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Let f  “(n) denote the maximum of k-subsets of an n-set satisfying the condition in 
the title. It is proven that f  “-l(n) <f *‘(n + 1) < (7 )/( 2’;‘) with equalities holding 
i f f  there exists a Steiner-system .V(t, 2t - 1, n). The bounds are approximately best 
possible for k < 6 and of correct order of magnitude for k > 7, as well, even if the 
corresponding Steiner-systems do not exist. 

Exponential lower and upper bounds are obtained for the case if we do not put 
size restrictions on the members of the family (i.e., the nonuniform case). 

1. INTRODUCTION AND THE STATEMENT OF THE RESULTS 

1.1. Notations 

Let X be an n-element set. For an integer t, 0 < t < n we denote by (T) the 
collection of all the t-subsets of X, while 2’ denotes the set having all the 
different subsets of X as its elements. A family of subsets of X is just a 
subset of 2x. We shall call it t-uniform if it is a subset of (I). By a Steiner- 
system 3’ = .i”(t, k, n) we shall mean an 9 c (i) such that for every 
A E (:) there is exactly one B E 9 with A c B. Obviously, we have 

I..% k n>I =! (7 >A : >- BY lal(LbJ> we shall denote the smallest (greatest) 
integer (not) exceeding a (b), respectively. We will use the Stirling formula, 
I.e., 

n! - (n/e)” J27zn. 

1.2. The Results 

THEOREM 1. Suppose .Fk c (t) and there are no three distinct sets 
A, B, C E .Fk such that A c B U C. Let f k(n) denote the maximum of (Xk /, 
subject to these constraints. Then we have 
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Moreover equality holds in (1) r~Srzt-’ = Y(t, 2t - 1, n), and in (2) ifSfor 
some x E X and a Steiner-system .Y = Y(t, 2t - 1, n - 1) on X - {x) we 
have .T*’ = {{x} U S: S E Y}. 

The bounds given by this theorem are best possible only if the 
corresponding Steiner-systems exist. As it is well known (cf. [5]) Y(2, 3, n) 
exists iff IZ > 7 and n z 1 or 3 (mod 6). Thus in these cases f”(n) = 
f4(n + 1) = n(n - 1)/6. The Steiner-systems .Y(3, q + 1, q” + l), called 
Moebius geometries (see Hanani [3]) yield for the special case q = 4 some 
Y(3,5,4” + 1). Thus for n = 4” + 1 we havef5(n) =f6(n + 1) = (:)/(i ). 
Erdiis and Hanani [l] proved the existence of Y c (,: I ) with ]Pn F’ I< 2 
for F, F’ E jT and (ST] = (‘j)/( “il ) - o(n3). Let us put these observations 
together. 

COROLLARY 1. 

f’(n) = n, f*(n) = n - 1, 

f3(n) = n2/6 + 0(n) =f4(n) 

f”(n) = n3/60 + o(n’) =f6(n). 

As for t > 4 almost nothing is known about the existence of 
P(t, 2t - 1, n), we do not have any asymptotically correct estimations of 
f”(n). We could only obtain: 

PROPOSITION 1. f”(n) > ( $21)/( (kF21)2. 

Remark. The problems considered in this theorem belong to the so-called 
Turin-type problems i.e., what is the maximum number of k-subsets of an n- 
set if it contains no subsystem isomorphic to one member of a set of k- 
graphs {q,&,..,,Zq}. This maximum is usually denoted by 
ext(n, {q,..., R,}). Let us define ~={{A,B,C):JAI=IBI=IC(=k, 
A cB U C} and 4 = {{x ,,..., xk}, {xk+, ,..., xZk}, {xi ,..., xk-i, xk+i}}. In this 
terminology we proved (Theorem 1 and Proposition 1) that ext(n, %) = 
O(nlk”‘). The exclusion of only one member of %, however, leads to 
different results, e.g., (see [2]) ext(n,q) = (t!:) (n > n,,(k)). 

Until now we considered the uniform case, i.e., Fc (f), but what 
happens if we assume only jT c 2X. Let f(n) denote max ]Sr] for Fc 2x 
andA,B,CEFimpliesA&B~C. 
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THEOREM 2. 1.134” <f(n) < 1.25”. 

