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ERDAS — KO — RADO TYPE THEOREMS
WITH UPPER BOUNDS ON THE MAXIMUM DEGREE

Z. FUREDI

ABSTRACT

Let X be a finite set of cardinality »n and let # be a family of
r-subsets of X. Suppose that any two members of # intersect and for
some given positive constant ¢, every element of X is contained in less
than c¢| #| members of #. Our main results are

(Theorem 2.) If there exists a k-uniform projective plane and

k
Kokl S E-T

then
max | # | = (k* —k+ 1)(r:lk)+0((,.__;z_1))'

(Theorem 3.) There exist a function C(c) > 0 and an integer k(c)
such that for every ¢ (0<c<1)

max | #1=c@(, ", )+ol(, _%_}))
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(Proposition 8.) The function C(c): (0, 1)~ R is piecewise constant
or a rectangular hyperbola arc.

1. INTRODUCTION

L.1. Let X be a finite set of n elements. A family # of the subsets
of X is intersecting if any two members of £ intersect.

Erdés, Ko and Rado [3] proved, that if # is an intersecting

set-system of the r-tuples of X and n>2r then |Z|< (r;: })

Equality holds in the case n > 2r if the members of % have a common
element.

Let ¢ be a real number, 0< c< 1. The degree of the point x in
the set-system % is denoted by ds (x) orsimply d(x)=:|{F: x€ Fe
€ #}. Erd6s, Rothschild and Szemerédi (see [2]) raised the
following question: How large can the intersecting set-system % of r-
tuples of X be if each point has degree at most ¢| % |. The class of such
systems we denote by % (n, r,¢), fln,r,c) denotes the maximum size of
such an #. The Erd6és — Ko — Rado’s theorem mentioned above can be
formulated as follows:

Theorem A [3]. fir.r, D= ("~ 1) if n>ny). |#1= fin,r, 1)
iff for some x€e X #F = F(x]=:{F: FC X, |F|=r, x€ F}.

1.2. Let DC X, |D|=k? —k+ 1. If a finke geometry of order
k—1 exists on this k%2 — k+ 1 elements then let #, denote the set-

system consisting of its lines. #, denote the set-system consisting of the
three edges of a triangle. We put

Fl2 1 ={FCX: |F|=r, FﬁDEP)’k},

F12,] =:{FCX: |F|=r, FN D contains some line of 2}

(In what follows we use the notations #[#] and #[#] in the same
sense.) Then:

n—(k* —k+ 1))

| 7 [2,11 = (K* — k+ 1)( .k
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and

max d(x) _ k
|F 21l k2 —k+1

n>k? —k+ ).

Relying on this Erd&s, Rothschild and Szemerédi conjectured, that

k 1
A1) =9 (7)),
k

but if ¢< m,

then

fin, 7,0y = 0(—=1 (7))

nk

furthermore if no k-uniform projective plane exists then

k I
f(rr =) = 6w (7))

They proved this conjecture for k= 1,2 (unpublished). P. Frankl more

generally solved the cases %< c< % and % < e¢< 1, thus verifying the

conjecture for k= 3.

Theorem B [5].

W If —g—<c<l and n>n,(r,c) then

n—3 n-—3
f(n,r,c)=3(r_2)+(r_3).
If #e#n,r,c) then |F|=fln,r,c) holds iff F = F[2,].

i) If —3— <c<% and n>ny(rc) then

fin,r,0)= | F[2,]1 = 7(’;:;“ 0((,114))-
Equality holds iff % = 9"[_9;].

1.3. The problem in 1.1 can also be considered in the following way.
Knowing the cardinality of % what can we say on its maximal degree.
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So Theorem C (i) and (iii) are mere consequences of Theorem B.

Let c(n,r, N) denote the greatest real number satisyfing the follow-
ing statement. If £ is an intersecting set-system of r-tuples of an n-
element set and | # |> N, then max dz;(x)>c|ZF|.

