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whenever N > Ny(r). The extremal family is unique and consists of 2r, r and 1-elements sets
only. The assumption N> Nyr) can not be omitted. We state some further resuits and
probleras.

1. Introduction

One can weaken the restriction imposed on the cardinality on the intersections as
follows. Given a set A ={A;, A,,...,A,} of integers, we replace the condition
A ﬂB|= A by IA NBle A for all A Be d. What can be said xabout Idl" A

cardinality of a A-system, where N Stands f r {X|. This pruuit‘:n was posed in
1871 The numaose of thic naner ig to determine the order of maonitude of f(N. A)
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for some particular sets A
1.2. The most investigated case is that of uniform set-systems of. Let

f(N, k, A)=max{|sf]: |A NBle A for all A, Bes,

and |A]=k for all A eof}
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R.M. Wilson [14]:

fN, K, A)s(al).

But most results dea! with the situation when N is very large compared to k.
The well-known Erdos-Ko-Rado theorem [7] can also be formulated in the
above terms:

N-—

,') i N> Ng(k).
k—i

f(N,k,{i,i+1,...,k—1})=(

P. Frankl has a general method for obtaining sharp upper bounds on f(N, k, A)

for a very broad class of A. (See [5, 9, 10, 11]). For further results see the

theorems of M. Deza, P. Erdos, P. Frankl, GG. Katona and N.M. Singhi [4, 6, 8,
12].

1.3. Here we are going to need only the following theorem of L Babai and P.
Frankl [ 1], which is & stronger version of an earlier theorem of M. Deza, P. Erdos
and N.M. Singhi [6]:

Suppose that the greatest common divisor of the members of A does not divide
k. Then

f(N, k, A)<N. ?2)

2. Resuits

2.1. The maxiral {0, r}-system

In thi: paper we investigate the (non-uniform) cases A ={0, r} (cf. [6]) and
{0,1, 3} or {0,2, 3%. :

Example 1. If N is a multiple of r then let X=8,US,U---USy, where

ISi|=1S5{="-+=|Sn,l=r. Let sf consist of the 2r-sets S,US;, and r-sets S, I r |

does not divide N, then X=8,US,U- - U8y, US,, and we can join to of the
N —r|N/r} one point sets in S,. This shows

s fo, rp= (1)

AY

)+ NI+ (V= r L) Q

We show that this evident lower bound is best possible if N is large enough.

Theorem 1. If N> Ny(r) (N>1000r°), then the jamily s in Example 1 is
maximal, i.e. we have equality in (3). The extremal family is unique.

If N <2r*~r, then Example 1 is not maximali, since in this case its cardinality is

o et
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less than N. However trivially f(N, {0, r})= N for every N. The following construc-
tion disproves the earlier conjecture of the author f(N,{0, r})=max{N; the
cardinality of Example 1}.

Example of P. Frankl (unpublished). Suppose that H=(h;) is an Hadamard
matrix of rank 4r, ie. h;==1, (h, h)=45; and hy; =1 (1<i,j:<4r). Let
H={Bi:2<i<d4r, e=+1 or -1, Bf={j: h; =e}}, then ¥ is a 2r-uniform {0, r}-
system with 8r—2 subsets.

Let X=8,U8,U--USn.. US, where [S;|=[S,|=""*=|S|njarj|=4r and
|Sol = N —4r|N/4r]. Put the above set-system ¥ on every S; for i =1 and consider
the set-system consisting of the one-point sets of S,. These set-systems form a
{0, r}-system o, and

|of] = (8r—2)| N/4r| + (N —4r|Nj4r]).

If N<4r*-2r, then the cardinality of o is greater than the cardinality of
Example 1.