Here the upper bound follows from Theorem 1, using the Stirling formula 
and the obvious estimation f(n) < CkGn f”(n). Proposition 1 would give an 
exponential lower bound but a weaker one. We obtain the actual bound by 
random construction. 

If we fix r = n - k only then by taking complements the problem can be 
stated in the following way. What is the maximum cardinality g(r) of an r- 
uniform family if it does not contain 3 sets A, B, C with A I? B c C. 
Applying Theorem 2 one can easily prove g(r) > 1.18’, and trivially 
g(r) < 2’. Kleitman et al. [6] have shown that g(r) < (1.87 + o(l))‘, i.e., g(r) 
is exponentially smaller than 2’. 

2. THE PROOFS 

2.1. Some Preparations 

Observe that if we adjoin a fixed element outside of the ground set to all 
the members of ,Fzl-’ we get an Fzr on n + 1 points. Thus f 2r-‘(n) ,< 
f”(n + 1). Hence it is sufficient to prove (2), along with the uniqueness. Let 
us denote X2’ by just .F and for T c X <F(T) = (F E 7: T c F} 

(i) If TV T’ = F E Sr, then either IX(T)\ = 1 or IX(T’)) = 1. 

Indeed, otherwise we can take F,, F; different from F with 
T c F, , T’ c F; , and consequently, F c F, U Ft,. 

If [Y(T) = 1, T c F E f, we say T is a private subset of F. For 
F, F’ EST obviously F-F’ is always a private subset of F. Now a 2t- 
element set can be partitioned into 2 t-sets in f(y) different ways. Thus we 
have: 

(ii) rf F E X, then it has at least j(y) private t-subsets. 

(Let us remark that (ii) already gives (Sr] < (7 )/(“; ‘) which is only slightly 
weaker than (2).) 

Suppose TcFE.7, ITI=t. If for some xEF-T we have 
(Sr(TU {x})] > 1, then in view of (i) F - T- {x} is a private subset of F 
and consequently for y & F the t-set (F - T - {x)) U { y} is not contained in 
any member of ST. We say that these sets are free sets associated with 
the pair (F, 2). The collection of all such free sets will be denoted by 
d(F, T), i.e., d(F,T)=(AcX: IA)=t, AnT=@, (AnFI=t-1, 
IY(F - A)( > 1 }. Of course, we have: 

(iii) Id(F, T)I = IX- Fll{ x: x E F - T, (.Y(Tu (x})l > 1 }I. 

Next we shall prove: 
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(iv) If Iy(T>I > (n - W, then CFE~cTj I~(6 7312 (a - 24 X 
0 v-m - (n - t))* 

In fact in view of (iii) 

=(n-2t) c I{F: TV (x) c F)( 
XEX-T 

I~(TUlxl)l > 1 

> (n - 2t) ( c IFWJ {XII - (n - r> 
x6X-T 

= (n - 2t)(t p-(T)I - (n - t)). 
(v) ForAcX, IAl=t we have I{(F, T): A E d(F, T)}l < (t + 1)t. 

Indeed for A E sd(F, T) there exists a y E A such that A - { y} is a private 
subset of F, thus the number of possibilities for F is at most t. On the other 
hand Tc F - A, I TI = r, thus for T there are only (‘: ‘) = f + 1 possibilities. 
From now on assume: 

(vi) There are no F,, F, E jT with F, U F, =X. 
In fact, otherwise Sr = {F,, F,}, and (2) follows, also in the case 

n<2t+ 1. For n=2t+r(3t we can improve (v). 
Let A belong to d(F, T). Then Ix(F - A)1 > 1, thus we can find 

F#F’EF, F-AcF’. Now (vi) yields IF-F’ 1 < r - 1. Suppose 
y E A - (F-F’). Then A - {v} cannot be contained in a member F” f F 
of ;T, since F c F’ U F” would follow. Thus the number of sets FO E F such 
thatAEzZ(l;,,T,)isatmost l+JF-F’I<l+r-l=r.Weinfer,taking 
into account (v): 

(vii) I((F,T):AE~(F,T)}I<((t+l)min(f,n-2t). 