Theorem C [S]. If €> 0 is fixed and n— o, then

Gii) c(nr,(7+ (")) =5 - o),

(iv) c(n,r,(rf?))e] =5 —o(1).

The intention of this paper is to generalize Theorems B and C, to
answer the problems raised above by working out a generalization of known
methods. The paper also determines the extremal set-systems for infinitely
many further values of c.

2. RESULTS

2.1. We are going to prove the following theorem conjectured by
P. Frankl relying on C (i) and C (iii).

Theorem 1. If €> 0 is fixed and n -~ -, then

k
C‘(I’l, r, e(rf k)) = m — o(1).

The following is a generalization of Theorem B and the conjecture 1.2.

Theorem 2. If there exists k-uniform projective plane and

k

1
_—__.._< ——
PRI

then

ﬂn,r,c)= (k2 — k+ 1)(,._nk)+0((r_;€1__ 1))
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For n>n, (r,¢c) | #|=f(n,r,c) can occur iff there exists an #, for
which

F D Fl2,].

If k= 2,3 thenhere equality can be written, but for k> 4 F — 97[7/7,:]
consists of sets intersecting all lines of 2, and containing none of them.
Thus

17~ Fizai<ol(, " oz  @>05.

Finally if n> n, (r,c) then
£ )

U e e

= |F 2]l

2.2. The results of Theorems 1 and 2 will be better understood in
view of a more general result which is our proper aim. To state this we
need some (well-known) definitions.

Let # denote a finite set-system on a ground-set X. v(#') or simply
v denotes the maximum number of disjoint edges in # ie. v(#) =

=max{w: 3F,,... , E_ € #, E;N E]. = ¢}. The rank of # denoted
by R is the greatest cardinality of edges, i.e. R(A#) = max |E|.
Ecx

7=1(#) denotes the minimum number of covering points in #
ie. T(#)=min{|T: TCX, EnNT+#¢ for al E€ #} Clearly

1) v< 7< Rv.
A function w: # - R is a fractional matching of # if
w(E)>= 0 for all edges E€ 4,

Z w(E)< 1 for each point x € X.

Esx

(2)

Introducing the notation |w|= EZ w(E) let
cH

v¥(#)=:max{|wl|: w is a fractional matching of #'}.

For instance if # is an union of v disjoint g’R then
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* 1
3) vi ()= (R—1+5)v
A function - t: X > R is a fractional cover of # if
t(x) > 0 for each point x € X,

2> t(x)> 1 for each edge E€ ¥

xE€E
4 1

Introducing the notation |#|= Z;{ t(x) let
xe

{’r*(,%”) =:{min | t|: ¢ is a fractional cover of #}.

It is a well-known fact (a consequence of the Duality Theorem in linear
programming) that v*(»#’) and 7*(#) exist, are finite and equal to each
other:

) vsv*F=7r¥<g T,
From (1) and (5) we have
(6) v¥=71*< Rv.

On the right-hand side of (1) equality can occur (there exists a # for
all R and v satisfying 7= Rv), butas L. Lovasz showed ([8])

v¥* < Rv

for all hypergraphs. L. Lovész also investigated the expression sup v*(#)
when the values R and v of the rank and the matching number are given.
Let it be denoted by v*(R,v) ie. v*(R,v)= sup (v¥(#): R(x)< R,
v(A#)<v} and we put v¥*(R, 1) = v*R).

The following sharper results will be used:
Theorem D [6].

(i) If R(F)<SR, v (H#)<v and ' is not the union of v disjoint
Pr then

V)< (R -1+ 5)v— .
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Thus v*(R,v) = (R -1+ %)\) if there exists a Pp.

(ii) If no 2, exists then VIR, VIS (R - 1)v.
(i) {v*(A): R(A)YS R, W(HA)< V| < oo,

so if the rank and the matching number is bounded then v*(#) has on-
ly finitely many values.

Proposition E [6].

) v¥R,v)=max {v*(H): R(#)< R, vw(K)< v}, in other words:
there exists an hypergraph with the given bounds on the rank and matching
number for which v*(#) takes its supremum.