2.2. The stability of the extremum

Visibly, the 2r-sets play the leading part in the maximal {0, r}-family. This
property of the extremum is fairly stable in the following sense. If a {0, r}-family
o does not contain 2r-sets, then |of| <3 |[Example 1|+ O(N). More generally:

Theorem 2. If o is a {0, r}-family and for all Ac f |A\#r1, 2r,..., kr then

N(N- r)
2k(k+1)

whenever N is large enough (N >1000r°k”). Equality holds in (4) if and only if o
has the structure of Example 2 (see below).

|| =< (4)

A (k- 1)-uniform set-system & over the uriderlying set Y with v eleients is an
S(v, k+1,2) Steiner-system if for any 2-tuple {y,, y,} of elements of Y, there is
exactly one member of & containing {y;, y,}. By a well-known theorem of R.M.
Wilson [16] if (v—1)/k and v(v - 1)/k(k +1) are integers and v > vo(k), then there
exists an S(v, k+1, 2).

Example 2. Suppose that N/r is an integer and there exists an S(N/r, k+1, 2)
1,
).

Steiner-system & over the underlying-set Y ={yy,y, ..., ¥n, L2t A=
81US2U ey SN/,. where IS! =T, ‘X' = N and
d={sil U SizU * |k.,1 {yhs Y129 LR Yi.‘,,l}eg’}-

Then o is a {0, r}-family consisting of (k+1)r-sets only and with cardinality
N(N-)/r*k(k+1).
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(In general, the optimal system can be determined if N/r or (v—1)Y/k or
vio — 1)/k(k + 1) are not integers, t00.)

2.3. Some further A

There is only one A for which f{N, A) is exactly known. This is a very siraple

case:
Proposition 1. f(N,{0.1,...,/)={+G)+---+(I)).

Proof. Let of be a {0, 1,...,r} family over X, and
A ={Acod:|A|<r}, g ={Acd:|Al=r+1}.

Clearly |l=()+ )+ - -+ (7). Each (r+ 1)-subsets of X is contained in at most
one 1aember of o', thus |'|<(}). O

Proposition 2. N3/1500<f(N, {0, 1, 3}) <N?/6.

Proof. The Example 3 gives the lower bound (see below). For the proof of the
upper bound consider an arbitrary {0, 1, 3}-system . The number of 1-clement
subsets in of is not greater than N. Set of[x, y]={A cof: {x, y}< A} (x,ye X).
Since o[x,y] is a {3}-family, by (1) |o[x, y]l<(N—2). Thus the number of
members of o with more than 2 elements is at most

1Y 1 yi<d (M )v-2. O

Fxample 3. et N=2'—1 and let X be the points of the ¢-dimensional vector
space over GF(2) except 9. Set

A={{S—{0}}: S is a 3-dimensional subspace of X}.
Then o is a {0, 1, 3}-system with cardinality N(N — 1)(N —3)/168.

It would be suspected f(N, A) has order of magnitude N'A! in general. However
the foltowing result shows that this is not the case.

Theorem 3. 5(N +1)}(N-4)=< (N, {0, 2, 3}) <50N*.

‘The set-system consisting of all 2, 3 and 4-subsets containing two fixed points
yields the lower estimation. ‘Thc¢ proof of the upper bound to be presented in
Chapter 5 can be improved a little bit by more precise computation of details. For
instance the coefficient 50 can be replaced by 5.7, but I could 20t eliminate the
gap ot order N? between the upper and lower bounds.
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3. The proof of Theorem 1

3.1. Lemmas

Lemma 1. If o is an {r}-family over X (ie. |A'NA"|=r for all A'# A" e ),
|X|=N and min{|A|: A € o} >r, then

N
Qf's —_—m 4 2 .
It maX{.rnin |Al-r’ ax| ‘]

This lemma is an improvement of the theorem of Ryser mentioned in (1) and
really is a reformulation of the following theorem due to M. Deza [3]:

If o is a finite set-system and for any different members A,, A,
of of |A;NA,|=r holds and |of|=max|A[*--max|A|+2 then
| N Al=r ©)
Aed
(I.e. & is a A-system. The set-system sf is a A-system if the parts of the sets
outside () o are disjoint. The () o is called the nucleus of the A-system.)

Lemma 2. If B is a set-system over X and for every B'# B"€®, |B'NB"|<r and
|B| > (min |B|)/r, then

1 o
|X|>2r min |BJ%.

This implies that the number of sets having more than V2N elements in a
{0, r}-system is at most v2Nir.

