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Let A =(a~j) be an n×n matrix whose entries for i~j are independent random variables 
and aj~=a~j. Suppose that every a~j is bounded and for every i>j we have Ea~j=lz, D2a~j=~ z 
a n d  Eaii=v. 

E. P. Wigner determined the asymptotic behavior of the eigenvalues of A (semi-circle law). 
In particular, for any c>2~- with probability 1-o(1)  all eigenvalues except for at most o(n) lie in 
the interval l = ( -  c t/n, c ~/ n--). 

We show that with probability 1 -o (1)  all eigenvalues belong to the above interval I if 
/l=0, while in case  it>-O only the largest eigenvalue 21 is outside I, and 

),1--S"ia~Jn +----'0 a~'p {-~--~} 

i.e. 21 asymptotically has a normal distribution with expectation ( n - 1 ) p +  v+(a2/p) and variance 
2or 2 (hounded variance!). 

1. Introduction 

E. P. Wigner  publ i shed  in 1955 his f amous  semi-circle law for the dis t r ibu-  
t ion o f  e igenvalues  o f  r a n d o m  symmetr ic  mat r ices  (used in qua n tum mechanics) .  
Here  we recall  the fol lowing genera l iza t ion due to L. A r n o l d  [1] (see also U. G re na n -  
der  [3]): 

Let  A=(ai~.), l ~ i , j ~ n ,  be an nXn  symmetr ic  mat r ix  where the entries ai j ,  
i~=j, are  independen t  real-valued r a n d o m  variables .  Fu r the rmore .  the alj with i>j  
are required to have the same d is t r ibut ion  funct ion F, while all  the a ,  possess the 
same d is t r ibut ion  G. Let  21~22~. . .=>2, ,  be the eigenvalues of  A (all real by  the 
symmet ry  of  A). We also use the no ta t ion  2i(A ). Fur the r ,  Wa,,, or  s imply W,, denotes  
their  empir ica l  d is t r ibut ion  funct ion,  i.e. 

WA,,(x)=: (number  o f  eigenvalues ~x)/n.  

One is in teres ted in the l imit ing behav ior  o f  the sequence I4/,, o f  r a n d o m  
dis t r ibut ion  funct ions  as n ~  ~ .  
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Semi-circle law. Assume that f lxlk dF < ~ ,  f [x[k dG < ~,  k =  1, 2, ... and set D2 a~j: 
= Var aij : 0 "2.  Then 
(1) lira W, (x2a V~-) = W(x) 

in probab#ity, where W is an absolutely continuous distribution fimction with densiO, 
(semi-circle~) 

"[2(1--x'~) 1/2 for Ix[ ~ l 
W(x) 

I 0 Jbr Ix[ > 1 

Since (1) gives only a limit distribution, it does not  describe the behavior  
of  the largest eigenvalues. This latter is done in the paper  of  F. Juh~isz [4]: 

Theorem (Juh{tsz [4]). We use the notations f lxlkdF=#k, f IxlkdG=vk, #1=# ,  Vl=V. 
Under the conditions of the semi-circle law, in case # > 0  we have with probability 
approaching 1 
(2) 2~ (A) = ILn + o (n). 

For the other eigenvalues we have for any e > 0  

(3) max I2i(A)I = o(nl/'~+~). 

l f  #=O then for any e>O 
(4) max 12i(A)I = o0W2+0. 

The aim of  the present paper is to sharpen the statements (2), (3), (4). 

2. The results 

Theorem 1. Let aij, i~], be independent (not necessarily identically distributed) 
random variables bounded with a common bound K. Assume that for i>j, the aii have 
a common expectation # and variance a 2, fitrther that Eau-=V. Define a~ for i<j  by 
aij=aji. (The numbers K, #, a 2, v will be kept fixed as n will tend to infinity.) 

I f  p > 0  then the distribution of the largest eigenvalue of the random symmetric 
matrix A =(al j)  can be approximated in order 1 / ~  by a normal distribution of ex- 
pectation 
(5) (n - 1) # + v + 0-2/# 

and variance 20- 3. Further, with probability tending to 1, 

(6) max I21(A)I < 20- ~/n+O(n '/a log n). 