(By D (i) and (3), the union of disjoint R-uniform projective planes
are such hypergraphs. If %, does not exist then the value of v*(R, V)
is unknown.)

(i) V¥R, VIKV*R+1,v)
(i) (R —o(R)Y<V*R, V< (R -1+ ).
(E (i) is a consequence of D (iii)).

B _ 1234y
2.3. The sequence {;T(—R—)}R 1.2, {1, 3513 } is strictly
monoton decreasing by E (ii) and E (iii), and it tends to zero. Thus one can

find a natural number k£ (k> 2) for any real number 0<c< 1
1

. o 1
satisfying NLIT5) <c< k=)

1

Theorem 3 (Main Theorem). If \)—*ék—)ﬁ c< \)*(Tl—)’ then exists

a C(c)> 0 such that
fin,r, o= c@(, " )+ ok o, _ 2 ).

As in Theorems A, B and 2 here also holds, that if »n > n,y(r, ¢) and
# € F(n,r,c) is maximal then there exists an D C X, the size of which
depends only on k (e.g. |D|< 4% - k2) and an intersecting set-system %
of rank k on D, such that # N #[4] isthe essential part of £, i.e.
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|7 0 F1BI=ce, ")+ ok o, _ 1))
|7 - F@BI<LO(,_;_ )

(# will be v-critical, see chapter 3.)

The determination of C(c) is a finite problem. This means the follow-
ing: solving a problem of linear programming, to be defined later, for each
of fhe finitely many # -s under consideration we can get C(c). We do this
in the proof of Theorem 11 in [7].

2.4. Corollaries 4 and 5 are trivial consequences of Theorem 3. They
answer the question of 1.3 and are extensions of C (ii), (iv) resp. (i), (iii).

Corollary 4. If €> 0 fixed and n tends to infinity then

n 1
c(n, r, e(r N k)) = D o(1).
Corollary 5. If €> 0 fixed and n tends to infinity then

c(mrk?—k+1+0( ")) =15 o).

2.5. The Propositions 6-10 investigate the function C.

Proposition 6. The function C: (0, 1) > R is right continuous, and

monoton increasing in the interval [v*(lk)’ \)*(kl— 1)).

Proposition 7. There exists a function L(k) for which

Lk)

CO<T—o*k=1)

in the interval [\)*(lk)’ \)*(kl_ 1)).

Thus C can be majorated by a hyperbola in this interval. We do not
whether C realy tends to infinity in any of these intervals, however we
have the following.

1 1
v*k) v¥(k —
finitely many intervals such that on any of these intervals C is either
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constant or a hyperbola of type (u,v> 0).

u—v

Note that C is piecewise constant in all known cases. (c.f. Theorem
B, Theorem 2, see also Theorem F and Theorem 11 below.) It seems very
likely that it is not always so. It is very likely that some hyperbolas occur
T 4.3 _ 13 in the i 4.1
in the interval [T§’ 7], although C(c¢) = 13 in the interval [13, 3),
according to Theorem 2.

In what follows we use the following notations. Let # be a set
system, kK any natural number then #_,, %,, 2., = {Be #: |B| é k}

respectively.

Proposition 9. lim C(c) = « when c¢ tends to \)*—(klj_l—) from the

left iff there exists an intersecting set system % of rank k such that
(@) v¥(H_,_)=Vv&k-1
(b) v¥(#B)>v*(k —1).

The conditions of Proposition 9 are never satisfied if there exists a
P _1-
Proposition 10. If there exists a k — 1 uniform finite projective

1
_1)]’

. . 1 .
plane, 2, ,, then C(c) is bounded on the interval [v*(k)’v*(k

namely
Cle) < kk+2.

(This upper bound may possibly be improved.) It seems to be very likely
that conditions of Proposition 9 are never satisfied, more precisely we

conjecture that lim C(c) < e if ¢ tends to v*—(kl——i_) from the left.