Proof. Let B={B,, B,,..., B, ...} and min|B|=K. The inequality |B; NB;|=r
implies |B; —(U;<: B;)|=|B;|— (i~ )r=K~(i—1)r. Using |%|>min |B|/r, it fol-

lows that
IK/rl+1 <
U B; ;([5}+1)K-(1+2+- . -+[§])r>K2/2r. ]
i=1 r

1X|> :

3.2. A simple upper bound for f(N, {0, r})
Split & into four parts as follows
A ={Aed:|A|<2r},
s ={A e ot: 2r<|A|<VN/n,
d;={Aes: VNir<|A|<V2Np,
d,={Aed:V2Nr<|Al}.

First, we shall estimate their cardinalities separately. (For a set-system % denote
{Be®: xe B} by #[x].) We shall apply the Ryser theorem mentioned in (1)
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several times. E.g. of[x] satisfies the assumptions of (1) thus
lflx]|=<N. (6)

Define the relation ~ on the members of of, as follows. For A, A'eflet A~A'
iff ANA’'#0@. Obviously, ~ is an equivalence relation. Denote the equivalence
classes by o0, 2, ..., . By definition, (U o) N (U o#P) =@ whenever i#].
Furthermore oY satnsﬁes the assumptions of (1) thus || <|UJ o], hence

st = Z1tfl< T |U 0| <ix1= N

Applying Lemma 1 for of,[x]

| . N, z}_i’
wﬂz[x]lsmaX{r -ggilAl = (7
Thus
1 N N?
|| =< — | o 1Al x:quz[xll\ N=33. ®)

Aesl,
Finally, applying (6) for s#,U o, we get

lsty U syl < ——— 2 (st U st)x]]

lA‘ xeX

NN=-/rJNN.

\\/N/r

Summing up these inequalities
N? ‘
Lof] = oty |+ | sto] + | st5 le4I$N+§?+\/’; VNN. (9)

Hence we already proved Theorem 1 as far as the order of magnitude is
concerned.

3.3. The 2r-sets play the main role in the extremal family
Suppose that N is large enough (N>1000s") and that the set-system of is
maximal, i.e. || =f(N, {0, r}). Then by Example i
e () A (10)
r r r

Split &, into three parts
d={Aes,:|A|=2r1},
A5 ={A e sd,: 2r<|A|<3r},
A5 ={A e, Ir<|Al}.

 pnsapinie Lo
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Bv the theorem: recalled in (2):
|5l <(r—1)N. (11)
By (7) we get
N
== ¥ |slx]l= ¥ |Al=|Asust 2r+| 3r.

xeX Aecd,

Consequently

N2/2r% |ty +1 |t

By (10)
||+ 1sty] + | ofs U ofs] + NJ2r > N?2r7 > | o] +3 |st5).
Thus
|2 ]<2(|.9¢1|+|.9¢3U.sz¢4|+--)<2(N+~—-+~/—\/_N) (12)
Thus from (10)-(12):
| 5| = max | of] — oty | — | ot3] — |of5] — |5 U L]
2
>(g5-%) N—-(r—-1)N- N(2+—) 2VrYNN-JrVNN
>'2-2—4\/_\/—N (]3‘)

This means that the greatest part of a maximal s/ consists of 2r-sets.

3.4. The structure of a maximal {0, r}-family is similar to Exarnple 1

Let us denote by S the set of those points of X whichk have small degree in o,
ie.

S=:{x e X: |st5[x] <V2rN},
and s denotes the cardinality of S. Applying (13) we get

le—— 2 laslx]]

xeX
= ; i laa'zlx]|+-— ZS |st5[x])

5
—;—((N s)— +s\/—N}

T2rr 2r
Since if N>1000r°, then v2Nr< N/5r, comparing this with (13) we get
s <10r*VrVN. (14)
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Remark that s<lN because N is large enough. Let us define the foliowing
equivaience relation over the points of X —S.
x~y & |glx]Nstlyl=2,

i.e. x~y iff there exist two different members A, A’ of o5 such that {x, y}<
ANA'. Since V2rN>4r?, by the Deza theorem (see (5)) s#5[x] and sf[y] is a
A-system, i.e.

ANA'= N A= N A.