In fact, we have proved that for fixed A 

({F’: A E d(F’, T)}l < min(t, n - 2t) 

holds. Moreover, for fixed A and T; 

(viii) ({I;‘: A E d(F’, T)}I < min{t, n - 2t, Is’(T)I} trivially follows. 

2.2. The Proof of (2) 

For every pair (F, ZJ, T c F E Sr, ( TJ = t we define a nonnegative weight 
function on the t-subsets of X (i.e., w(~,~) : (I) -+ R). For convenience we set 
I, = min(t, n - 2t). 

(a) If Ifl(T)I = 1, then W(F,T) (A) = 1 for A = T and 0, otherwise. 
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(b) If 1 < I;T(ZJ < (n - t)/t, then w~~,~)(A) = t/(n - t) for A = T and 
0, otherwise. 

(c) If l.F(7’)( > (n - t)/t, then 

W(F.T,W = wTl~ for A = T, 

= l/(t t l)t,, if A E s&‘(F’, T) for some F’, 

= 0, otherwise. 

Let us estimate the sum of the weights in the case (c), for brevity we set 
I;T(T)( = d, min(t,, d) = d,, and use (viii) and (iv). 

2 
4) 

%,.,(A) = f + (t +11)[ 
0 
( /A :A E F ,u,,,, d(f”, T> 1 1 

>L 
1 1 

d 
Y- ILd(F’, T)I 

0 + lP0 d, F’kh 

> 1_ + (n - 2t)(dt - (n - t)) > L + dt - (n - t) 

‘d to@ t l)d, ’ d (t + 1Po 

I (df - (n - f))(d(n - 0 - do@ -t 1)) > La t _ 
n--t (t t 1) d,d(n - t) n-t 

Using (ii) we infer for any fixed FE jT 

On the other hand for any fixed A E (T) we prove 

(4) 

Indeed, if ISr(A)( > 1, then We,,,, (A) is positive only for T = A and even 
then it is at most l/JR(A)); if [ST(A)1 = 0, then it follows from (vii). 

Now using the inequalities (3) and (4) we infer 
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I Q.E.D. 

2.3. The Case of Equality 

If [XI = ( “; ’ )/( *‘; ‘), then we must have equality for every F E jr in (3), 
thus F has excactly f(y) private t-subsets and another i(y) for which 
1 < v-(T>)I < (n - wt. 

We must have equality in (4) as well yielding that there are no free t-sets 
A, i.e., with )3(A)/ = 0; more exactly IX(A))/ is either 1 or (n - t)/t (in 
particular (n - t)/t is an integer, i.e., t / n). Let us set 

&= AE I 0 ‘: :IF(A)I= 1 1, r=]AE (~):lF(A)l=~~ 

Then Is/=f(*;)/Fj=(“;‘)and Is\=(:)-/E\=(:::). 
Now we show: 

(ix) ForF,F’ESTwehaveIFnF’I<t. 
Indeed, otherwise /F -F’ / < t - 1 and F - F’ is a private subset of F if 

we choose A such that IA I= t, F - F’ c A Q? F, then A is a free t-subset, a 
contradiction. Thus for T E t the sets F - T for F E X(7’) partition X - T. 
Let us take some fixed B f (l? i) and set 

D= {xEX-B: (Bu {x))E T), ID/=4 

ci=/(FEjT:F~B,lFnD)=i}l, O<i<t+ 1. 

We have 

Y- i ic,= ‘S IFnDI= 1 I~(BU(x})I=d~. (5) 
O<i<t+l BcF’d XED 

Also we have 

-5- 
o<z+ I 

c,(t+ l-i)= c IFn(X-B-D)1 
BCFES 

= c I.F(B u (x})l = n - t + 1 - d. (6) 
XEX-B-D 

As for every X, y E D, we have ISr(B U {x, y})J = 1, we deduce 
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If we subtract the double of (7) from (5) multiplied by c we obtain 

F- 
o&,+ 1 

qi(t+ 1 -i)=d(n-t+ 1 -d). (8) 

If d # 0 and d # n - t + 1, then, using ci = 0 for i > d, a comparison of (6) 
and (8) yields dCi(t t 1 - i) = ic,(t t 1 - i) for 0 < i < t t 1, consequently 
c,(t+l-d)=n-ttl-d and c,>l, cO=c,=+..=cd-,=O. Now if 
d > 2 from (7) we deduce cd = 1 which leads to the contradiction 
n-t+l-d=t+l-d,i.e.,n==2t.Thuswehaveproved: 

(x) ~r(B)~=Oorlorn-r+l. 
Now we shall need the following special instance of the Kruskal-Katona 

theorem (see [4,7]). 