That  max 12i(A)[ cannot  be much smaller than 20- l/if, is guaranteed by the 

semi-circle law. 
Note  that  the largest eigenvalue of  the deterministic matrix a~j=p for  i#./, 

a ,=v,  is equal to ( n - l ) # + v  (and all the other eigenvalues equal to v - # ) .  Thus  
the fluctuation of  the entries of  the matr ix  changes )~ only with a normal  random 
variable N(0-z/#, 2a z) of  expectat ion and variance not growing with n. 
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Theorem 2. Under the conditions of  Theoren~ 1, in case # = 0 we have 

(7) max 12i(A)l = 20- I/n +O(n 1/3log n) (with prob. tending to 1). 
l~_i~n  

Thus we see that though the semi-circle law allows o(n) eigenvalues to be 
larger than (2+ e)a ~/n (in fact they could be arbitrarily large), there is at most one 
large eigenvalue (in case p ~ 0), and then this large eigenvalue has a bounded variance 
(around the expectation ( n -  1)p +v +~2/#). 

The theorems will be proved in the reverse order (7), (6), (5). The determina- 
tion of the distribution of 21 will be based on two observations. The first one is that, 
as proved by Juh~sz, the largest eigenvalue is a great deal larger than the others, 
the second one is that the vector 1=(1,  1 . . . .  ,1) is "nearly" an eigenvector corre- 
sponding to 21. Thus, starting with the initial value %=  1, practically any numerical 
iteration method yields the eigenvalue ).~ and the corresponding eigenvector in two- 
three steps with a high accuracy. Here we are going to use the von Mises iteration 
that will give the approximations ~ Si/n and ~ S~/Y__, S~ for 21 in the first two 
steps (while for the eigenvector the approximations are 1 and S), where S~ denotes 
the sum of the elements in the i-th row of A, z ~d S is the vector (Sa, ..., S,). 

The error of the first approximation is bounded and that of the second is 
of order l/n, more precisely we will have 

(8) e(12 ~ - Z s ~ I Z S , ]  > x/n) < cllx~+ 1/n. 

2 The quantity ~ S ~ / ~  S~ is easily seen to have an asymptotically normal distribu- 
tion with parameters of (5) (see Lemma 3). It will also be seen that the simpler 
quantity 

Y~ £/n  + a2/~ 

approximates 21 in order 1/Vn. 

3. Proof of Theorem 2 

3.1. Just as the earlier papers, we will use the method of Wigner and calculate the 
moments of the eigenvalues. It is well-known that 

Thus 

~ 2 ~  = traceA ~. 
i=1 

E,,,k = : E 21 = E t raceA k = E . . .  ~ a i o i l a i l i 2  . . .  a i k _ , i k  = 
i=1 i0=1 i1=1 ik=l  

= ~ ... Z Eaioilaili~...alk_uk = 
io=1 ik= l  

Eaioi~ aiaio ... aik_la k = ,~ E,,k,p 
Z ' ' '  i " p = l  

p = l  t}io, i . . . . . .  i~:}l=p 
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N o w  we are going to estimate E,,.k. Since it=O, if some aij ( i ¢ j )  has multi- 
plicity 1 in the product  a~o~ai~i....a~,_~ then the expectation o f  this product  is 
zero. Thus it is sufficient to count  those products  in which every a~ i, i ¢ j ,  occurs 
with multiplicity not  equal to 1. Hence E,,,k,p=O for p > ( k ] 2 ) + l .  

3.2. Let k be even. We show that  

E,,,~,~,~)+~ - (k/2)+l  k/2 n ( n - 1 ) . . .  (n-(k/2))~ ~, (9a) 

and 

(9b) ~ '  E,,,k,~ = O(k~/n)E,,,~,ck/~)+~. 
p-<_k/~ 

Consider the complete graph on vertex set {1, 2 . . . . .  n} with a loop at every 
vertex. We assign to the edge ( i , j )  the random variable aii=ajl ,  and to the walk 
(i0, il, ..., ik) the product  of  the variables assigned to the edges o f  the walk. (We use 
the word "walk" here rather than "pa th"  for we allow that  vertices and edges occur 
in the sequence more  than once.) Let us estimate, for given p, the sum of  the expecta- 
tions o f  all products  with p different vertices (i.e. E,,.k,p). To this we need estimating 
the number  o f  all walks of  length k with p different vertices in which every edge 
(that is not  a loop) occurs at least twice (perhaps once as (a, b) and once as (b, a)). 
We are going to assign a code to such a walk and count  the number  o f  possible codes. 