A esdhfx} A, e dyfy]

Consecuerntly 5[x]= 5{y].
Thus the set X~S can be partitioned into r-elements equivalence classes
$., S,, ..., S, where S;’s are the nuclei.

If xeS, and xeAe.f5, then S,cA. (15)

But (15) holds for all Ae(of,Ustr,Usfs). Indeed, if Ae(ofUsA,UsSs), ie.
|Al<+v2rN and xe ANS, but S;¢ A, then A intersects all members of of5[x]
outside S, However the parts of the members of of5[x] lying outside S; are
.pairwise disjoint, thus this leads to the contradiction |A|>|sf5[x]|= v2rN. Thus

If xeS; and xe Ae(o4, U, U o), then S, < A. (16)

3.5, s<sr—1, ie the sets S, fill X as far as possible

Now split o into four classes according to the number of elements of A NS and
ANC-8).
AV={Acd—-ods,: |ANX-S)|>rfU{Acd—od,;: Ac=(X-S)},
A?={Aecd—od,:|AN(X-S)|=r and|A NS|=1r},
AP ={Acd—4,:|ANS|>0 but |[ANS|#r},
A= o,
It is easy to check that every A € of belongs to one or more of the classes .
Since there are no two different sets A, B in o such that AN(X—-8)=

B N(X-S), we have |o£P|=[{A N(X~8): A e ofP}. Moreover X8 is disjoint
union of the sets S,, S,,..., S, we can apply Pyoposition 1:

(N-—S)/r) N-s N> N s* M
D e S e e § o e e 17
|| ( 5 <= sr2+i?:':+?.r } 17.1)

Coasider the traces of #® on S. Thesc are all differeat and form a {0, r}-system
on S, thus by (9)

2
|£®)| < f(s, {0, 1)) <-23r—2+ Jr/ss+s. (17.2)

o ————— e A St
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Finaily (as of® < o)

?1<1 T ia°lxl<; T lotlxl<; /2N, (17.3)
xeS

and by Lemma 2

|| = || <<v2NJr. (17.4)
Summiang (17.1)-(17.4) and comparing the result with (10) we get

N> N N N> N s* N

:,"'3—;"‘4’ 2\‘.SJI<;’-':'2- ) i+f) 2+;‘-’;

NEW- N, [2N

By (14) we can see that the coefficient of s on the left hand side is N —o(N) thus
we get s <r provided N>400r° i.c.

ssr—1. (18)

3.6. The extremum has no large sets

The proof of theorem will be complete showing £, = (. Suppese, indirectly that
Be s, |B|>+V2IN. Let

9’1={S,.0<|S‘ﬂBl<r}, 9’2={S,-:|S,-ﬁB|=r}.
(16) and (18) imply that
|sts| < [N/r| = ||+ s = [NIrf+(N—r|N/r])— |4,

2
|‘s¢4|S v 2N/r’
that is
|Ex. 1|=<|of| <|Ex. 1|+ V2N/r— l.‘}’ll—-(lyd) (19

Since (r— 1) |#,| < —1)V2N/r<=(r-1) B|/r we get |%,|>|B|/r* thus from (19)

2
V2Njr= ("?‘) ls’}' =5 2N

which is a contradiction if N is large enough. [
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4. The proof of Theorem 2

4.1. This part coincides with 3.1. (We will use the same lemrmas as in the proof of
Theorem 1.)

4.2. Split the set-system sf according to the cardinalities of its members:
dy={Aed:|Al<(k+Dr},
s, ={A e o: (k+1)r=<|A|<VNjkn,
,={A e o: VNJkr<|A|<+2N¥,
d,={Ae: V2Nr<|Al}.
Estimate their cardinalities analogously to 3.2.
|t | < (k+ l)rN

Y lstlxll< o

ming ., |A|xeX (k+])r
|s#,U sty <VkrVNN.

