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Suppose that .o/ is a finite set-system of N elements with the property
[ANA'}=0,1 or k for any two different 4, 4’ € /. We show that for N > k"

NN — 1)(N —k) N(N-1)
Tkt DK — k(K —2k+1) | k(k—1)

W€ N+1,
| " +N+

where equality holds if and only if k=g+1 (g is a prime power) N=
(""" —1)/(g — 1) and .+ is the set of subspaces of dimension at most two of the -
dimensional finite projective space of order g.

1. INTRODUCTION

Let 0< 4, <4, <+ <4, be integers, 4 = {4,,..., 4,}. A finite set-system
7 on the N element set X is called a A-system if for any two 4,4’ € &/,
A # A’ there exists an i such that [4 MA’| = A,;. Concerning A-systems we
recollect two general theorems

(1) (Frankl and Wilson [4]) For a A-system s/

N N N
a<fi)e ()
(2) (Ray-Chaudhury and Wilson [7]) For an r-uniform A-system (i.e.,
for every A € o/ we have |[A|=r) || < ().

These theorems are generalizations of a generalization by Ryser of an old
theorem of Erdds and de Bruijn.
(3) (Ryser [8]) If for any two different A, A’ € ¥ we have |[A NA'|=1
(# 0) then |/ | < N.
(4) (Deza [2]) If for any two different A,A' € & we have |[A NA'|=24
and |5/ | > max, ., |A|* then | e, A| = A
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Though estimations (1), (2) and (3) are valid for every N and A, for
special A’s they can be improved (see, e.g., [3, 5]). The aim of this paper is
to investigate the case 4 = {0, 1, k}.

2. RESULTS
We give two examples of {0, 1, k}-systems.

ExaMPLE 1 (The finite projective space). Let g be a prime power and
k=g+1, N=¢'+¢""'+--+g+ 1. We write &, for the at most two
dimensional subspaces of the f-dimensional projective space of order g.
Clearly for A€ .7, |A|=k>—k+1, k, 1 or 0 and for 4,4’ € 7,
ANA' € .7, thus .7} is a {0, 1, k}-system,

ExAMPLE 2 (The finite affine space). Let k be a prime power and
N=k'. We write # for the at most two dimensional linear manifolds of the
t-dimensional vector space over the finite field of order k. If 4 € # then
|4| =K%k, 1 or 0.

The case k = 2 is easy (see, e.g., [5]).
max {|«|: & is a {0, 1, 2}-system} = (g) + <]2V) +N+1,

where ./ is maximal if and only if &/ = {4 < X: ]4| < 3}. From now on we
suppose that k > 2.

THEOREM 1. Suppose that 7 is a finite set-system on N elements such
that A,A'€ s/, A+A' implies |[ANA'|€{0,1,k}. Then for every
sufficiently large N (N > k'*)

N(N—1)(N—k) NN =1)
K—k+ DKk —2k+1)  k(k—1)

|| < +N+1L (5)

Equality holds in (5) if and only if k=q+ 1 for some prime power gq,
N=¢g'+¢ '+ ...+ q+ 1 and &/ = .7, (see Example 1).

We remark that some condition of the type N > Ny(k) is in fact necessary
as the following example shows. If N < (k — 1)%/2 then

A < X:|4|<2)| = (Izv) +N+1> (left hand side of (5)).
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THEOREM 2. Suppose that 7 is a {0, 1, k}-system and k— 1 is not a
prime power. Then for large N (N > k'*)
NN=1)(N—-k) NHN-1)
Kk~ 1)K~k k(k—1)

E4ES +N+ 1. (6)

Equality holds in (6) if and only if k is a prime power, N = k' and & = 7}
(see Example 2).

If neither k nor k — 1 is a prime power (of course k > 15) then I could not
prove whether the function

Sio.1.9(N) =max {|.&|: o7 is a {0, 1, k}-system, IU M‘ QNE

is of order N* or not. Upon considering this problem one is led to the
question of the existence of some special resolvable biock designs. The proof
method of Theorems 1 and 2 gives the following theorem.

THEOREM 3. Suppose that & is a {0, 1, k}-system and neither k nor
k— 1 is a prime power then for large N (N > k'*)

V< N(N — 1)(N — k) NN —1)
TN+ k—DKE+ k=2 —1)  k(k—1)

| FN+L (D)

Conjecture. 1If neither k nor kK — 1 is a prime power then

Jio,1,0N) = o(N°).

3. PROOFS

Let &/ be a {0, 1, k}-system, k > 3. We introduce the notation
H={A € 4| =i}, ;= {A € «:]4| > i} and so on.
Further for a set Dc X

A|Dj={A€ DA}

The theorems will be proved by the method of [3] and [5]. Split «»/ into
three set systems & = .o/, U & U &, ,. Evidently

EARS N E ARG (8)



AN EXTREMAL INTERSECTION PROBLEM 69

In order to prove (5) we only need consider the case

NN —1)(N—=k) N1

|5, > (K —k+ DK — k(K> —2k + 1) k(k— 1)~

©)

A pair {x, y} of X is called good provided
| L klxs y]| > K2

We shall specify K as K = v/N/k*. Any two members of .+ [x, y] intersect in
exactly k points. Hence Deza’s theorem (4) implies that for a good pair
{x, y} any member of .&/_.[x, y] contains a k element subset M. We call this
M = M(x, y) the nucleus corresponding to the pair {x, y}. If {4, v} < M then
the pair {u, v} is good, too, and M(u, v) = M(x, y). And what is more

If [MAA|> 1 and |4]| < K? then M c A. (10)

Put .# = {M(x, y): {x, y} is good}. Clearly # is a {0, 1}-system. Let ¢
denote the number of non-good pairs, then

()2

The crucial point of the proof is

LEMMA 1. If the every pair of the set A € &y, is good then either
|A|=k and A € # or |A| > k> —k + 1. In this latter case equality holds if
and only if the nuclei contained in A are the lines of a k-uniform finite
projective plane.