Let us choose first the p vertices in order  o f  occurence in the sequence 
I=( i0 ,  il . . . .  , ik). This can be done in n ( n - 1 ) . . . ( n - p + l )  ways. Let us start now 
f rom i 0 and define a code consisting o f  the symbols " + " ,  " - "  and "(u, v)", where 
1 =<u, v-<_p, as follows. We define a spanning rooted tree T (having of  course p - - 1  
edges) : 

(i¢,_l,i~,)ET if i~_{io, i 1 . . . . .  i~,_~}, 

i.e. to the vertex i,~CL i,,#io, that  edge (i~-1, i~)C Twhich  first leads to i~ on the walk. 
N o w  during the walk we mark  an edge e by " + "  if eC T and we use this edge for 
the first time (e.g. the walk always starts with a + unless it starts with a loop);  
we mark  the edge e with a " - "  if e6 T and we use the edge for the second time 
(regardless of  direction), and finally we mark  the (yet unmarked)  edge e = ( x ,  u) 
by "(u, v)" if either e~ T or we have used e at least twice before; for defining v, we 
start f rom u and keep on going on the walk and the first time we use an edge (y, z) 
that  does not  belong to T, we take v = y ,  i.e. v is the place where we leave the edges 
of  T. Since any two vertices u, v are connected on the tree T in a unique way, the 
mark  (u, v) makes it welt defined how we proceed when decoding and see a " - "  mark.  

We use altogether p - 1  " ' + " ,  the same number  o f  " - " ,  and k - 2 p + 2  other  
marks,  further the number  o f  " + "  marks  is always at least as large in any first sec- 
tion o f  the code as that  o f  the " - - "  marks.  It  can be checked easily that  different 
walks will have different code-sequences and in case p = ( k / 2 ) + l  all codes ( +  and 
- only in this case) belong to walks. The number  o f  such ± sequences is well-known 

to be equal to 1 1 2 p - 2 1  (see e.g. [5], Problem 1.33), thus the number  o f  code 
p ~ p - - l J  

sequences is at most  
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The expectation of a particular product a~oi, -.. %_ ~ can be estimated 

]Eaioll ... aik_llkl <= a2P-~ K k-2p+'" 

(since Elaij[k<--_Kk-2a 2 for k=>3, i¢ j ) ,  and hence 

~ :  S n ,  k, p . 

Further E.,k.(k/2)+ 1 satisfies (9a). Now we have S.,k.o_l<S..k,p(K2kn/(4a2n)) whence 

Z IE.,k,p] < E.,k,(k/,,.)+12KZkS/(4a~'n) 
p~_k]2 

if only K2k6/(4a2n)< 1/2, e.g. for k<(a/K)l/an 1/6. 

3.3. Using Markov's inequality we get from (%) and (9b) 

P(max I,~1 > 2~ 1/~+ v) = p(max 1,~l ~ > (2~ l / n +  v) ~) _<- 

=< (2a ~/n+ v) -kEmax 121 k < (2a ]/n + v) -k n(k/2)+~2ka k = 

l/nil,  2a ~Tv k v) < 1/;e-~d(2" 7~ +")" + 
Set k=(alK)llSnXl6 and v=  50Kn lla log n, then 

(10a) P(max I,~l > 2a I /n+ 50Kn 1/~ log n) < i/n~O for n > no. 

Now, for n>no, E ~ k 1 ,ki >-~ E,,,k,(k/Z)+l, thus we get similarly 

(10b) P(maxl~l < 2al/-n-5OKn~'~logn) < 1/n ~° for n > no. 

4. The proof of (6) 

Lemma 1. I f  A=(aij) is an n X n  real symmetric matrix, and B = A - - t J  (where J is 
the matrix with all 1 entries) then 

~2(A)-<_~I(B). 

