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Let 3 be a family of r-subsets of a finite set X. Set D () =max|{E: x€ E€ 3#}|, (maximum
x€X

degree). We say that 3 is intersecting if for any H, H'¢ # we have HNH'=#. In this case, ob-
viously, D(#)=|(s#1/r. According to a well-known conjecture D(P)=[#1/(r—1+1/r). We
prove a slightly stronger result. Let 3 be an r-uniform, intersecting hypergraph. Then either itis a pro-
jective plane of order r—1, consequently D(32)=|°)/(r—1+1/r), or D(3P)=|5°1/(r—1). This
is a corollary to a more general theorem on not necessarily intersecting hypergraphs.

1. Introduction, definitions

1.1 Some well-known definitions

We list the basic definitions and notation to be used throughout:
hypergraph # — a finite collection of non-empty finite sets (edges);
vertex set of # — V(#)=U {E: E€H#};
rank of # — r(#)=max {|E|: E€H#)},

H is r-uniform if the cardinality of every EC# is r;

degree of a vertex x (in #) — dy(x)=|{E: x€E€H}|;

D(#)=max {dp(x): xeV(H)};

H is D-regular if the degree of every vertex x is D;

partial hypergraph — #'C H#;

matching — partial hypergraph of # whose edges are pairwise disjoint;
V() — matching number — maximum number of edges in a matching;
intersecting hypergraph — v(o#)=1;

transversal (or cover) — a set Tc V() which meets all the edges;
T(#) — transversal number — minimum cardinality of a transversal.
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1.2 Fractional transversals and matchings

A survey with applications on fractional hypergraph theory can be found
e.g. in Berge [1] or Lovéasz [12], [16]. Here we shall define only the most important
concepts of this theory which appeared in first papers published on this topic.
(Berge and Simonovits [2], Lovasz [11].)
A fractional transversal of a hypergraph 3 is a weight function t: V(5#)—~R
satisfying
t(x) =0 for every x€V (&),
and
D tx)=1 for every edge E€H#.
x€E

The value of a fractional transversal ¢ is

t= 2 t(x).
xeV(#)
The minimum of |¢| when ¢ ranges over all fractional transversals is called the
Jractional transversal number and is denoted by

™ (#)=min {|¢|: ¢t is a fractional transversal of #}.

Similarly the fractional matching number is the maximum value of the fractional
matchings of 4, i.c.

v¥ () = max {Eé; w(E)[w: H R, w(E) =0, YxeV () we have Eg’ w(E)} =1.

Clearly, to determine the fractional transversal number and the fractional matching
number is a problem of linear programming. This is a dual pair so by the duality
principle of linear programming we have t*(#)=v*(s#) for every hypergraph
. Thus

l=v=vi=1t*=1=rv.

In view of the fact that w(E)=1/D and #(x)=1/min |E| are a fractional matching
resp. fractional transversal we have

Vo)

I'#] = ¥ =z
‘ (‘#):min{wu ECAH)

M Do) =

1.3 An important example
If # is D-regular and r-uniform then (1) yields
@ |#1/D = V(#)[r = ().

For r=3 write 2, for the hypergraph consisting of the lines of the r-uniform finite
projective plane (if there exists) further let 2, consist of the 2-tuples of a 3-element
set (i.e. 2, is a triangle) and let 2, be the hypergraph having only 1 point. It is
well-known that 2, exists provided r=P+1, where P is a prime power.

It is evident that every line of the projective plane 2, is a minimal trans-
versal of #,. For r=1, 2, 3 there is no other minimal transversal. For the projective
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plane #, with r=>3, J. Pelikan [18] proved that the only transversals of cardinality
r are the edges, and

3) all other transversal sets have size =r+2.

Summing up: |2,|=|V(2,)|=rt—r+1, 2, is r-uniform and r-regular, v(2)=1,
(P)=r, " (P)=r—1+1]r.

