COMMUNICATION

ON FINITE SET-SYSTEMS WHOSE EVERY INTERSECTION IS A KERNEL OF A STAR

Z. FÜREDI

Math. Inst. Hungarian Acad. Sci., Budapest 1395, Pf. 428, Hungary

Communicated by V.T. Sós Received 22 June 1983

Let k, t be positive integers and let \mathscr{F} be a set-system which consists of k-element sets. In this paper it is proved that one can choose a subsystem $\mathscr{F}^* \subset \mathscr{F}$ containing a positive proportion of the members of \mathscr{F} , (i.e. $|\mathscr{F}^*| > c(k,t) |\mathscr{F}|$) and having the property that every pairwise intersection is a kernel of a t-star in \mathscr{F}^* (i.e. $\forall F, F' \in \mathscr{F}^*$, $F \cap F' = A$, $\exists F_1, \ldots, F_t \in \mathscr{F}^*$ such that $F_i \cap F_i = A$ for $1 \le i < j \le t$).

This result is used to obtain some new bounds for the maximum cardinality of a k-graph with prescribed cardinalities for pairwise intersections.

1. Intersections and stars

The sets F_1, F_2, \ldots, F_t are said to form a t-star (or Δ -system) with kernel A if $F_i \cap F_j = A$ for all $1 \le i < j \le t$. Erdös and Rado [6] proved that if the set-system \mathscr{F} has rank k (i.e. $|F| \le k$ for all $F \in \mathscr{F}$) and $|\mathscr{F}| > \Phi(k, t)$, then \mathscr{F} contains a subsystem $\mathscr{F}' \subset \mathscr{F}$ which is a t-star. (Here $\Phi(k, t)$ is a constant depending only on k and t, $(t-1)^k \le \Phi(k, t) \le k! (t-1)^k$. The determination of the asymptotic value of $\Phi(k, t)$ is a favourite open problem of Erdös [4].)

We say that every intersection is a kernel of a t-star in the set-system \mathcal{F} if for every $F, F' \in \mathcal{F}$ there exist $F_1, \ldots, F_t \in \mathcal{F}$ such that $F_i \cap F_j = F \cap F'$ for all $1 \le i < j \le t$. The following theorem conjectured by P. Frankl is a generalization of the Erdös-Rado's result.

Theorem 1. For every pair of positive integers k and t, there exists a positive real number c = c(k, t) with the following property: If \mathscr{F} is a set-system of rank k, then we can choose a subsystem $\mathscr{F}^* \subset \mathscr{F}$, $|\mathscr{F}^*| > c |\mathscr{F}|$ so that every intersection is a kernel of a t-star in \mathscr{F}^* .

We shall obtain extremely small values for c $(c(k, t) > (tk2^k)^{-2^k})$. Obviously we have $c(k, t) \le (1/\Phi(k, t)) < (t-1)^{-k}$.

A set-system of rank k is called a k-graph if each of its members has exactly k elements. A k-graph \mathcal{F} is k-partite if there exist sets X_1, \ldots, X_k satisfying

0012-365X/83/\$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

130 Z. Füredi

 $X_i \cap X_j = \emptyset$ and $|X_i \cap F| = 1$ for all $F \in \mathcal{F}$, $1 \le i \le k$. Given a k-partite k-graph with parts X_1, \ldots, X_k , define the natural homomorphisms or projection $\pi: (\bigcup X_i) \to \{1, 2, \ldots, k\}$ by $\pi(x) = i$ for all $x \in X_i$. We use the notation $\pi(A) = \{\pi(a) : a \in A\}$ for the set A and $\pi(\mathcal{A}) = \{\pi(A) : A \in \mathcal{A}\}$ for the set-system \mathcal{A} on $(\bigcup X_i)$. The following statement was proved by Erdös [3] for k = 2 and by Erdös and Kleitman [5] for all k. Every k-graph \mathcal{F} contains a k-partite subgraph \mathcal{F}' such that $|\mathcal{F}'| \ge (k!/k^k) |\mathcal{F}|$. We are going to connect this result with Theorem 1. Denote by $\mathcal{M}(F, \mathcal{F})$ the system of pairwise intersections in F, where \mathcal{F} is a k-graph and $F \in \mathcal{F}$. In other words $\mathcal{M}(F, \mathcal{F}) = \{F \cap F' : F' \in \mathcal{F}\}$.

Theorem 1'. For any positive integers k and t, there exists a positive real number c = c(k, t) with the following property: If \mathcal{F} is a k-graph, then we can choose a subsystem $\mathcal{F}^* \subset \mathcal{F}$ such that:

- (i) $|\mathcal{F}^*| > c |\mathcal{F}|$.
- (ii) Every pairwise intersection in \mathcal{F}^* is a kernel of a t-star of \mathcal{F}^* .
- (iii) \mathcal{F}^* is k-partite with parts X_1, \ldots, X_k ,
- (iv) There exists a set-system \mathcal{M} on the elements $\{1, 2, ..., k\}$ such that $\mathcal{M} = \pi \mathcal{M}(F, \mathcal{F}^*)$ for all $F \in \mathcal{F}^*$.