EAES

4.3. By similar arguments as 3.3., suppose that {&| is maximal, and split s, into
three parts.

|s#}>> N?/r*k(k + 1) — (2/r)N; (20)
dy={Aecsd,: |Al=(k+1)r},
g ={Aecd,: (k+1jir<|A|<(k+2)r},
sts={A e sd,: |Al=(k+2)r}.
Then |of5| < (r—1)N. We get

Ll +styl= N
k+1 2kck+1)

Thus |sf%] <(k +1)#N +vVkrvVN N). Hence
|ty > N23r2k(k + 1)— (k +2)VkrvVN N.

2
<= oty |+ |ty + |t L .944‘+-; N

4.4. In a similar way we can define the set S as in 3.4
S:={xeX:|H[x]|<V2rN}, s:=|S|.
Carrying out similar calculation we get
s <2k(k+1)(k +2Wkrr*VN. (21)
Split X — S the equivalence classes S;, S,,..., S,
x~y & |#lx]lNsglyll=2
It holds true that |S;|=r and if x€ S, xe A € (o4, U o, U sf5), then S, c A.
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4.5. Similarly by 3.5 let
AV ={A e(sd— oAy): |AN(X—=8)|=(k+1)r},
AP ={A (st~ oA,):|AN(X-8)|=kr and |ANS|=r},
{Ae(d—s): |ANX—-8)|<(k—-1r andlA NS|=r}=0,
V={Aec(d-o): ANS#P and |ANS|#r}={Aec(d—s4,): A<S},

d(‘t) = d‘p
From (20) and from estimates analogous to (17.1)—(17.4) we have
N? 2 ((N—s)/r\)(k+1)"1 1
PR D) rN<Lsz¢|< 5 5 »%—;\/ZNrs (22)

+522r* +sJsVr+s +V2NJr.

From this using (21) we get

s<rk(k+1). (23)

4.6. Finally using (23), the right hand side of (22} can be estimated by
N(N-r/rPkk+1). O

5. The proof of Theorem 3

5.1. {0, 2, 3}-systems with almost equal sets

Let o be a {0, 2, 3}-system over the underlying set X, | X|= N. Suppose that for
every A € of we have K <|A|<2K for some real K. A point x € X is called good
if there exists a point y € X (y# x) with #f[x]< sf[y]. The aim of this section is to
prove the following lemma.

Lemma 3. If o is a {0, 2, 3}-system and for every A € § we have K <|A|<2K
and for some xe X we have |of[x]|>max(8N, 8K?), then the point x is good
(K=4).

Proof. Suppose indirectly that #f[x] is not good. Define the set & as the nuclei of
A-systems with 2K+1 members of of[x]. (The definition of A-system can be
found in 3.1 after (5).) Since o is a {0, 2, 3}-system of[x] is a {2, 3}-system. Hence
the members of & are 2 or 3-elements sats {containing x). We will use only the
following property of nuclei

If De9, Aedx], then |DNA|=2. (24)

Thus if the @ has a 2-elements nucleus then x is good. Suppose that & is
3-uniform, @ ={D,, D,, ..., D,}. Clearly, |D,ND;|=2 und x€ (] D;. According
to the cardinality of & we have to investigate the following cases: t=0,t=1,¢=>2
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and | D/ =2 (i.e. @ is a A-system itself) and finxiiy t=3 and (| D, ={x} (@ is a
triangle).

We will use several times the following two facts ((25) and (26)) in order to get
an upper bound for |ofx]| in these four cases.

If x is not good, and #[x, y1does not contain any A-system with
2K +1 members, then |of[x, y]|<4K>. (25)

Indeed, let A, be a set belonging to of[x] and not containing y. Then every
member of o[x, y] intersectz A, in a point different from x. Thus
lx, yli< X Istlx, y, 2] < (Aol - 1)2K <4K>.

