An Intersection Problem Whose Extremum Is the Finite Projective Space

Z. Füredi

Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda 13-15, Hungary

Communicated by the Managing Editors

Received January 15, 1981

Suppose that \mathscr{A} is a finite set-system of N elements with the property $|A \cap A'| = 0$, 1 or k for any two different $A, A' \in \mathscr{A}$. We show that for $N > k^{14}$

$$|\mathcal{A}| \le \frac{N(N-1)(N-k)}{(k^2-k+1)(k^2-k)(k^2-2k+1)} + \frac{N(N-1)}{k(k-1)} + N + 1,$$

where equality holds if and only if k = q + 1 (q is a prime power) $N = (q^{t+1} - 1)/(q - 1)$ and \mathscr{A} is the set of subspaces of dimension at most two of the t-dimensional finite projective space of order q.

1. Introduction

Let $0 \le \lambda_1 < \lambda_2 < \cdots < \lambda_s$ be integers, $\Lambda = \{\lambda_1, \dots, \lambda_s\}$. A finite set-system $\mathscr A$ on the N element set X is called a Λ -system if for any two $A, A' \in \mathscr A$, $A \ne A'$ there exists an i such that $|A \cap A'| = \lambda_i$. Concerning Λ -systems we recollect two general theorems

(1) (Frankl and Wilson [4]) For a Λ -system \mathscr{A}

$$|\mathscr{A}| \leq {N \choose 0} + {N \choose 1} + \dots + {N \choose s}.$$

(2) (Ray-Chaudhury and Wilson [7]) For an r-uniform Λ -system (i.e., for every $A \in \mathscr{A}$ we have |A| = r) $|\mathscr{A}| \leq {N \choose s}$.

These theorems are generalizations of a generalization by Ryser of an old theorem of Erdös and de Bruijn.

- (3) (Ryser [8]) If for any two different $A, A' \in \mathscr{A}$ we have $|A \cap A'| = \lambda$ $(\neq 0)$ then $|\mathscr{A}| \leq N$.
- (4) (Deza [2]) If for any two different $A, A' \in \mathcal{A}$ we have $|A \cap A'| = \lambda$ and $|\mathcal{A}| > \max_{A \in \mathcal{A}} |A|^2$ then $|\bigcap_{A \in \mathcal{A}} A| = \lambda$.

Though estimations (1), (2) and (3) are valid for every N and Λ , for special Λ 's they can be improved (see, e.g., [3, 5]). The aim of this paper is to investigate the case $\Lambda = \{0, 1, k\}$.

2. RESULTS

We give two examples of $\{0, 1, k\}$ -systems.

EXAMPLE 1 (The finite projective space). Let q be a prime power and k=q+1, $N=q^t+q^{t-1}+\cdots+q+1$. We write \mathscr{P}_k^t for the at most two dimensional subspaces of the t-dimensional projective space of order q. Clearly for $A \in \mathscr{P}_k^t$, $|A|=k^2-k+1$, k, 1 or 0 and for $A,A' \in \mathscr{P}_k^t$, $A \cap A' \in \mathscr{P}_k^t$, thus \mathscr{P}_k^t is a $\{0,1,k\}$ -system.

EXAMPLE 2 (The finite affine space). Let k be a prime power and $N = k^t$. We write \mathscr{F}_k^t for the at most two dimensional linear manifolds of the t-dimensional vector space over the finite field of order k. If $A \in \mathscr{F}_k^t$ then $|A| = k^2$, k, 1 or 0.

The case k = 2 is easy (see, e.g., [5]).

$$\max\{|\mathscr{A}|:\mathscr{A}\text{ is a }\{0,1,2\}\text{-system}\}=\binom{N}{3}+\binom{N}{2}+N+1,$$

where \mathscr{A} is maximal if and only if $\mathscr{A} = \{A \subset X : |A| \leq 3\}$. From now on we suppose that k > 2.

THEOREM 1. Suppose that \mathscr{A} is a finite set-system on N elements such that $A, A' \in \mathscr{A}$, $A \neq A'$ implies $|A \cap A'| \in \{0, 1, k\}$. Then for every sufficiently large N $(N > k^{14})$

$$|\mathcal{A}| \le \frac{N(N-1)(N-k)}{(k^2-k+1)(k^2-k)(k^2-2k+1)} + \frac{N(N-1)}{k(k-1)} + N + 1.$$
 (5)

Equality holds in (5) if and only if k = q + 1 for some prime power q, $N = q^t + q^{t-1} + \cdots + q + 1$ and $\mathscr{A} \cong \mathscr{P}_k^t$ (see Example 1).