Proof of Lemma 1. By (10) the set-system .#, = (M E.#: McA}isa
2—(|A|, k, 1) BIBD. (A k-uniform set-system on v points is a 2 — (v, k, 1)
BIBD if any pair of its underlying set is contained in A sets). Then
|#,] (¥)=('4"). The well-known Fisher inequality (see Hall |6]) states that
a non-trivial BIBD has at least as many blocks as the cardinality of the
underlying set. Consequently

| = (";')/(I;)>|A|, ie, |A|>k*—k+1.

(Or in the trivial case |4|=k). Finally a 2 — (k* —k + 1,k, 1) BIBD is a
finite projective plane. Q.E.D.

Going on with the proof of Theorem 1 the Lemma 1 implies that if
A € &7, then at least one of the following cases holds.
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(a) |[Al=kandA €. #
(b) A contains at least k> — k + 1 nuclei and then |[4| > k*—k + 1
(c) A contains a non-good pair or |[4| > K. (12)
Put
R V% VTR SO RN
where
8= (4 E /' |A|=k and A € #]},
/8904 = {4 € o/: 4 contains at least k> — k + 1 nuclei},
¢ = {4 € &, neither (12a) nor (12b) holds}.

Now we give upper bounds for the five parts of 7, ,. From (11)

N(N=1) 26
k(k—1) k(k—1)

|5 < | #] = (13)

Since any nucleus is contained in at most (N — k)/(k* —k + 1 — k) sets of
cardinality at least k> —k+ 1, and every 4 € «/%°%% contains at least
k* — k + 1 nuclei we have

N—k i
~2k+1 K—k+1
NN —-1D)(N—-k)—2¢N—k)

| <]

= . 14
(K* —k+ (K> —k)(k* -2k + 1) (14)

From the definition of he good pair
| < K, (15)

If A€, (x then 4 contains at least (5)~ (k> —k)(5) > N/3k® non-
good pairs (K = \/N/k*, N > k**). Ryser’s theorem (3) gives:
. 3k°
E4 «al € Z |‘9‘/[X,y]|7

(x,y)non-good
< &N 3k%/N = 3k5¢. (16)
Finally
| gl 17 gl < 25, (17)
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(Because more than 2k% set of cardinality more than N/k® cannot form a
{0, 1, 2,..., k}-system on N points. See, e.g., [5]). Using estimations (13)~(17)
and (9) we have

K =28/k(k — 1) — 26(N — k)/(l* — k + D)(K* — k) (k* — 2k + 1)
+ EK? + £ 3k5 + 2k°.

Here the coefficient of £ is less than —2k°®. So for £ > 0, (5) holds with strict
inequality.

Now if ¢=0 then from (15) and (16), /¢ .=@. We show that
A =0 is true. A is a 2 — (N, k, 1) BIBD. If there exists as 4, € &7
then it contains at most k* — k nuclei so 4, intersects but does not contain at
least ((MN)/(X)—(k* —k)) > 2k* nuclei from #. (44> (N/K®)>K.)
These nuclei from .# do not belong to .»/8°°¢ hence instead of (13) we have

NN -1)

J/good

— 2kS. (18)
Summing (14), (17) and (18) we get a contradiction to (9).

We have shown that (5) is true for every N > k'*. Moreover equality can
hold in (5) only if ' “=@ and in (13), (14) the equality holds, too. But if
(14) equality holds then every member of «/%%%¢ is cardinality k> — k + 1,
and each nucleus from .# is contained in exactly (N —k)/(k*—2k+ 1)
members of /%% So the conditions of the next lemma are satisfied
(@=k—1,L =4, 7=

LEMMA 2. Suppose that the set-systems & and 7 defined on N elements
set X have the following properties:

(i) & is g+ | uniform and for each x, y € X there exists a uniquely
determined L = L(x, y) € & with {x, y} < L.
(ii)) Ifx,y€PEC.J then L(x, y)<P.

(i) 2 is ¢*+q+ 1 uniform and for each LE ¥, xE X — L then
there exists a uniquely determined P € 7° with x € P, L c P.

Then N=gqg'+---+q+ 1 and & and # are the one and two dimensional
subspaces of the t-dimensional projective space of order q, resp.

Now g is a prime power, because any at least 3-dimensional finite
projective space has to be of order p® (when p is prime). Finally, Lemma 2
implies that in (5) equality holds only if & = .7°,. The proof of Theorem 1
is complete.

The proof of Lemma 2. This lemma and its consequence g = p* was
proved by D. Hilbert in 1899. For a proof see Dembowski [1]. Q.E.D.
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The proof of Theorem 2 follows the same lines, only instead of Lemma 1
one needs the following well-known result

LEMMA 1. If.#,isa2— (|A|,k, 1)BIBD and |A| #k, |A|# k> — k + 1,
then |A| > k% where equality hold if and only if #, is an affine plane of
order k.

Of course this yields a better estimation in (14), further one has to use an
affine analogue of Lemma 2. Since if there exists a 2 — (|4 |, k, 1) BIBD then
|[4] =1 (mod(k — 1)) thus if |4|# k, k* —k+ 1, k* then |4| > k* + k — 1.

This can be used in the proof of Theorem 3. We omit the details.
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