
Discrete Mathematics 47 (1983) 129-132 
North-Holland 

129 

COMMUNICATION 

ON FINITE SE’bSYSTEMs WHOSE EVERY 
INTERSECI’ION IS A KERNEL OF A STAR 

2. F&ED1 
Math. Inst. Hungarian Ad. Sci., Budapest 1395, Pf. 428, Hungary 

Communicated by V.T. S& 
Received 22 June 1983 

Let k, t be positive integers and let 9 be a set-system which consists of k-element sets. In 
this paper it is proved that one can choose a subsystem 9* c 9F containing a positive proportion 
of the members of 9, (i.e. 145*1 >c(k, t) IsSj) and having the property that every pairwise 
intersection is a kernel of a t-star in 9F* (i.e. VF, F’E 9r*, FII F’ = A, 3F1, . . . , F, ES* such 
that F,nF,=A for l<i<j<t). 

This result is used to obtain some new bounds for the maximum cardinality of a k-graph with 
prescribed cardinalities for pairwise intersections. 

The sets F,, F2, . . . , F, are said to form a t-star (or A-system) with kernel A if 
Fi ne=A for all l~i<j s t. Erdijs and Rado [6] proved that if the set-system S 
has rank k (i.e. IFI s k for all FE*) and ISal > @(k, t), then S contains a 
subsystem 9 c S which is a f-star. (Here @(k, t) is a constant depending only on 
k and t, (t - 1)” G @(k, t) G k ! (t - l)k. The determination of the asymptotic value 
of @(k, t) is a favourite open problem of Erdijs [4].) 

We say that every intersection is a kernel of a t-star in the set-system S if for 
every F, F’ES there exist F,, . . . , F&F such that fine =FnF’ for all l<i< 
is t. The following theorem conjectured by P. Frank1 is a generalization of the 
ErdGs-Rado’s result. 

Theorem 1. For every pair of positive integers k and t, there exists a positive real 
number c = c( k, t) with the following property: If S is a set -system of rank k, then 
we can choose a subsystem S* cS, ISIS > c ISI so that every intersection is a 
kernel of a t-star in 9”. 

We shall obtain extremely small values for c (c(k, t) > (tk2k)-2k). Obviously we 
have c(k, t)<(l/@(k, t))<(t-l)-k. 

A set-system of rank k is called a k-graph if each of its members has exactly k 
elements. A k-graph 9 is k-partife if there exist sets X1, . . . , xk satisfying 
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Xif7Xj=@and]XinFJ=1forallFE9, 1-z < * s k. Given a k-partite k-graph with 
parts x1,..., X,, define the natural homomorphisms or projection T : (U Xi) * 
(1,2, _. . , k} by T(X) = i for all x E Xi. We use the notation m(A) = {~(a) : a E A} 
for the set A and T(&) ={rr(A): A E sa) for the set-system Sp on (U Xi). The 
following statement was proved by Erdos [3] for k = 2 and by Erdiis and Kleitman 
[S] for all k. Every k-graph s contains a k-partite subgraph s’ such that 
jW(a(k!/kk) ISal. W e are going to connect this result with Theorem 1. Denote by 
,aC(F, s) the system of pairwise intersections in F, where * is a k-graph and FE $. 
In other words Jcc(F, s) = {F n F’ : F' E S}. 

Theorem 1'. For any positive integers k and t, there exists a positive real number 
c = c(k, t) with the following property: If S is a k-graph, then we can choose a 
subsystem 9” c 9 such that: 

(i) I**1 > c Istl. 
(ii) Every pairwise intersection in S* is a kernel of a t-star of S”. 

(iii) S* is k-par&e with parts Xl, . . . , & 

(iv) There exists a set-system Jl on the elements {1,2, . . . , k} such that A= 
m&(F, S*) for a22 FE%*. 

Remark 1. Note that the set-system A mentioned above is closed for intersection 
if t 2 k + 1. This means that for M’, M” E A we have M’ n M” E A. 

2.1. Necessary and sufficient condition for m(n, k, L) = O(n) 

Let 04I,<l,<* . . c 1, < k < n be integers, and X a finite set of cardinality n. 
We say that the family * of k-subsets of X is an (n, k, {II, . . . , I,})-system if 
IF, n&I E (4, . . . , I,} holds for every Fl # F2, F,, F2 E S. Denote {II, . . . , Is} by L 
and let us denote by m( n, k, L) the maximum cardinality of an (n, k, L)-system. 