We remark that some condition of the type $N > N_0(k)$ is in fact necessary as the following example shows. If $N < (k-1)^6/2$ then

$$|\{A \subset X: |A| \le 2\}| = {N \choose 2} + N + 1 >$$
 (left hand side of (5)).

68 Z. FÜREDI

THEOREM 2. Suppose that \mathscr{A} is a $\{0, 1, k\}$ -system and k-1 is not a prime power. Then for large N $(N > k^{14})$

$$|\mathscr{A}| \le \frac{N(N-1)(N-k)}{k^2(k^2-1)(k^2-k)} + \frac{N(N-1)}{k(k-1)} + N + 1.$$
 (6)

Equality holds in (6) if and only if k is a prime power, $N = k^t$ and $\mathscr{A} \cong \mathscr{P}_k^t$ (see Example 2).

If neither k nor k-1 is a prime power (of course $k \ge 15$) then I could not prove whether the function

$$f_{\{0,1,k\}}(N) = \max \left\{ |\mathscr{A}| : \mathscr{A} \text{ is a } \{0,1,k\} \text{-system, } \left| \bigcup \mathscr{A} \right| \leqslant N \right\}$$

is of order N^3 or not. Upon considering this problem one is led to the question of the existence of some special resolvable block designs. The proof method of Theorems 1 and 2 gives the following theorem.

THEOREM 3. Suppose that \mathscr{A} is a $\{0, 1, k\}$ -system and neither k nor k-1 is a prime power then for large N $(N > k^{14})$

$$|\mathscr{A}| \leqslant \frac{N(N-1)(N-k)}{(k^2+k-1)(k^2+k-2)(k^2-1)} + \frac{N(N-1)}{k(k-1)} + N+1.$$
 (7)

Conjecture. If neither k nor k-1 is a prime power then

$$f_{\{0,1,k\}}(N) = o(N^3).$$

3. Proofs

Let \mathscr{A} be a $\{0, 1, k\}$ -system, $k \ge 3$. We introduce the notation

$$\mathcal{A}_i = \{A \in \mathcal{A} : |A| = i\}, \qquad \mathcal{A}_{>i} = \{A \in \mathcal{A} : |A| > i\} \text{ and so on.}$$

Further for a set $D \subset X$

$$\mathscr{A}[D] = \{ A \in \mathscr{A} : D \subset A \}.$$

The theorems will be proved by the method of [3] and [5]. Split \mathscr{A} into three set systems $\mathscr{A} = \mathscr{A}_0 \cup \mathscr{A}_1 \cup \mathscr{A}_{\geqslant 2}$. Evidently

$$|\mathscr{A}_0| \leqslant 1, \qquad |\mathscr{A}_1| \leqslant N. \tag{8}$$

In order to prove (5) we only need consider the case

$$|\mathscr{A}_{>2}| \geqslant \frac{N(N-1)(N-k)}{(k^2-k+1)(k^2-k)(k^2-2k+1)} + \frac{N(N-1)}{k(k-1)}.$$
 (9)

A pair $\{x, y\}$ of X is called good provided

$$|\mathscr{A}_{\leq K}[x, y]| > K^2$$
.

We shall specify K as $K = \sqrt{N/k^3}$. Any two members of $\mathscr{A}[x, y]$ intersect in exactly k points. Hence Deza's theorem (4) implies that for a good pair $\{x, y\}$ any member of $\mathscr{A}_{\leqslant K}[x, y]$ contains a k element subset M. We call this M = M(x, y) the nucleus corresponding to the pair $\{x, y\}$. If $\{u, v\} \subset M$ then the pair $\{u, v\}$ is good, too, and M(u, v) = M(x, y). And what is more

If
$$|M \cap A| > 1$$
 and $|A| \leqslant K^2$ then $M \subset A$. (10)

Put $\mathcal{M} = \{M(x, y): \{x, y\} \text{ is good}\}$. Clearly \mathcal{M} is a $\{0, 1\}$ -system. Let ℓ denote the number of non-good pairs, then

$$|\mathscr{M}| = \left(\binom{N}{2} - \ell \right) / \binom{k}{2}. \tag{11}$$

The crucial point of the proof is

LEMMA 1. If the every pair of the set $A \in \mathscr{A}_{\leq K^2}$ is good then either |A| = k and $A \in \mathscr{M}$ or $|A| \geqslant k^2 - k + 1$. In this latter case equality holds if and only if the nuclei contained in A are the lines of a k-uniform finite projective plane.

