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ON CONNECTEDNESS OF A RANDOM GRAPH WITH A
SMALL NUMBER OF EDGES

by
Z. FUREDI

Abstract

Consider the nxn lattice graph G(n). Let G(n, p) denote the random subgraph of G(n) defined
by choosing the edges of G(n) with probability p mutually independently.

We prove: p=1/3 is fixed then G(n, p) is highly nonconnected, i. e. the largest component of
G(n, p)<C(p)logn, if p=2/3 then G(n, p) is nearly connected, i.e. there is a giant component.

But G(n, p) will be connected if p is very close to 1, more precisely if p=1 —¢/Vi then
lim Prob (G(n, p) is cannected)=e‘°‘.

o -0

It was P. ErpOs and A. RENYI who first posed the problem of investigating the
properties of random graphs (see [2], [3], [4], [5]). One of their most known result is
as follows [2].

n
2
independent random variables. Let us denote by e the random variable which cor-
responds to the edge e. It takes the value 1 or 0 according to whether this edge be-
longs to our random graph or not. Further we suppose that p=Prob (e=1)=
log n
T oon
able) will be denoted by G, ,. Now as n tends to infinity and ¢ is fixed,

Let us consider the ( ] edges of the complete graph on n points as (completely)

+% and Prob (e=0)=1—p. This random graph (or random vector vari-

lim Prob (G, , is connected) = e~ *° =
= lim Prob (G,,, has no isolated point).

This theorem was generalized in many ways, e.g. [§] if

__logn  w(n)
B n
then
lim Prob (G

s

»,p contains a Hamiltonian circuit) = 1 or 0

according to lim w(n)=-co resp. —eo.
Her oo

(The threshold function is not yet known.)
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420 Z. FUREDI

Another direction of generalization which is considered in this paper, is that one
regards not a complete graph but some other one as the underlying graph. In this
case only the edges of this underlying graph are chosen randomly. There are several
theorems similar to the above cited one in this topic, e.g. for the complete bipartite
graph or the n-cube [1], [6], [7]. However; the investigated underlying graphs usually

have O [[IVEZG)I]] edges [9]. It is surprising that the case when G has only few edges

has not been investigated. Questions of this type are of similar character and have
important applications in physics.

In this paper we consider the following special case. Let G(n) be the graph
formed by an n X n square lattice. |V (G)|=(n+1)?|E(G)|=2n(n+1).Choose theedges
of G(n) independently with probability p, and denote this random graph by G (n, p).

THEOREM 1. Ifp=1 —Tf___ where ¢ is fixed, then

lim Prob (G(n, p) is connected) = e—** =
= lim Prob (G(n, p) has no isolated point).

THEOREM 2. Let p be fixed not depending on n. Then
a) If p=2/3 then G(n,p) contains a giant component and the

+w (:1)]2 .

2-nd largest component of G(n, p) = [1‘5@_(11’;03%_?))

b) If p=1/3 then
the largest component of G(n, p) = C(p)logn.

(The inequalities are meant in the sense that they hold true with probability
tending to 1 as n—oo.)

The Theorems mean that G(n, p) is highly nonconnected if p is small, but for
large p G(n, p) is nearly connected and it will be really connected if p is very close to 1.
It seems to be difficult to determine at what value of p the threshold valuelies, but it is
very likely 1/2 (cf. [6]). The method of the proof of Theorem 2 yields that the con-
stant 2/3 can be improved to 0.658.

Proor of Theorem 1.

A cutset of G(n) is said to be connected if its edges can be linearly ordered in such
a way that consecutive edges are neighbouring. The edges are neighbouring if they
belong to the same small square in G(n) (see Fig. 3). It is easy to see that if G(n. p)
is not connected then there exists a cutset of G(n, p) so it has a connected cutset by
its planarity.

We shall see from the proof of Theorem 2 that

Prob (there exists a connected cut with k& or more edges) < 2n(n-+1)3*(1—p)*/

[(1=3(1—p)).
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CONNECTEDNESS OF A RANDOM GRAPH 421

Put k=35, then
Prob (there exists a connected cutset with = 5 edges) <

< 2n(n+1)Bc/Vn)’[(1=3¢/Vn) = 0(c3/Vn).

On the other hand any connected cutset with 2, 3 or 4 edges must be one of the follow-
ing five types (Figure 1).

R .

(i) (i) (iii) (iv) (v)

Fig. 1

(i) A connected cutset with 2 edges is in the corner. There are 4 such cuts.
Prob ((i)) < 4(1—p)? = 4¢¥/n.
(it) A connected cutset with 3 edges is in the corner. There are 8 such cutsets.
Prob ((ii)) < 8(1—p)® = 8¢*/n V/n.
(iii) Isolated point on the boundary of G(n). There are 4(n—1) such cutsets.
Prob ((iii)) < 4(n—1)(1—p)* < 8¢* /n.

(iv) A connected cutset with 4 edges on the boundary of G(n). There are 4(n—2)
such cutsets.

Prob ((iv)) = 4(n—2)(1 —p)* < 4c*/n.

(v) Isolated point inside G(n). There are (n—2)2 such cutsets.

From these we get.

Prob (G (n, p) has no isolated point)=
=0(1)+ Prob (Thereare no isolated points and no connected cutsets with =5 edges) =
=0(1)+ Prob (There are no cutsets with =2 edges)+O0(1)=
=0(1)+Prob (G (n; p) is connected).

We are finished with the proof of the equation

lim Prob (G(n, p) is connected) = lim Prob (G(n, p) has no isolated point).

Further
Prob (G(n, p) has no isolated point) =

= Prob(There is no isolated point inside the lattice G(n, p))—o(l) =
= Prob (7(v))—o(1).
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By an application of the sieve method we determine Prob (7(v)). Write 4,
for the event that the i-th inner point is isolated in G(n, p) (l*zf’(n—l)z) A,
and A, are neighbouring if the u-th and »-th points are joined by an edge in G(n).