We say that the (*) condition holds for the numbers II, I*, . . . , Is and k if 

(*) There exists a set-system & on the elements {1,2, . . . , k} which is closed for 
intersection, IlJ N= k and jMl~{l~, . . . . , 1,) for all ME& 

Theorem 2. (a) If for {l,, . . . , Es) and k the (*) condition is satisfied, then 
m(n, k, L)>c(k) - nk”k-l’. 

(b) If (*) does not hold, then m (n, k, L) -C ck * n. 

(ck < l/c( k, k + 1), where c( k, t) is defined in Theorem I’.) 
This theorem implies a result of Deza, Erdiis and Singhi [2] (IL\ G 2), Babai and 

Frank1 [1] (if the gcd(Z,, . . . , I,) does not divide k, then m(n, k, L) s n), Frankl 



On finite set-systems 131 

and Rosenberg [9] (if each 4 = r (mod m) but k+ r (mod m), then m(n, k, L) d n) 
and Frank1 [8] (II_,1 s 3) in a slightly weaker form. 

2.2. A reduction theorem 

Let u(n), b(n) be two positive real functions over positive integers. If there are 
positive reals c and c’ such that ca(n) 2 b(n) 2 c’s(n), then we shall write 
a(n) = b(n). It is easy to see (cf. Frankl [7]) that 

m(n, k, (11, . . . , LH = m(n, k - Z1, (0, Z2- Z1, . . . , 1, - II)). 

Hence, if we are interested only in the order of magnitude of m(n, k, L), then we 
can always assume Z1 = 0. The following result is another reduction theorem. 

Theo- 3. If the greatest common divisor d of Z1, . . . , 1, divides k, then 

m(n, k, {I,, . . .., Zs})=m (;,${$ ,.‘., $}). 

If gcd(Z,, . . . , 1,) does not divide k, then, by [l], m(n, k, L) s n. 

2.3. Remark about t-times intersections 

Let us denote by q(n, k, I,) the maximum cardinal&y of 9ct where 91s: c (z), 
lXj=n and )F,nF,W - - n Ft I E L holds for every distinct F,, . . . , F, ES. This 
question was posed by V.T. S6s [lo] in more general form. Theorem 1 implies 
that m, (n, k, L) = m( n, k, L) holds. 

3. Proof& 

3.1. Two lemmas 

By virtue of the above-cited theorem of Erdijs and Kleitman, there exists a 
k -partite W c s, IWls (k !/k k, 1~1. Denote its parts by X1, . . . , &. From now on 
we will consider only k-partite k-graphs $ with parts X1, . . . , & Let A(S) = 

U vA(F, S), where the union is taken over all FE $. Let us denote by se(F, %?) the 
set of kernels of t-stars in FE 3, i.e. 

$!I(F,%)={AcF:3F,,.. .,F,E% such that Fin&==A for lSi<jSt}. 

Finally, let Se(%) = U{&B(F, 94): FE %}. 

Lenmna 1. Let 9 be a k-par&e graph with parts X1, . . . , &. Then either 
(a) there exists a %* c 9, Is*1 2 l~j/(l + I.n~(%)l), such that %* meets the condi- 

tions (ii) and (iv) in Theorem 1’; or 
(p) there exist a 3 c S, IWl z= l%j/(l + IJ@?)~) and a set A E A(S) such that 

Aq_%(W). 



132 2. Fiiredi 

Lemma 2, Let S be a k-part&e k-graph with parts XI, . . . , &. Suppose that 
A#9B(%). Then there exists a %+‘c% such that jC9’1al%3l/k(t-l) and A$&(%‘). 

3.2. Proof of Theorem 1’ 

Let 9, = S’ and A1 = A@,). Apply Lemma 1. In the case (a) we are ready. In 
the case (p) we obtain an Sai c S1 such that \*;I 2 IS&(1 + I~lc,l), a(*:) s &(S1). 
Now, applying Lemma 2 for S{, we obtain a subsystem S*cQti such that 
1~~1 ~j~~l/k(t - 1) and A(&) c Se(Si) s;;A(S1). Proceeding in the same way, we 
get S2~>~~Q33S;=).... It ends up in at most ]A( ~2~ steps. We may 
suppose that at the end of the procedure we have a subsystem Si c S’ satisfying 
IS;1 +9l(k!/k”) (1/(2k + l)!) (l/k(t- l))**. Put 3ct” =S;. Cl 

3.3. Proof of Theorems 2 and 3 

Theorem 2(b) and Theorem 3 are easy consequences of Theorem 1’. To prove 
Theorem 2(a) one can give a construction, which is a slightly modified version of a 
construction of Franld [S]. The author shall return to these problems in a later 
paper. 

The author is indebted to P. Franld and J. Path for their helpful suggestions. 
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