Proof of Lemma 1. By (10) the set-system $\mathcal{M}_A = \{M \in \mathcal{M} : M \subset A\}$ is a 2 - (|A|, k, 1) BIBD. (A k-uniform set-system on v points is a $2 - (v, k, \lambda)$ BIBD if any pair of its underlying set is contained in λ sets). Then $|\mathcal{M}_A|$ ($\frac{k}{2}$) = ($\frac{|A|}{2}$). The well-known Fisher inequality (see Hall [6]) states that a non-trivial BIBD has at least as many blocks as the cardinality of the underlying set. Consequently

$$|\mathscr{M}_A| = {|A| \choose 2} / {k \choose 2} \geqslant |A|, \quad \text{i.e.,} \quad |A| \geqslant k^2 - k + 1.$$

(Or in the trivial case |A| = k). Finally a $2 - (k^2 - k + 1, k, 1)$ BIBD is a finite projective plane. Q.E.D.

Going on with the proof of Theorem 1 the Lemma 1 implies that if $A \in \mathscr{A}_{\geq 2}$ then at least one of the following cases holds.

70 z. füredi

- (a) |A| = k and $A \in \mathcal{M}$
- (b) A contains at least $k^2 k + 1$ nuclei and then $|A| \ge k^2 k + 1$

(c) A contains a non-good pair or
$$|A| > K^2$$
. (12)

Put

$$\mathscr{A}_{\geq 2} = \mathscr{A}_{k}^{\text{good}} \cup \mathscr{A}_{>k}^{\text{good}} \cup \mathscr{A}_{\leq K}^{c} \cup \mathscr{A}_{K \leq K^{2}}^{c} \cup \mathscr{A}_{>K^{2}}^{c},$$

where

$$\mathscr{A}_k^{\text{good}} = \{A \in \mathscr{A} : |A| = k \text{ and } A \in \mathscr{M}\},\$$

$$\mathscr{A}_{>k}^{\text{good}} = \{A \in \mathscr{A} : A \text{ contains at least } k^2 - k + 1 \text{ nuclei}\},\$$

$$\mathscr{A}^c = \{A \in \mathscr{A}_{\geq 2} : \text{ neither (12a) nor (12b) holds}\}.$$

Now we give upper bounds for the five parts of $\mathcal{A}_{\geq 2}$. From (11)

$$|\mathscr{A}_k^{\text{good}}| \leqslant |\mathscr{M}| = \frac{N(N-1)}{k(k-1)} - \frac{2\ell}{k(k-1)}.$$
 (13)

Since any nucleus is contained in at most $(N-k)/(k^2-k+1-k)$ sets of cardinality at least k^2-k+1 , and every $A \in \mathscr{A}_{>k}^{good}$ contains at least k^2-k+1 nuclei we have

$$|\mathscr{A}_{>k}^{\text{good}}| \leq |\mathscr{M}| \frac{N-k}{k^2 - 2k + 1} \cdot \frac{1}{k^2 - k + 1}$$

$$= \frac{N(N-1)(N-k) - 2\ell(N-k)}{(k^2 - k + 1)(k^2 - k)(k^2 - 2k + 1)}.$$
(14)

From the definition of he good pair

$$|\mathscr{A}_{\leqslant K}^c| \leqslant \ell K^2. \tag{15}$$

If $A \in \mathscr{A}_{K < \leq K^2}^c$ then A contains at least $\binom{K}{2} - (k^2 - k)\binom{k}{2} > N/3k^6$ nongood pairs $(K = \sqrt{N}/k^3, N > k^{14})$. Ryser's theorem (3) gives:

$$|\mathscr{A}_{K<\leqslant K^{2}}^{c}| \leqslant \sum_{\{x,y\} \text{non-good}} |\mathscr{A}[x,y]| \frac{3k^{\circ}}{N}$$
$$\leqslant \ell N 3k^{6}/N = 3k^{6}\ell. \tag{16}$$

Finally

$$|\mathscr{A}^{c}_{>K^{2}}| \leq |\mathscr{A}_{>K^{2}}| < 2k^{6}.$$
 (17)

(Because more than $2k^6$ set of cardinality more than N/k^6 cannot form a $\{0, 1, 2, ..., k\}$ -system on N points. See, e.g., [5]). Using estimations (13)–(17) and (9) we have

$$0 \le -2\ell/k(k-1) - 2\ell(N-k)/(k^2 - k + 1)(k^2 - k)(k^2 - 2k + 1) + \ell K^2 + \ell 3k^6 + 2k^6.$$

Here the coefficient of ℓ is less than $-2k^6$. So for $\ell > 0$, (5) holds with strict inequality.

