be the greatest number for which 27 contains a complete subgraph on s
vertices.

If s=3 then Theorem 7 yields the statement of our theorem. For s=4 we
will proceed in a similar way as with the proof of Theorem 3. Let 7=min (s, 5). Let
X1, ..., X; be the vertices of a complete subgraph of o/. By Turan’s theorem [9] we
have for r=s5=4

3
(12) || = 2,

Let #,, B,, B, be the collection of members B of # for which |BN{x,, .... x}|
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=1, 2,3, respectively. Obviously, we have

(13) %) = [;)
and
(14) By = [;)(n—r).

For 1=j<j=1, let us choose z; ;,€X such that {x;, x;,z ;}¢F. This is possible

t
since {x;, x;}€o/. Let Z be the set of different z; ;’s. Of course [Z[é[z].

Proposition 6. [ffor 1=i<j=1, and for v, y,€X both {x;, y,. v} and {x;, vy, 1o}
belong to &, then either yy or v, belongs to Z.

Proof. Let us write z=z, ;. By definition {x;, x;,z}¢#. Then |{x;, x;,z}
U, vy afU {x;, o, 1o}l =5, consequently the intersection of the 3 sets is non-
empty, l1.e., z=y, Or =}

5. as desired. §
Proposition 7.

. 7). t—1 ,
(15 Ml[<2{2](n—f)+—8—n.

Proof. Our first claim is that the first term is an upper bound for the number of
Feg with |[F{x., ....x}|=1, FNZ=0. For z£Z let m(z) denote the multipli-
city of Z, i.e. the number of pairs (i, j), |=i<j=¢ with z=z, ;. For z€Z and
vEX—{x1. ..., x,} let D(z, v) denote the set of x;, 1=i=¢ such that {z, y, x,}€F.
If y4Z then by Proposition 6 for x;, x;¢D(z, y) we have z=z; ;. If y€Z then
the only other possibility is y=z; ;. Thus for y¢Z we have m(z)é[[ (2 .l)\]’
in particular 2m(z)=|D(z, »)] holds. Similarly, if y€Z then 2m(z)+2m(y)
=|D(z, y)l. Summing up these inequalities for all pairs z€Z, yeX—{xi, ..., X},
considering the pairs with y€Z only once and taking into consideration 2 m(z)
zEZ

t . . . . .. .

:[2] we obtain our first claim. In view of Proposition 6 and (12) the second term is

an upper bound for |s7|, which is at least the number of F&.# with [FN{x,, ... x}
=1, FNzZ=0. |

Now summing (13), (14) and (15) we obtain

~] =

(10 min dx) =+ 3 d(x) =+ G18, +218] +14,)
=izt 8

Y

3
. p2 -2 =
32 n*+6n—21 for t=4 |

00 n*+8n—37 (if n = 8).

I

[iA

1 .
— iy —3 = 5
T n*+8n—37 for 1 =95
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_ 1
Suppose now that n=3000, |#] ;[”J ln+ “n+2J and the theorem is false. By
(16) we can take an 3¢ X, X;=X—{x;} and F={FC¢F|x;4 F} such that d(x,)
1 . — ,
§ﬁ112+8n—37. Then, in view of (16), |#’]]>[" l [E] [Zﬂ]:lfﬁ,,_ll and we

can argue in the same way for & as we did for #. Let ¢ be the first integer with | X
=750. Then g=n—750. For the cardinality of &%, we deduce

q—1
(17) T = | F| S [—l%(n—i)2+8(;z—i)—37]
i=0
1 n(n+1DH(2n+1) 1 750-751-1501
—_ % —- -
= |F| 0 3 dn(n+1)+3Tn+ 10 5

+4-750-751—37.750.

. . 1 .
Now using the assumption \34'122—7(113—311—2) we obtain from (17), for n=3000,

750

l/»|>Ln3 4.1m2 4 l6000000>[ 3

770 ] a contradiction, proving the theorem.

5. Concluding remarks

Remark 2. Theorem 4 is not only a sharpening of Theorem 3, but the proof is entirely
new.

Remark 3. The problems considered in this paper belong to the so-called Turdn-type

problems, i.e. what is the maximum number of k-subsets of an n-set if it contains no

sub-system isomorphic to one member of a set of k-graphs {#}, #,, ..., #,}. This
maximum is usually denoted by ext (n, {#,, A, ..., #,}).

Let us define ;‘/f’l {{xe xe, oy xk}, {X15 X5 s Xe1s X1l Xkt1s Xerzs o

5 »\z;.}} }’fg—{{r,, Xav oees Xy X100 Xau ooes XiZys Xetads %0 Xiw1s -0 Xog—1}}- Inthis

terminology we proved (Theorem 4) for k=3 ext(n, {}/ﬁ,})—[3 ] [n+1 [—r%%]

Moreover, the proof of Theorem 3 vyields for n=ny(k) the stronger result
ext (n, {#7, ,%‘;2}):[2:‘1).

Refining the argument we could even obtain
) 1— 1
Theorem 8. For n=n (k) we have ext(n, {,7(’&):(2_ 1).
Finally a special case of a result of the first author gives

Theorem 9. [8) Ler #={H,, H,. H} be an arbitrary k-graph satisfying
[H, U H,UHy| =2k, HHOH,\H,=0. Then for every n, ext (n, {#})<3en* 1.
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