COMBINATORICA 1 (3) (1981) 233—241

THE EIGENVALUES OF RANDOM
SYMMETRIC MATRICES

by
Z. FUREDI and J. KOMLOS

Mathematical Institute of the Hungarian Academy of Sciences
Budapest, Hungary H-1053

Received 13 December 1980

Let A=(a:;) be an nXn matrix whose entries for i=j are independent random variables
and a;;=a;;. Suppose that every «;; is bounded and for every i>;j we have Ea;;=py, D%, ;=0
and Ea;;=v.

E. P. Wigner determined the asymptotic behavior of the eigenvalues of A (semi-circle law).
In particular, for any ¢=2¢ with probability 1—o0(1) all eigenvalues except for at most o (1) lie in
the interval I=(—c}/n, CVD

We show that with probability 1 —o(l) all eigenvalues belong to the above interval I if
#=0, while in case ¢>0 only the largest eigenvalue 4, is outside 7, and

T T I
A= —Z—’—+ +0 (—_)
" H Vn

i.e. 4; asymptotically has a normal distribution with expectation (n—1)u-+v-+(6*u) and variance
20% (bounded variance!).

1. Introduction

E. P. Wigner published in 1955 his famous semi-circle law for the distribu-
tion of eigenvalues of random symmetric matrices (used in quantum mechanics).
Here we recall the following generalization due to L. Arnold [1] (see also U. Grenan-
der [3]):

Let A=(a;;), 1=i,j=n, be an nXn symmetric matrix where the entries g;;,
i=j, are independent real-valued random variables. Furthermore, the a;; with i>j
are required to have the same distribution function F, while all the a; possess the
same distribution G. Let A, =1,=... =], be the eigenvalues of A (all real by the
symmetry of 4). We also use the notation 4;(4). Further, W , or simply W, denotes
their empirical distribution function, i.e.

W, .(x)=: (number of eigenvalues =x)/n.

One is interested in the limiting behavior of the sequence W, of random
distribution functions as n— ce.
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Semi-circle law. Assume that f [x|¥dF < oo, f [x[FdG <o, k=1, 2, ... and set D*a;;=
=Var a;;=0c* Then
(1) limW,(x26 Vn) = W(x)

in probability, where W is an absolutely continuous distribution function with density
(semi-circle!)

2
Z(I=x)2 for x| =1
Wx)=1"%
0 for x| =1
Since (1) gives only a limit distribution, it does not describe the behavior
of the largest eigenvalues. This latter is done in the paper of F. Juhasz [4]:
Theorem (Juhész [4]). We use the notations f Ix|¥dF=p,, f x*dG=v,, my=p, vy=v.
Under the conditions of the semi-circle law, in case u=0 we have with probability
approaching 1

2 21(4) = un+o(n).
For the other eigenvalues we have for any ¢>0

3) max |1;(4)] = o(n'/#+7).
If n=0 then for any =0

(4) max |,(4)] = o(n**?).

The aim of the present paper is to sharpen the statements (2), (3), (4).

2. The results
Theorem 1. Let ay;, i=j, be independent (not necessarily identically distributed)
random variables bounded with a common bound K. Assume that for i>j, the a;; have
a common expectation u and variance 6%, further that Eay=v. Define a;; for i<j by
a;;=a;;. (The numbers K, u, a*, v will be kept fixed as n will tend to infiniry.)
If u=0 then the distribution of the largest eigenvalue of the random symmetric
matrix A=(a;;) can be approximated in order 1/ Vi by a normal distribution of ex-
pectation

(5) (n—Dpu+v+oiiu
and variance 262. Further, with probability tending to 1,

(6) max |4,(4)] < 20 Vn +0(n*3log n).

That max |4;(4)] cannot be much smaller than 2o Vn, is guaranteed by the

semi-circle law.

Note that the largest eigenvalue of the deterministic matrix a;;=p for i=j,
a;=v, is equal to (n—1)p+v (and all the other eigenvalues equal to v—pu). Thus
the fluctuation of the entries of the matrix changes A; only with a normal random
variable N(o?/u, 26%) of expectation and variance not growing with z.
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Theorem 2. Under the conditions of Theorem 1, in case p=0 we have
(7) Jmax |A(A)] =20 Vn+0(nlogn) (with prob. tending to I).

Thus we see that though the semi-circle law allows o(n) eigenvalues to be
larger than (24¢&)o V' (in fact they could be arbitrarily large), there is at most one
large eigenvalue (in case u#0), and then this large eigenvalue has a bounded variance
(around the expectation (n—1) u+v+0%/p).