2. Results

Considering all the r-tuples of an underlying set with rv+r—1 elements it
can be seen that the inequality 7=rv cannot be improved in general. Nevertheless,
as L. Lovasz observed, the inequality t*=rv is not sharp. He showed (see [14], [15]),
that, for any hypergraph 32, t*(#)<r(3#)v(s#), furthermore

™, vy =sup t5(F): r() =1, v(#F) = v} < rv.

For v=1 he proved that t*(r, )=r—1+2/(r+1) and he conjectured that
*(r, 1)=r—1+1/r. In this paper we shall prove a bit more.

Theorem. Let # be a hypergraph of rank r=3,v(s#)=v. Suppose further tha'
H does not contain a partial hypergraph which consists of p+1 copies of pairwise
disjoint r-uniform projective planes. Then

() = (r— v+ p/r.

(The proof of the Theorem is in § 5.) We mention that the inequality of the Theorem
is sharp. To see this consider the hypergraph &, which we get from £, by omitting
a line. (¢*(2))=r—1.)

The case r=1 is of no importance. For r=2 the Theorem does not hold
true, because for the odd circuits C,,,, one has v(Cy,,,)=n, p=0 but t*(Cs, .1}
=n+1/2. L. Lovasz [13] proved that for an ordinary graph G

3

1
™G) = 7(1:—{-\}) = 5

The following corollaries are true even if r<3.

Corollary 1. If 5 is the union of v pairwise disjoint copies of P,, then t*(#)=
=(r—14+1/r}v otherwise T*(H)V=(—1+1/r)v—1/r.

Proof. The inequality 1*(s#)=>(r—141/r)v—1/r implies that # has a partial
hypergraph 3, which is the disjoint union of v copies of #,. That is #,Cs#.
Then it follows from (3) that 3, =4#.
(The case r=2 is left to the reader).

Corollary 2. Let r be a positive integer for which P, does exist. Then t*(r,v)=
=(r—1+1/r)v. If P, does not exist then v*(r,)=(r—Dv. I

I think that for the time being the determination of the exact value of t*(r, v)
for other r’s is hopelessly difficult, because to solve this problem one probably has
to decide whether or not the projective plane £, does exist for a given r.
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3. Applications

3.1 The maximum degree of hypergraphs

Let us consider an intersecting, r-uniform hypergraph 5. Obviously D ()
=|#)/r. It is a well-known conjecture [6, 7] that D=|#|/(r—1+1/r). From the
Theorem and from (1) a slightly stronger result follows.

Corollary 3. Let # be an r-uniform, intersecting hypergraph. Then either it is a
projective plane of order r—1 and consequently D(H#)=|#|/(r—1+1/r) or D(¥)
=|#|/(r—1). 1

In general D(#)=|#|/(r—1+1/r)v. This was proved for r=2 by B. Bollobas {4]
in a slightly different form. This Corollary is sharp because D{(%;)=|2;|/(r—1).

3.2 The number of vertices of regular hypergraphs

Using his result (t*(r, 1)=r—1+2(r+1)) mentioned above L. Lovasz [14],
[15] proved the following conjecture of P. Erdds [6] and B. Bollobas [4]:

If # is an intersecting, r-uniform and regular hypergraph, then |V ()|
=ri—r+1.

By the Theorem and (2) we generalize this result as follows. (For r=2 see
Bollobas—Eldridge [5]).

Corollary 4. If A# is r-uniform and regular then |V(3#)|=(r2—r+1)v. Moreover
equality holds if and only if 3¥ is the disjoint union of projective planes or order r—1.
Furthermore if there is no such r-uniform plane then |V(#)|=@2—r)v. |

By omitting from £, a point together with all the lines containing it we get
the hypergraph £, which is (r— 1)-regular, r-uniform and intersecting. It has r2—r
points. This example shows that Corollary 4 is sharp, too.

3.3 Fractional transversal number of r-partite hypergraphs

The hypergraph & is said to be r-partite if V(5#) is the disjoint union of
Xy, ..., X,, and for each E€s#: |ENX,|=1 holds (i=1,2,...,7r).
A well-known conjecture of H. J. Ryser states that for an r-partite hypergraph
1=(r—1)v. (In particular for r=2 this is simply Konig’s Theorem (see [12]). For
some small values of r and v this conjecture has recently been proved by Zs. Tuza
[19]). A. Gyarfas [10] proved an easier version of Ryser’s conjecture. His result
follows from our Theorem because £, is not r-partite (r=2).