ZEA,
29X,y

As the set-system sf[x, y, z] is a A-system we get

N
<—, 2
\lx, v, 2]l < 23 (2€)
In the case t =0 let A, be fixed so that A; e o[x]. By (25) we have
lsfix]l< ¥ loflx, y)I<(A,|-1)4K><8K> 27.1)
yeA,
y¥EX

In the case t = 1 write D, ={x, y, z}. By (24) every A € o[x] contains either y or
z. Let us defire of[x, 3, 1z] as follows {A € A[x, y]: z¢ A}. We can apply (25) for
sfix, y,mz] thus we get

|lx]|=|stlx, y, z]|+|stlx, y, 21z ]| +|oflx, oy, 2]

N
<——+2-4K? 27.
=32 4K (27.2)

Case t=2, (\D;={x,y}, D,={x, y, z;}. There exists an A;c[x], y¢ A, be-
cause x is not good. By (24) for all 1<i=<t we have ;€ A; hence t<|A,|—-1=<
2K —1. Furthermore if A € of[x] does not cortain y, then A coniains all z;,—s,
too. Thus

lxl< X lalx, y, 2l +1stlx, 20, 22, ., 2]

zeA,

N N
<@ZK-1)—/———+——= f (27.
(2K I)K__3 X3 8N. (27.3)
Case 1=3, Dy={z, y5, y3}, D>={x, y1, y:}, Ds={x, y, yo}. Then by (24) all
A € o[ x] contains at least two points from {y;, y,, y3}. Thus applying (26)

|stlx]| = | D, ]|+ | D5 ]|+ |4 D;]| <3 (27.4)

X-3"

Thus (27.1)<(27.4) shows that if the point x is not good, then |af[x]<
max(8N, 8K3).
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§.2. The cardinality of a {0, 2, 3}-system with almost equal sets

Lemma 4. If o is a {0, 2, 3}-system and for all A € o we have K <|A|<2K, then
(K=4)

N? (16N2

|.9¢|<8——+max < 16NK2>. (28)

Proof. Let S be the set of points whose degree is greater than max(8N, 8K?), i.e.
S ={x e X: |of[x]|>max(8N, 8K*)}. By Lemma 3 all the points of S are good.
Denote by x’ the point corresponding to the point x € S. By definition of[x]<
oA[x']. The point x' is good, tco, so there exists a point (x')'=x" for which
Alx]c A x"]< of[x"]. Since |L[x]|>N we get x"=x. Hence the S splits into
pairwise disjoint two-elements sets S,,S,,...,S,. For §; “If S;NA#@, then
S; = A” holds. Split & into two parts

As ={A ed: lA N S|>%K},
d-s={Aed:|ANKX~S)|=iK}
If A €, then A contains at least 1K sets S;. Thus

(i< ()5

Moreover
1K | s|<|X — S| max(&N, 8K>)<max(8N?, 8NK?).

We get (28) summing up the last two inequalities. []

5.3. The procf of Theorem 3

Now let of be an arbitrary {0, 2, 3}-system. Split o according to the cardinality
of its members

Ao={Acd:|A|=3},
d;={Aed: |A|=3VN,2 -2 s|A|=<2- 2",
ol ={A e of: V6NJ2 <|A|<2V6N/2,|A|>3VN},
o' ={A e s:|A|>V6N}.
We can apply (28) to estimate the cardinalities of |J s and U .

= 1
Z |s;] <8N? Z 2. 122: +16N? ﬁ—(:; +8)N? (29.1)
i=1 i=1
1 1
Y || <8N* Y o~ 22'+16NZ6N22,
2i< NV i=1

=N2//6 IN+32N2. (29.2)
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Finally Lemma 2 can be applied, thus

|| <V2NJ3, (29.3)
Furthermore
|ol= X IxlI<SN(N-1) (29.4)
xeX

Summing up (29.1)-(29.4) we get || <42N2. OO
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Note added in proof

Recently, a rapid development is taking place in the topic of this paper. Some
of the newest results:

Theorem of Franki and Rosenmberg [19]. Let O0<q<r, A={q,q+r,q+2r,...},
ks#q (mod r), then f(N, k, A)<N.

This theorem generalizes the results mentioned in equation (2) (where q =0)
and in Deza and Rosenberg [17] (7 is a prime).

Theorem of Frankl and Wilson [18]. If A ={A,,..., A}, then

(- 5+ ()

Proposition 2 was improved in [20], proving
f(N,{0,1,3D<N(N-1)(N-3)/168 for N>N,,

where equality holds iff & is isomorphic to Example 3.
Finally, we have to mentior that Proposition 1 appears in a paper due to
H.-D.O.F. Gronau [21], as well.
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