Remark 1. Note that the set-system \mathcal{M} mentioned above is *closed for intersection* if $t \ge k+1$. This means that for M', $M'' \in \mathcal{M}$ we have $M' \cap M'' \in \mathcal{M}$.

2. Applications.

Set-systems with prescribed cardinalities for pairwise intersections

2.1. Necessary and sufficient condition for m(n, k, L) = O(n)

Let $0 \le l_1 < l_2 < \cdots < l_s < k < n$ be integers, and X a finite set of cardinality n. We say that the family \mathcal{F} of k-subsets of X is an $(n, k, \{l_1, \ldots, l_s\})$ -system if $|F_1 \cap F_2| \in \{l_1, \ldots, l_s\}$ holds for every $F_1 \ne F_2$, $F_1, F_2 \in \mathcal{F}$. Denote $\{l_1, \ldots, l_s\}$ by L and let us denote by m(n, k, L) the maximum cardinality of an (n, k, L)-system.

We say that the (*) condition holds for the numbers l_1, l_2, \ldots, l_s and k if

(*) There exists a set-system \mathcal{M} on the elements $\{1, 2, ..., k\}$ which is closed for intersection, $|\bigcup \mathcal{M}| = k$ and $|M| \in \{l_1, ..., l_s\}$ for all $M \in \mathcal{M}$.

Theorem 2. (a) If for $\{l_1, \ldots, l_s\}$ and k the (*) condition is satisfied, then $m(n, k, L) > c(k) \cdot n^{k/(k-1)}$.

(b) If (*) does not hold, then $m(n, k, L) < c_k \cdot n$.

 $(c_k \le 1/c(k, k+1))$, where c(k, t) is defined in Theorem 1'.)

This theorem implies a result of Deza, Erdös and Singhi [2] ($|L| \le 2$), Babai and Frankl [1] (if the $gcd(l_1, ..., l_s)$ does not divide k, then $m(n, k, L) \le n$), Frankl

and Rosenberg [9] (if each $l_i \equiv r \pmod{m}$ but $k \not\equiv r \pmod{m}$, then $m(n, k, L) \leq n$) and Frankl [8] ($|L| \leq 3$) in a slightly weaker form.

2.2. A reduction theorem

Let a(n), b(n) be two positive real functions over positive integers. If there are positive reals c and c' such that $ca(n) \ge b(n) \ge c'a(n)$, then we shall write $a(n) \ge b(n)$. It is easy to see (cf. Frankl [7]) that

$$m(n, k, \{l_1, \ldots, l_s\}) \approx m(n, k - l_1, \{0, l_2 - l_1, \ldots, l_s - l_1\}).$$

Hence, if we are interested only in the order of magnitude of m(n, k, L), then we can always assume $l_1 = 0$. The following result is another reduction theorem.

Theorem 3. If the greatest common divisor d of l_1, \ldots, l_s divides k, then

$$m(n, k, \{l_1, \ldots, l_s\}) \approx m\left(\frac{n}{d}, \frac{k}{d}, \left\{\frac{l_1}{d}, \ldots, \frac{l_s}{d}\right\}\right).$$

If $gcd(l_1, ..., l_s)$ does not divide k, then, by [1], $m(n, k, L) \le n$.

2.3. Remark about t-times intersections

Let us denote by $m_t(n, k, L)$ the maximum cardinality of \mathscr{F} where $\mathscr{F} \subset \binom{X}{k}$, |X| = n and $|F_1 \cap F_2 \cap \cdots \cap F_t| \in L$ holds for every distinct $F_1, \ldots, F_t \in \mathscr{F}$. This question was posed by V.T. Sós [10] in more general form. Theorem 1 implies that $m_t(n, k, L) \approx m(n, k, L)$ holds.

3. Proofs

3.1. Two lemmas

By virtue of the above-cited theorem of Erdös and Kleitman, there exists a k-partite $\mathscr{F}' \subset \mathscr{F}$, $|\mathscr{F}'| \ge (k!/k^k) |\mathscr{F}|$. Denote its parts by X_1, \ldots, X_k . From now on we will consider only k-partite k-graphs \mathscr{G} with parts X_1, \ldots, X_k . Let $\mathscr{M}(\mathscr{G}) = \bigcup \pi \mathscr{M}(F, \mathscr{G})$, where the union is taken over all $F \in \mathscr{G}$. Let us denote by $\mathscr{B}(F, \mathscr{G})$ the set of kernels of t-stars in $F \in \mathscr{G}$, i.e.