Now if $\ell=0$ then from (15) and (16), $\mathscr{A}_{\leq K^2}^c=\varnothing$. We show that $\mathscr{A}_{>K^2}^c=\varnothing$ is true. \mathscr{M} is a 2-(N,k,1) BIBD. If there exists as $A_0\in\mathscr{A}_{>K^2}^c$ then it contains at most k^2-k nuclei so A_0 intersects but does not contain at least $(\binom{|A_0|}{2})/\binom{k}{2}-(k^2-k)>2k^6$ nuclei from \mathscr{M} . $(|A_0|>(N/k^6)>k^5.)$ These nuclei from \mathscr{M} do not belong to \mathscr{A}_k^{good} hence instead of (13) we have

$$|\mathscr{A}_k^{\text{good}}| < \frac{N(N-1)}{k(k-1)} - 2k^6.$$
 (18)

Summing (14), (17) and (18) we get a contradiction to (9).

We have shown that (5) is true for every $N > k^{14}$. Moreover equality can hold in (5) only if $\mathscr{A}^c = \emptyset$ and in (13), (14) the equality holds, too. But if (14) equality holds then every member of $\mathscr{A}_{>k}^{\text{good}}$ is cardinality $k^2 - k + 1$, and each nucleus from \mathscr{M} is contained in exactly $(N-k)/(k^2 - 2k + 1)$ members of $\mathscr{A}_{>k}^{\text{good}}$. So the conditions of the next lemma are satisfied $(q = k - 1, \mathscr{L} = \mathscr{M}, \mathscr{P} = \mathscr{A}_{>k}^{\text{good}})$.

- LEMMA 2. Suppose that the set-systems \mathcal{L} and \mathcal{P} defined on N elements set X have the following properties:
- (i) \mathscr{L} is q+1 uniform and for each $x, y \in X$ there exists a uniquely determined $L = L(x, y) \in \mathscr{L}$ with $\{x, y\} \subset L$.
 - (ii) If $x, y \in P \in \mathcal{P}$ then $L(x, y) \subset P$.
- (iii) \mathscr{S} is q^2+q+1 uniform and for each $L \in \mathscr{L}$, $x \in X-L$ then there exists a uniquely determined $P \in \mathscr{S}$ with $x \in P$, $L \subset P$.

Then $N = q^t + \cdots + q + 1$ and \mathcal{L} and \mathcal{P} are the one and two dimensional subspaces of the t-dimensional projective space of order q, resp.

Now q is a prime power, because any at least 3-dimensional finite projective space has to be of order p^{α} (when p is prime). Finally, Lemma 2 implies that in (5) equality holds only if $\mathscr{A} \cong \mathscr{F}_k^t$. The proof of Theorem 1 is complete.

The proof of Lemma 2. This lemma and its consequence $q = p^{\alpha}$ was proved by D. Hilbert in 1899. For a proof see Dembowski [1]. Q.E.D.

72 z. füredi

The proof of Theorem 2 follows the same lines, only instead of Lemma 1 one needs the following well-known result

LEMMA 1'. If \mathcal{M}_A is a 2 - (|A|, k, 1) BIBD and $|A| \neq k$, $|A| \neq k^2 - k + 1$, then $|A| \geq k^2$, where equality hold if and only if \mathcal{M}_A is an affine plane of order k.

Of course this yields a better estimation in (14), further one has to use an affine analogue of Lemma 2. Since if there exists a 2 - (|A|, k, 1) BIBD then $|A| \equiv 1 \pmod{(k-1)}$ thus if $|A| \neq k, k^2 - k + 1, k^2$ then $|A| \geqslant k^2 + k - 1$. This can be used in the proof of Theorem 3. We omit the details.

REFERENCES

- 1. P. DEMBOWSKI, "Finite Geometries," Springer-Verlag, Berlin/New York, 1968.
- M. Deza, Solution d'un problème de Erdös-Lovász, J. Combin. Theory Ser. B 16 (1974), 166-167.
- 3. P. FRANKL, Families of finite sets with prescribed cardinalities for pairwise intersections, *Acta Math. Acad. Sci. Hungar.* 35 (1980), 351-360.
- P. FRANKL AND R. M. WILSON, Intersection theorems with geometric consequences, Combinatorica, in press.
- Z. FÜREDI, Set-systems with prescribed cardinalities for pairwise intersection, Discrete Math., in press.
- 6. M. HALL, "Combinatorial Theory," Ginn (Blaisdell), Boston, 1967.
- 7. D. K. RAY-CHAUDHURY AND R. M. WILSON, On t-designs, Osaka J. Math. 12 (1975), 737-744
- 8. H. J. RYSER, An extension of a theorem of the Bruijn and Erdös on combinatorial designs, J. Algebra 10 (1968), 246-261.