(xi) Suppose for some integers m, g, m > g 2 1 we have a family F of 
g-setswithIF~=(~). ThenI{HcGEF~lHI=g- l}l>(gn’,) withequality 
holding zrl UGE,F G\ = m. 

Using (xi) we show next: 

(xii) There exist an x, E X such that t = {T E (7):x, E 7’). 
Applying (xi) to E we infer 

(9) 

As je(B)]+lr(B)]=n--t+ 1, in view of(x) wededuce 

Using these two inequalities we infer 

n-1 t ( 1 f-l 
=l{(B,T>:BcTEt,lBI=t-1}1 

Thus we must have equality in (10) and consequently in (9), too. NOW (xi) 
yields the existence of x,, E X such that UEEE E = X- (x,,j which implies 
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(xii). Thus x,, E F for every FE X. Set &, = {F - {x,,}: FE X}. Now 
,&~(~2;?$)“]), Is’,/= (T:{)/(y:;) and in view of (ix) for FO,FiE;TO we 
have ) F,, n FL1 < r - 1, thus F0 is an (n - 1,2t - 1, t) Steiner system. 

Q.E.D. 

2.4. The Proof of Proposition 1 

We will actually describe an algorithm to find a family with so many sets. 
We start with Y0 = 0, F0 = (:). If 5, $ are defined, then let F be an 
arbitrary member of .g and set 

Of course we have 6+, n $+ 1 = 0. 

(11) 

we go on with this procedure until we reach an m such that Fm = 0. Then 
by (11) we have 

By the definition of Fm for F, F’ E ;T, we have I Fn F’ I < /k/2] thus 
F c F’ U F” is impossible. Q.E.D. 

2.5. The Proof of Theorem 2 

Let us choose independently and with probability 2m/( t) each of the k- 
subsets of X, the value of m will be fixed later. Let 9’ denote the obtained 
random hypergraph. Obviously, the expectation of the number of edges in 9’ 
is ,!?(I Y I) = 2m. We will need the expression for the number of ordered pairs 
of k-sets B, C such that for a given k-set A the relation A c B U C holds: 

R(n,k)= c Q<x<k 

= ,,F,, (:)(:IS)(R-:+X) 
=,&g, (E)’ (n-:+x )@a; (:)’ (,-i+,) n. 

Thus for m < l/2 fi( i)/dn max,,,(t)*( n-i’x) we have R(n, k)4m2/ 
(;)’ < 4, yielding that the probability for a given edge A E 9 to be covered 
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by B u C. B, C E 9 is less than {. Hence the expected number of edges to 
remain in 9 after the omission of the covered edges is greater than 
2m - $2m = m, and in that hypergraph the conditions are already satisfied. 

So we have shown the existence of a desired hypergraph with at least 
l/2 fi( :)/d/n max xGk( 1)“( n-:+x) edges. All we need is a lower bound on 
this expression. The ratio of the term to be maximized, for consecutive values 
of x, is (k-x + I)‘(n - k + x)/(n - 2k + x)x’. This function is monotone 
decreasing in x, thus the maximum is taken at the value where this ratio is 
about 1. We get a quadratic equation in x; the solution of which is 
(0 < x < k) 

X max N f(3k - 2n + d5k2 - 8kn + 4n2). 

Setting k = 0.26n we obtain x,,,~~ = 0.1413 . . . n. Putting this value back into 
the expression for m and applying the Stirling formula we see that m can be 
as large as (1.1348)“. Q.E.D. 

Added in proof. The first and third authors observed that the characteristic vectors of the 
members of the set-system Y in Theorem 2 yield a point set .Y of cardinality at least 1.13” in 
R” such that all angles determined by the triples of 9 are less than x/2. This disproves the 
old conjecture IYpI< 2n - 1. Moreover one can give 1.001” points in R” all the angles of 
which are less than 61° (and greater than 58O). These and other related results can be found in 
ISI. 
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