$$\mathcal{B}(F,\mathcal{G}) = \{A \subset F : \exists F_1, \dots, F_i \in \mathcal{G} \text{ such that } F_i \cap F_j = A \text{ for } 1 \leq i < j \leq t\}.$$
 Finally, let $\mathcal{B}(\mathcal{G}) = \bigcup \{\pi \mathcal{B}(F,\mathcal{G}) : F \in \mathcal{G}\}.$

Lemma 1. Let \mathcal{G} be a k-partite graph with parts X_1, \ldots, X_k . Then either

- (a) there exists a $\mathcal{G}^* \subset \mathcal{G}$, $|\mathcal{G}^*| \ge |\mathcal{G}|/(1+|\mathcal{M}(\mathcal{G})|)$, such that \mathcal{G}^* meets the conditions (ii) and (iv) in Theorem 1'; or
- (β) there exist a $\mathscr{G}' \subset \mathscr{G}$, $|\mathscr{G}| \ge |\mathscr{G}|/(1+|\mathscr{M}(\mathscr{G})|)$ and a set $A \in \mathscr{M}(\mathscr{G})$ such that $A \notin \mathscr{B}(\mathscr{G}')$.

132 Z. Füredi

Lemma 2. Let \mathcal{G} be a k-partite k-graph with parts X_1, \ldots, X_k . Suppose that $A \notin \mathcal{B}(\mathcal{G})$. Then there exists a $\mathcal{G}' \subseteq \mathcal{G}$ such that $|\mathcal{G}'| \ge |\mathcal{G}|/k(t-1)$ and $A \notin \mathcal{M}(\mathcal{G}')$.

3.2. Proof of Theorem 1'

Let $\mathscr{F}_1 = \mathscr{F}'$ and $\mathscr{M}_1 = \mathscr{M}(\mathscr{F}_1)$. Apply Lemma 1. In the case (α) we are ready. In the case (β) we obtain an $\mathscr{F}_1' \subset \mathscr{F}_1$ such that $|\mathscr{F}_1'| \geq |\mathscr{F}_1|/(1+|\mathscr{M}_1|)$, $\mathscr{B}(\mathscr{F}_1') \subseteq \mathscr{M}(\mathscr{F}_1)$. Now, applying Lemma 2 for \mathscr{F}_1' , we obtain a subsystem $\mathscr{F}_2 \subset \mathscr{F}_1'$ such that $|\mathscr{F}_2| \geq |\mathscr{F}_1'|/k(t-1)$ and $\mathscr{M}(\mathscr{F}_2) \subset \mathscr{B}(\mathscr{F}_1') \subseteq \mathscr{M}(\mathscr{F}_1)$. Proceeding in the same way, we get $\mathscr{F}_2 \supset \mathscr{F}_2' \supset \mathscr{F}_3 \supset \mathscr{F}_3' \supset \cdots$. It ends up in at most $|\mathscr{M}| \leq 2^k$ steps. We may suppose that at the end of the procedure we have a subsystem $\mathscr{F}_1' \subset \mathscr{F}'$ satisfying $|\mathscr{F}_1'| \geq |\mathscr{F}|(k!/k^k) (1/(2^k+1)!) (1/k(t-1))^{2^k}$. Put $\mathscr{F}^* = \mathscr{F}_1'$. \square

3.3. Proof of Theorems 2 and 3

Theorem 2(b) and Theorem 3 are easy consequences of Theorem 1'. To prove Theorem 2(a) one can give a construction, which is a slightly modified version of a construction of Frankl [8]. The author shall return to these problems in a later paper.

Acknowledgements

The author is indebted to P. Frankl and J. Pach for their helpful suggestions.

References

- [1] L. Babai and P. Frankl, Note on set-intersections, J. Combin. Theory (A) 28 (1980) 103–105.
- [2] M. Deza, P. Erdös and N.M. Singhi, Combinatorial problems on subsets and their intersections, Advances in Math. Suppl. Studies 1 (1978) 259–265.
- [3] P. Erdös, On bipartite subgraphs of a graph (in Hungarian), Matematikai Lapok 18 (1967) 283–288.
- [4] P. Erdös, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981) 25-42.
- [5] P. Erdös and D.J. Kleitman, On coloring graphs to maximize the proportion of multicolored k-edges, J. Combin. Theory 5 (1968) 164-169.
- [6] P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960) 85-90.
- [7] P. Frankl, Families of finite sets with prescribed cardinalities for pairwise intersections, Acta Math. Acad. Sci. Hungar. 35 (1980) 351-360.
- [8] P. Frankl, Families of finite sets with three intersections, Combinatorica 3 (1983).
- [9] P. Frankl and I.G. Rosenberg, A finite set intersection theorem, European J. Combin. 2 (1981) 127-129.
- [10] V.T. Sós, Some remarks on the connection of graph theory, finite geometry and block designs, Teorie Combinatorie (Proc. of the Colloq. held in Rome 1973), Roma (1976) 223-233.