Corollary 5. If the hypergraph # is r-partite then t*(#)=(r—1)v(#F). |

This Corollary is sharp for &, is r-partite and *(#)=r—1.

3.4 Some further applications of this Theorem to extremal graphs and
to extremal set-systems can be found in J. Pach—L. Surdnyi [17], Z. Firedi [9]
and P. Frankl—Z. Fiiredi [8], respectively.
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4, The reduction lemma

We denote by (a;, b;, ¢, I) the following linear program with minimum
value M.
x=0
“) ax=b; for all i€l
min¢x = M(a;, b;, ¢, I)

Here a;, x and ¢ are n-dimensional vectors, b;’s are real numbers and [/| is the number
of conditions of the program (|I|<eo).

The following Proposition is well known in the theory of linear programming. For
the sake of completness we give its short proof in the Appendix.

Proposition. If the linear program (a;, b;, ¢, I) with n variables has a finite optimum,
then there exists a JCI such that M(a;, b;, ¢, )=M(a;, b;,¢,J) and |J|=n.

In other words this Proposition states that the number of conditions of a linear
program can be reduced to » without changing the optimum value.

The proof of the Theorem is based on the following Lemma which may
help to determine ¢* in some other cases as well.

Lemma. For any hypergraph # there exists a partial hypergraph #'C # such that
() =1*(H) and |H'|=|V(H)|

Proof. To determine 7* one has to solve a linear program of dimension |V ()],
with index set 7, where |I|=|#|. Of course, this program always has a finite op-
timum. So by applying the Proposition (possibly several times) one can find a suitable
HCH.

5. Proof of the Theorem

Let # be an r-uniform hypergraph which does not contain p+1 disjoint
copies of the projective plane &, and v(#)=v. Suppose r=3. (Our proof can
be applied for r=2, too, but the details are left to the reader.)

It is sufficient to give a suitable fractional transversal ¢ of #. We shall give
it by induction on v, while r is fixed. The proof in the case v=1 is similar to that
one for v=1 and that is why we do not separate them, but sometimes we mention
the differences.

For #=0 put 1*(#)=0. By the Lemma we may suppose that ||
=|V(s#)]. Consequently,

) _ 2{dx): xev ()} _ rl#] -
®) MR, 0= S = e =

Case 1. There exists xo€ V(H#) with dp(xo)=k=<r. Put s#,={ECH : x,€E}
={E, ..., E}, and #;={Ec#: ENE=0} for 1=i=k.

For the hypergraph s; the induction hypothesis can be applied, because
v(#)=v—1 and of course #; does not contain more than p disjoint £, as partial
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hypergraphs. Hence there exists a fractional transversal ¢,: V(s#)—~R of J#;,
such that |4|=(r—1)(v—1)+p/r. (If here v=1 then #,=0,t;=0.)
Put
0 if x=Xx,

0= a0+ é;n(x)) if - x€V ()~ {xo):

where d,(x) is the degree of x in the hypergraph #,. We claim that this is a frac-
tional transversal of . Indeed, ¢(x)=0, and for any E€.#, we have

> t(x)z—lk—( > dy(x)) zl(r—l)z 1.
x€E x€E—{xq}
If E€# — s, then
k
3 =12 a0+ 313 uw))
x€E i=1 x¢E

x¢E

k k
= [ 2 1+ 2 1]:1.
E(\lZ;a Eﬂlzia

|-

Finally
vonzm-g( 3 4w+ I 2 1)

x EV(#)—{xy)

1 k
:-k—[(r—l)k+ 2 [t,-l] =(r—1)v+p/r.
i=1
(For v=1 we get t*(#)=r—1.)
Case 2. L oin dy(x)=r.

Then, by (5), # is r-regular, so |#|=|V(s#)|. We shall show that |#|
=(r*—r)v+p from here, by (2), the Theorem follows.