The theorems will be proved in the reverse order (7), (6), (5). The determina-
tion of the distribution of A, will be based on two observations. The first one is that,
as proved by Juhész, the largest eigenvalue is a great deal larger than the others,
the second one is that the vector 1=(l, 1, ..., 1) is “nearly” an eigenvector corre-
sponding to 4;. Thus, starting with the initial value v,=1, practically any numerical
iteration method yields the eigenvalue 1, and the corresponding eigenvector in two-
three steps with a high accuracy. Here we are going to use the von Mises iteration
that will give the approximations > S/n and > S¥/> S, for i, in the first two
steps (while for the eigenvector the approximations are 1 and S), where S; denotes
the sum of the elements in the i-th row of A4, £ 1\d S is the vector (S, ..., S,)-

The error of the first approximation is bounded and that of the second is
of order 1/n, more precisely we will have

(8) P(Ml—ZS?/ZS,-I = x/n) < ¢;/x*+1/n.

The quantity 3 S?/> S, is easily seen to have an asymptotically normal distribu-
tion with parameters of (5) (see Lemma 3). It will also be seen that the simpler

quantity
2 Siln+e®u

approximates 4, in order 1/yn.

3. Proof of Theorem 2

3.1. Just as the earlier papers, we will use the method of Wigner and calculate the
moments of the eigenvalues. It is well-known that

n
A¥ = trace 4*.
i=1

Thus
n & x n n n
E =1 EQM=Etraced"=FE 3 2> ... 2 ;4,04 Gi_yi =
i=1 ip=1i=1  i,=1
n n
== 2 e Eainilailiz..‘aik_lik:
=1 =1
k41 n k+1
= Z 2 Eaioilaixiz "'aik—lak) = Z En.k,P
p=1 \i = p=1
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Now we are going to estimate E, . Since =0, if some a;; (i#/) has multi-
plicity 1 in the product @ ;a;;,...a;,_,; then the expectation of this product is
zero. Thus it is sufficient to count those products in which every a;;, i/, occurs
with multiplicity not equal to 1. Hence E, ; ,=0 for p=>(k/2)+1.

3.2. Let & be even. We show that

. _ 1 k .
(93.) En,k,(k,/‘z)+1 —W{k/z]n(n 1)(" (k/z))O' s
and
(9b) > En,k,p = O(ks/”)En,k, (k/2)+1°

p=k/2

Consider the complete graph on vertex set {l, 2, ..., n} with a loop at every
vertex. We assign to the edge (i,j) the random variable a;;=a;;, and to the walk
(iys i1, ..., i) the product of the variables assigned to the edges of the walk. (We use
the word “walk” here rather than “path” for we allow that vertices and edges occur
in the sequence more than once.) Let us estimate, for given p, the sum of the expecta-
tions of all products with p different vertices (i.e. E, ; ,). To this we need estimating
the number of all walks of length k with p different vertices in which every edge
(that is not a loop) occurs at least twice (perhaps once as (a, b) and once as (b, a)).
We are going to assign a code to such a walk and count the number of possible codes.

Let us choose first the p vertices in order of occurence in the sequence
I=(iy, iy, ..., i). This can be done in n(n—1)...(n—p+1) ways. Let us start now
from i, and define a code consisting of the symbols “+7, “—" and “(u, v)”, where
l=u,v=p, as follows. We define a spanning rooted tree 7 (having of course p—1

edges):
(e i)€T 0 0,8 {ig, ey coos baa1hs

i.e. to the vertex i,€ 1, i, #i,, that edge (i,_,, i,)€ T which first leads to i, on the walk.
Now during the walk we mark an edge ¢ by “+” if e€ T and we use this edge for
the first time (e.g. the walk always starts with a -+ unless it starts with a loop);
we mark the edge e with a “—" if e€T and we use the edge for the second time
(regardless of direction), and finally we mark the (yet unmarked) edge e=(x, u)
by “(u, v)” if either e¢ T or we have used e at least twice before; for defining v, we
start from u and keep on going on the walk and the first time we use an edge (y, z)
that does not belong to T, we take v=y, i.e. v is the place where we leave the edges
of 7. Since any two vertices u, v are connected on the tree 7 in a unique way, the
mark (v, v) makes it well defined how we proceed when decoding and see a “—" mark.