Proof. 21(A)= max xAx and by the Courant--Fisher  theorem (cf. [2]) 
[Ixll =1 

(11) 2~(A) = rain max xAx, 
v (x,v)=O 

IIxll = 1  
thus 

22(A) -<- max xAx = max x ( B + t J ) x  = max xBx =< 21(B), 
( x , l ) = o  (x , l )=O (x , l )=O 
IIxll = 1  IIxll =1  Ilxll =1  

since (x, 1 )=0  implies Jx=O.  1 
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Similarly, for the smallest eigenvalue 2_=(A) of  A we get 

Lemma 2. I f  A =(a/j)  is a real symmetric matrix, and B = A - t J ,  t>0 ,  then 

2_=(A) >= 2_=(B). 

Proof. For t > 0  the matrix tJ is positive definite (i.e. xtJx=>0 for all xER"), hence 

2_=(A) = rain xAx ~ rain x B x +  rain xtJx  >= rain xBx = 2_=(B). | 
Ilxll = 1  [Ixil = I I l x l 1 : 1  Ilxtl = 1  

Thus, (6) follows from Theorem 2 on substituting t=p.  | 

5. The investigation of 21 

5.1. Let us split the vector 1 into an eigenvector v of 21 and a component  
orthogonal to v: 
(12) l = v + r ,  ( v , r ) = 0 ,  A v = 2 1 v .  

First we will show that the "remaining term" r is very small (short) with 
large probability (l[r]12<4ao/p 2 cf. (19)). 

Let Si denote the sum of elements of  A in the i-th row, S=(S1 ,  ..., S,) and 
E S i = n l z - p + v = : L .  Applying the linear operation A to (12) we get 

(13) S = AI = A v + A r  = 21v+Ar.  

Subtract L I  from both sides of  (13) 

S - L I  = ( 2 1 - L ) v + ( A r - L r ) .  

Since both r and Ar (and all their linear combinations) are orthogonal to v, 
applying the theorem of  Pythagoras we find 

(14) ~ ( S I -  L) 2 = [IS-LIII 2 = (21- L)2Ilvli2 + ll A r -  Lrll 2. 
i = 1  

We will need a good approximation for the left-hand side of  (14). 

Lemma 3. Under the conditions and notations of  Theorem 1 we have 

(15) P([~i > 2a2na/2x)< 1/x ~, 

(16) P ( [ ~  Z a , j ( S i - L ) ( S j - L ) I  > n2(Ka+x)) < 1/x", 
J 

(17) E ( ~  Sin)  = ( n - - 1 ) ~ + v  = L, D 2 ( Z  Sin)  = 2a2+(a~.-2a2)/n, 

,,here a~ is the common variance of  the variables au. According to the central limit 
theorem, ~ Sjn  is actually very nearly normal. 

Z & n > 3~,"x/~/7 < -~r" 
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Lemma 3 will be proved in § 6 by elementary probability means. Returning to 
(14), the relation (r, v)=0,  the Courant--Fisher theorem (11) and Theorem 2 (for- 
mula (10a)) imply that liar1[ <--2z(A)HrH < 3 a  l/~]r[] with very large probability. Thus 
A r - L r  is at least (L-3o'l/n~Hrl[ in length, whence 

(19) Ilrll 2 < X ( S , - L ) 2 / ( L - 2 2 )  ~ < 2n2¢2/(#n- 3¢ ]/-~-)2 < 4¢2/#~ 

l 
with probability ~ 1 - - -  

n 

5.2. Now we apply the von Mises iteration method (cf. [6]) for determining the 
eigenvalue -~1- 

(20) Z S ~ / Z  S, = (S, S)/(1, S) = [IAIII2/(1A1) = []21v+Arll~/(v+r, 21v+Ar) = 

= ().~l{vl]2+ llArl]2)/(21]lv]12+rAr) = 2~+ (l[Ar[bO'-2~rAr)/Z S,. 