Prob (71(v)) = Prob (71(v) and there are no neighbouring 4,4, at all).

(Clearly, the non-existence of isolated points implies the non-existence of pairs of
neighbouring isolated points.)

(n—1)
Prob(1(v))= 3 (=1* 3  Prob(4; 4, ... 4, and H* neighbouring 4,4,) =
K=0 % e 2 0
(n—1)2 . ;
= > (1) 2 Prob (4, 4;,... 4;, and 3 neighbouring A4,4,).
k= r o an
’ b A; A; netghbcs.mng

In the last sum it suffices to consider only those k with 0=k-=1log, n-max (6¢*, 3),
because if k is more than this upper bound then

e F Prob(4;, ... A; and 3} neighbouring 4,4,) =
¥ ncng’]:b‘:mrmgajd A
= > Prob (4;, ... 4;) = > (1—p)* <
] nelghgouru:g i:‘ndflg ] nelshbour::lga:ild A
. k
(n—1)2 n* % cte 1
o R e e

So it suffices to sum over k-=(6¢*+3)log, n.
Prob (7(v)) =
clo »
[ l]+ Zg (=1)* ‘ Z ‘ Prob (4, ... 4; and 3 neighbouring 4,4,) =

------

3}11 iy ncrghbourmg

clogym

=o()+ > (=1 i Prob (4;, ... 4;)—
k=1 i, i, e and
b A; A,ﬁ nelghhourmg

clog,n

— 2 (=1 2 Prob (4, ... 4, and 3 neighbouring A4,4,) =
=3 34!1;1 nelg'%:r&;irlng

= 0(1)+5;—5s,

where S; and S, are the sums.
Now we show that S, is equal to e=*+o(1). To do so we have to count how
many times one can choose k out of the 4;"s so that among the chosen k ones there

1 The symbol 3 stands for 73.
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. . . —1)?
are no neighbours. The number of such choices is at most [(n K ) ) and at least

2 —1)2
[(’3 1) ] 4(;(_;}[(” k]) ) From this we get that

logn

OO T +o[ ] e=<*+o(1).

We divide every term of S, into two parts.

Prob (4, ... 4;, and 3 neighbouring 4,4,) =
LI PO i, an
b A; A;ﬁ nelghﬁnflrlng

= > Prob (4;, ... A, and 3 neighbouring 4,4,)+
Ajpeees Aiy
contain no m.;ghbourmg pair,
but they 11'1'1[;!I),r a neighbouring pair
Ay A i, (see Fig. 2)

+ 2 Prob(4;, ... 4;, and 3 neighbouring A4,4,).
Al sy A

contiain no e]f;hbourlng pair, and
they do not imply a neighbouring pair.

l

If the position of A4 ; ..., 4;, implies the existence of a neighbouring pair (see
Fig. 2) (but 4;, and 4;, are not neighbouring) then

Prob(4;, ... 4;, and 3 neighbouring 4,4,) =

= Prob (4;,... 4;) = (1 —p)* = c*/n*.

(H—l)z)‘

But the number of 4, ..., 4, in such a position is at most (n——l)g[ Lo

If this is not the case then

Prob (4;,... 4;, and 3 neighbouring 4,4,) =

= Prob(4;,... 4;, and 3 neighbouring 4,4, and
[one of A; and A, or A, are neighbouring])+

+Prob (4;,... 4; and 3 neighbouring 4,4, and 7

[one of 4; and A4, or A, are neighbouring]) <=
= (1—p)*(4k (1 —p)+2n*(1—p)").
Using these facts we get that S, is o(1), consequently
Prob (71(v)) = e=“*+0(1). Q. E. D.
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Fig. 2 Fig. 3

Proor of Theorem 2.

a) To begin with we show that the number of connected cuts of G(n) with k
edges is at most n(n+1)3*"1-4 (see Fig. 3). This follows from the fact that on every
connected cutset we can choose a starting edge and find (at most) two orderings of
the edges of this cutset. Thus we can encode the form of the cut by 4 signs. We get
a sequence of k signs with no consecutive identical signs. The number of such se-
quences is at most 4-3*~1. Hence

Prob (G(n, p) has a connected cut with = k edges) =

= f Prob (G(n, p) has a connected cut with i edges) <
i=k

1

< én(n+1)4-3k-1(1—p)f = n@+ D431 —pl .

Thus if k=2log n/log(l/3(1—p))+w(n) then
Prob(G(n, p) has a connected cut with = k edges) = o(1).

. : 1 .
In view of the fact that a cutset with k edges surrounds a set of at most Zk2 points:

2
Prob {G (n, p) has a component with = kT points] = o(1).

b) Starting from an arbitrary point A let us go on the edges of G(n), in every
point P we can choose from at most three edges. Those new points connected with
P are called the successors of P. As we can list the edges of G (n) arbitrarily, so there is
an appropriate branching process for the building of the component of G(n, p)
containing A (see [0]). Since

E (number of successors of P)=3p=<1,

this process is subcritical (Galton—Watson), i.e. it extincts exponentially, more pre-
cisely, there are positive constants ¢, & such that

Prob (the cardinality of the component of G(n, p) containing 4
is more than k)<ce K.
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Thus
Prob (G (n, p) contains a component greater then C(p) logn) =

= > Prob(G(n, p) contains a component containing 4 and greater than C(p)logn)<
A
= n2ee—cMlogt = (1),

REMARK. The methods presented here can be generalized to connected graphs
for which the maximal degree is very small compared with the number of vertices,
e.g. the lattice points of d dimensional cubes of size n (n— <=, d is fixed).
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