We use altogether p—1 “+7, the same number of “—7”, and k—2p+2 other
marks, further the number of “+” marks is always at least as large in any first sec-
tion of the code as that of the *—” marks. It can be checked easily that different
walks will have different code-sequences and in case p=(k/2)+1 all codes (+ and
— only in this case) belong to walks. The number of such + sequences is well-known

-2
to be equal to %[216 'I') (see e.g. [5], Problem 1.33), thus the number of code

[ k )pZ(k—2p—{-2)i (2p—2]
k—2p+2 p\p—1)

sequences is at most
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The expectation of a particular product g, can be estimated
|Ea

(since Ela;|*=K*-%¢? for k=3, i#j), and hence

aiy o T rin

- 2p—32 yrk-2p+2
i Qi = 0P T2K

5 k 1 (2p—-2
= g2 Kk-2p+2 1. (n— [ ] 2(k—2p+2)_[ )::
’En,k,p[ g n(n l) (n p+1) k_2p+2 p p p_l

=! Spup-
Further E, , /241 Satisfies (92). Now we have S, (. ,—1< S, . ,(K2k%/(4a%n)) whence

2 |En,k,p] < En,k,(k/2)+12K2k6/(402n)

p=ki2
if only K2k%/(4c%n)<1/2, e.g. for k<(c/K)'3n'/®,
3.3. Using Markov’s inequality we get from (9a) and (9b)
P(max |4 > 20 Vn +v) = P(max |A]* > (20 Vn +0)") =

= (20 Vn+v) “Emax |} < (20 Vn +o) “nkR+12kgk —

— k _ -
= Vn [l _Z—VD__] - l/ne—kv/(2o}/n+u).
glfn+v

Set k=(a/K)**n*/® and v=50Kn'"® log n, then

(10a) P(max [ > 26 Vrn+50Kn'® logn) < 1/n*® for n > n,.

1 ..
Now, for n=ny, E 3 AZ-‘>—2— E, v (k/z+1> thus we get similarly

(10b) P(max || < 26 Vn—50Kn'3logn) < 1/n® for n = n,.

4. The proof of (6)

Lemma 1. If A=(a;;) is an nXn real symmetric matrix, and B=A—tJ (where J is
the matrix with all 1 entries) then

A (4) = A,(B).
Proof. 2, (A)znmna_x1 xAx and by the Courant—Fisher theorem (cf. [2])

(11 Aa(A4) = min(m;)il(o XAX,
I =1
thus

/5(A) = max xAx = max x(B = ma =1
2( ) x,1)=0 (x,1)=0 ( +tJ)X (x,l)i(OXBx )I(B)’
=1 Ix1=1 ixl'=1

since (x, 1)=0 implies Jx=0. |}
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Similarly, for the smallest eigenvalue A_..(4) of 4 we get
Lemma 2. If A=(qa;;) is a real symmetric matrix, and B=A—1tJ, t=>0, then
}_o(Ad) = A_(B).
Proof. For t=0 the matrix ¢/ is positive definite (i.e. xtJx=0 for all x¢R"), hence

/_w(4) = min xAX = min xBX+ min xtJx = mm xBx = A_.(B). }
Ixh=1 ixi=1 Ixl=1 Ixi=

Thus, (6) follows from Theorem 2 on substituting r=u. ||

5. The investigation of A,

5.1. Let us split the vector 1 into an eigenvector v of 4; and a component
orthogonal to v:

(12) =v+r, (v,r)=0, Av=Jv.

First we will show that the “remaining term” r is very small (short) with
large probability (r|><4c?/u? cf. (19)).

Let S; denote the sum of elements of 4 in the i-th row, S=(5;, ..., S,) and
ES;=nu—u+v=:L. Applying the linear operation A4 to (12) we get

(13) S =Al = Av+Ar = }1v+Ar.
Subtract L1 from both sides of (13)
S—L1 =, —L)v+(Ar—Lr).

Since both r and Ar (and all their linear combinations) are orthogonal to v,
applying the theorem of Pythagoras we find

n

(14) Z (§i—L)* = |S—LI* = (4 — L)*||v[|*+ | Ax — Lr]®

We will need a good approximation for the left-hand side of (14).

Lemma 3. Under the conditions and notations of Theorem 1 we have

(15) P(iZ’ (Si—L)z—n202| > 202n%2x) < 1/x?,
(16) P(’Z jzczij(si—L)(Sj—L)] > n?(K®+x)) < 1/x%,

an E(S Syfn)=n—Dutv =L, DI S/n)=20"+(s3—20%/n,

where o? is the common variance of the variables a;;. According to the central limit
theorem, 2 Si/n is actually very nearly normal.