The remaining term on the right of (20) will be estimated using (17) and (19). Since 

]lArll2<9a2nllrll2(withprobability > 1 - 1 ) ,  we get from (19) 

(21) IlArll ~ < (4a2/#2)9a~n < (50cr4/#2)n 

(w. pr.i-1). 
Now [rArl_<-]lrHlTArll together with (19) and (21) give 

(22) lrAr[ < (20~a/# ~) I/7 

(w prl 
21 can always be estimated from above by max ~.  laii] <Kn, thus (21), (22) 

J 

and (17) show that the remaining term on the right of (20) is of the order O (l/I/n), more 
precisely 

(23) P t [ - - ~ i  "ul > 1/n <£ 

t 

(where c <50K~a/#a). 

5.3. Actually the above remaining term is of order O(1/n), which gives (8). This 
will be proved by improving on (22). 

(24) rAr is bounded in probability (cf. (24a)). 

Let us expand the sum on the left of (16). 

(25) Z 2 a , j ( S I - L ) ( S i - L )  = ( S - L 1 ,  A ( S - L 1 ) )  = ( A 1 - L 1 ,  A(A1--L1))  = 
i j 

= ( ( 2 1 - L ) v + A r - L r ,  2~(2 t - -L)v+A2r-LAr)  = 

= 21(21-L)2[[vl12+rAar--2L][Ar[12+L2rAr. 
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We show that the left hand side of (25), the first three terms on its right 
and L ~ are all of  the order O(n 2) (with large probability), thus tAr is bounded in 
probability, i.e. 
(24a) P(IrArI > C.2+x) < C3/x~'+O(1/n). 

Indeed, the left hand side of (25) can be estimated by (16). In the first term of the 
right hand side [2~1 -<_ Kn, II vii ~ = ,  and the boundedness of 2~ - L follows from (18) and 
(23). Further, [rAar] ~ I,~21311r[1°-< (3a ]/n-)3(4a~-/l~2)=O(na/2)accordingto (19)andTheo- 
rem 2. Finally, by (21), 

2tllArll 2 < 2L(50a4/l~2)n = O(n~-). 

Thus we established (24a), and hence, through (20), also (8). 

6. The proof of Lemma 3 

6.1. Denote bu=aij-Eai  i and S15 and 2"18 the sums in (15) resp. (16). Since i715= 
= Z (Si -L) '= Z ( Z  b,J) ~, thus 

i i j 

EZ~5 = ~ Z Z Ebubik = 2 Z Ebljb~k+ ~ ~ Eb~k = (n~'-n)a2+na~. 
i j k i ~ j  k i k 

Further, 
D2Z15 = E [ 2  Z Z b,kbik--(n2--n)a~--na~] = 

i j k 

= E Z  Z Z Z Z 2 bikbjkb1Kb.tK--((n2--n)a2+na~) 2" 
i j k I d K 

Now the expectation of b~kbjkbiKbjr is non-zero only if every factor in it 
has a multiplicity _->2. Thus 

D"Z~5 = E Z X Z Z b~kb~r-((n~-n)a~+na~) 2+ 
i k I K 

k i j 
i ~ j  

(15) follows from Chebyshev's inequality. 

6.2. (16) will be proved similarly. 

E17~G = Z ~ au Z b,kb.~k = ~--, ~, X Eaubikbjk = n~w2+nEb~i, 
i j k i j k 

and 

(26) D2Z16 = Z Z Z Z Z Z Eaubikbjka,jb,KbsK -(n2va2+nEb~i) '~" 
i J k 1 J K 

The expectation of such a 6-product is non-zero only if there are more co- 
incidences among the indices, i.e. if [{i,j, k, L J, K}[<-4- Thus, among the n 6 terms 
in (26) only n 4 is non-zero, hence 

D2ZI6 = O(n~). 

(Actually, it is O(n3), but we do not need that.) 
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6.3. The proof of (17) is trivial. For (18) we use the following identity. 

(27) Z S ?  Z S '  = Z(S~-L)2 ((ZS~/n)-L)2 
Z s, n Z s, Z s,/n 

The second term on the right of (27) is, by (17), O(1/n). The first term has a numerator 
n~a~+ 0 (n s/z) according to (15), while its denominator is #nZ+ O(n), hence the ratio 
equals ~z/#+O(1/]/-n). | 
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