Suppose on the contrary that |3|=(r?—r)v+p+1. Let E| be an arbitrary
edge of # and put #,={E€#: ENE,=0}. Applying the induction hypothesis
to ##, and using (1) we get that

|o#] = [{E: ENE, = )|+ = 1+r(r—D)+*(#)D(H) = (r*—r)v+p+1.

Here the right side is at most (r2—r)v+p if there is an edge £ with |ENE|=2.
Consequently it is enough to consider the following case.

(6) [#| = V() =v(rP—r+p+1
|# —H;| = rt—r+1
@) |[ENE) =0 or 1, for any edges E, E,.

(If v=1 and p=1 then (6) yields a contradiction, because in this case #,=0.
Similarly, for v=1, p=0 we have by (6) and (7) that s# is an r-uniform, r-regular,
intersecting system of sets on (r?—r+1) points with the same number of edges.
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This in turn implies that # =2, contradicting to p=0 From now on we suppose
that v=2.)
Let Ey, E,, ..., E, any fixed matching. We call an edge E€# crossing if it
intersects more than one E; (I=i=v), We count the number of edges of
v
H# —{E,...E,} with multiplicities in the poins of |J E;. We get vr(r—1). From the
. i=1
other hand [o# —{E,, ..., E,}|=v(r*—r)+p+1—v, and so there are atmost v—1 —p
crossing edges. This means that there is an edge, say E,, in the matching {E,... E,}
which intersects at most one crossing edge.

Case 2a. E; is not intersected by a crossing edge.

In other words, the system {E,, ..., E,} has no common point with edges
intersecting E,. Since v(3)=v we get that 5 — 3, is an intersecting family. Further
D(s# —#)=r, and this together with (6) and (7) implies that # —#,=2,.
Moreover, the underlying sets V(#,) and V(# —3#)) are disjoint. Applying the
induction hypothesis to s, with parameters v—1 and p—1 we get by (1)

|3 —H#y) = ¥ (H —HDr = (- —-D+(p-1),
contradicting to (6).
“Case 2b. There is a unigue crossing edge E’ intersecting Ej.

It remains true that # — 3, — {E’} is an intersecting family, |# — s, — {E'}|=
=r2—r, D(# —#,— {E'}|=r. We claim that in this case # —H#—{E'}=2;.
Indeed, by (7), every edge of s# — 3¢, — {E’} contains a point of degree r—1. There
are exactly r points of this type, they form a set 7. It is easy to check that
(#—#,—{E'DU{T} is a finite projective plane. E’#T for E’ is crossing. So
there is an edge E"€¢# —3#, such that E’'NE”"=f, and

(8) atleast r—1 edges E of # — H# 4 have the property that ENE’#0 and ENE”#0.

Let s '={Ecs#: ENE'=P and E"NE=0} and #2=H#—#"'. Applying the
induction hypothesis to s#! with parameters v—2 and p, and using that upper
bound for |##2| which follows from (8), we get

|| = [+ = (v-2)(P—r)+p+2(r2—r)+2—(r—1).

This again contradicts to (6), provided r=3. |

6. Appendix: Proof of the Proposition

Dropping some of the inequalities of (4) the minimal value of the program
can only decrease. Hence we have to prove that there is a Jc 1, |J|=n such that
MA(a;, by, c, )=M(a;, b;, ¢, =M.

Suppose, on the contrary, that for every JcI, |J|=n, we have
M(a;, b,,¢c,J)<M. This means that any » of the halfspaces {y: a;y=4;} have
a point in common with the open convex polytope {x¢R": ex<M, x=0}. The
system (4) has a solution, hence any n+ 1 of the halfspaces {y:a,;y=b;} have a point
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in common. Now Helly’s Theorem in R* implies that the intersection of the
[7|+1 convex sets {y: a;y=b;} and {x: ex<M, x=0} is not empty, i.e. it contains
a point x,. This point x, is feasible for the program (4) and ex,<M=2M(a;, b;, ¢, I).
This contradiction proves the existence of the appropriate J. [

Acknowledgment. I would like to express my thanks to P. Frankl and 1. Barany
for their help.
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