2 . = l
> 3¢2x/Vn| < =

(18) P[
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Lemma 3 will be proved in § 6 by elementary probability means. Returning to
(14), the relation (r, v)=0, the Courant—Fisher theorem (11) and Theorem 2 (for-

mula (10a)) imply that || Ar| =2,(4)(r| <30 Vn|r| with very large probability. Thus
Ar—Lr is at least (L—3¢¥n)|r| in length, whence

(19) el < 3(Si— DL~ 12)* < 2n20*/(un — 30 Vn)* < 40/
with probability él—ni‘
5.2. Now we apply the von Mises iteration method (cf. [6]) for determining the
cigenvalue ;.
(20) 3 8i/3S, =(S,9)/1,S) = [|[A1|/(141) = |4, v+ Ar|*/(V+1, A, v+ Ar) =
= (ARIVI2+ 1 Ar2) (A V)2 +rdr) = 2y + ([ Axl|2—A,v4r)/ 5 S;.
The remaining term on the right of (20) will be estimated using (17) and (19). Since

|| Ax}|2<9a2n|x||? (with probability >1—%) , we get from (19)

2D [ Ar|? < (46 u®)9a%n < (5004 ) n

1
(W. pr. 1——'7].

Now [rAr|=|r|[|Ar|| together with (19) and (21) give
(22) ledr] < (200%/u®) Vi

1
[W pr. 1_?]

4, can always be estimated from above by max 2’ la;;| <Kn, thus (21), (22)

and (17) show that the remaining term on the right of (20) is of the order O(1 / Vn), more

precisely
2 SE
23) [ S5
(where ¢<50Ka3/u?).

5.3. Actually the above remaining term is of order O(l/r), which gives (8). This
will be proved by improving on (22).

(24 YAr is bounded in probability (cf. (24a)).

- c/y;] “n

Let vs expand the sum on the left of (16).
(25) 3 2 ay(Si—L)(S;—L) =(S—L1, A(S—L1)) = (A1—-L1, A(41-L1)) =
xl = ((A,—L)v+A4r—Lr, 2y (A, —L)v+A%r—LAr) =
= A (A —L)?||v||2+rA3r —2L| Ar||2+ L3¢ Ar.
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We show that the left hand side of (25), the first three terms on its right
and L? are all of the order O(»n®) (with large probability), thus r4r is bounded in
probabulity, i.e.

(24a) P(lrAr] > Cy+x) < Cy/x2+0(1/n).

Indeed, the left hand side of (25) can be estimated by (16). In the first term of the
right hand side |A,] = K#n, ||v||2=n and the boundedness of 4, — L follows from (18) and
(23). Further, |rA%r| = |4, )2 < (30 ¥ )(do¥/ 12)= O(n*?) according to (19) and Theo-
rem 2. Finally, by (21),

2L| Ar||2 < 2L{500%/ %) n = O(n?.

Thus we established (24a), and hence, through (20), also (8).

6. The proof of Lemma 3

6.1. Denote b;;=a,,— Ea;; and Z;5 and Z;4 the sums in (15) resp. (16). Since £;5=
=2 (Si—L)*= 2 (2 by)*, thus
i i i
E =233 3 Eb;b,= 3 3 Eb;by+ 3 > Eb} = (n*—n)o*+nal.
i 7% i=j % Tk

Further,
DI =E[5 3 3 byby—(n*—n)o?—nol] =
i j &

=EZ2222 bikbjkaKb.lK—((nz-'1)62+n0%)2'
i 7 kT TK

Now the expectation of by b bixb,x is non-zero only if every factor in it
has a multiplicity =2. Thus

DIy =EJ %‘ ;’ 1\2 b} bix —((n®*~n)e®+nol)P+

+2E%’ 2 75,’ bE, ?k—z %’ bt = O(c*nd).
i
(15) follows from Chebyshev’s inequality.
6.2. (16) will be proved similarly.
EX = Z Z a;; 2> buby = 2 2 2 Ea;jby by = ntva®+nEb,
and C * P
(26) Dy = ;’ ;’ %‘ 72’ ;’ % Ea;;bybyap; b —(n*ve®+nEb})™

The expectation of such a 6-product is non-zero only if there are more co-
incidences among the indices, i.e. if |{i, /, k, I, J, K}| =4. Thus, among the n® terms
in (26) only #* is non-zero, hence

D5, = O(n).
(Actually, it is O(n?), but we do not need that.)
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6.3. The proof of (17) is trivial. For (18) we use the following identity.

Q7 P _ 25 _ 2 (Si—Ly _ (= Si/"’)*L)2

2 Si R 2 S 2 Siln ’
The second term on the right of (27) is, by (17), O (1/n). The first term has a numerator
n*o®+ 0 (n*?) according to (15), while its denominator is un?+QO{n), hence the ratio
equals o%u+0(1/yVn). |
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