2.6. Case %< c< —%
Theorem F [4]. If % <c< % and n>ny(r,c) then

fin )= 17 (#11=10(, 3 +5(3 7 3) + (773)
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If #e& #(n,r,c) and the cardinality of % is maximal, then there exists
a 3-uniform, intersecting set system J#, with 10 members on a 6-etement
set such that

F=F[H,]
There exists exactly one such #,. (see Figure 1)

Theorem 11 [7]. If g< c<% and n> nO(r, c) then

fin,r, c) = 10(7;:2) + 5(7::3,) + (ﬁiﬁ)

If #€ #(n,r,c) and cardinality of # is maximal, then % = 9‘[?%71.]
for some 1<i< 6. (see Figure 1)

So Aln,r,c) is constant on the whole interval (-%, %) . Theorem 11
differs of Theorem F in that in case %< c<-§ five more extremal

systems are allowed. E.g.
F#,={FC X: |Fi=r, |[FnD|> 3} (ID|=5).

So we have completely different extremums. Such occurrences are
not rare in combinatorics, even in the Erdés — Ko — Rado type theorems,
see e.g. the theorem of Hilton — Milner for r= 3.

The following is a consequence of Theorem 11 and a strengthening of
Theorem C (ii).

Corollary 12 (7). If €> 0 is fixed and n tends to infinity, then
n 2
c(n,r,(10+ &)(, ~ 5)) =5 — o).
This is also an improvement of a theorem of P. Frankl [35].

Acknowledgement. I would like to express thanks to L. Surdnyi,
who helped me to write this note.

— 186 —



Figure 1
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3. LEMMAS AND THE PROOF OF THE MAIN THEOREM

3.1. By contraction of an edge E in a hypergraph # we mean the
following operation: we substitute an edge E by a smaller non-empty edge
E'& E, and thus we get the hypergraph (# — {E}) U {E'}.

A hypergraph # is v-critical if it has no multiple edges and
contracting any of its edges increases v(s¢). We can get a v-critical
hypergraph from any hypergraph by contracting its edges as far as possible
and deleting all but one copies of the appearing multiple edges.

We are going to use the following theorem:

Theorem G [4], [8]. There exists a function L(R,v) such that if
the hypergraph # is v-critical and its rank is R, then

|E(#)| < L(R,v) < (RV)R
and

R\)+R—1).

R
<57 g

3.2. A set system % is called the nucleus of the hypergraph # if
¢0¢# and for every HE # there exists a B= B(H)€ % such that
B is contained in H. By 3.1, s has a v-critical nucleus, and its
cardinality is at most (R\))R .

Lemma 13. Suppose that # is a system of r-tuples of an n-element

set, W (H)=v and 1< k<r. Then there exists a v-critical set system
B* of rank k such that

k—l)

Q) m—g«-[%ugum)(’i:k_l .

Proof. Let # a v-critical nucleus of #, and #* a v-critical
nucleus of #_,. Then

|9f——.9“-[34*]|<|{H€9f2 336«%>k such that BCH}|<
n—|Bl . n—k—1
<, Glip)<ia, 02 7)<

<ztew(""F7 ).
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In what follows we call the #* of the Lemma 13 the v-critical
nucleus of rank k of #. Of course #* is not unique. (In what follows
we only use (7).)

3.3.

Lemma 14. Let a be any non-negative real-valued function on the
edges of the hypergraph (X, #). Then

max ( 2> a(B))>?1(—gﬁ( S a®) = -

al
xex B>3x BE® v¥(#)
(la|l denotes the sum 2 a(B)).

Remark. This lemma is the extension of the well-known inequality

| 4
2 R
s N

Proof. Let M =:max Z_’ a(B). Then the function % is a fraction-
xeX B>x
. a|_lal _ s
al matching of #, thus ‘MI_ M < v¥(4#).

3.4. Let # be v-critical nucleus of # with rank k. We define: a
function a(#, #). # > R on the edges of # as follows. First we choose
an edge B=BH)E#A to any Hex N Z[#] such that BC H.
Then let

a(B) = —— o I(H: He# 0 (&), B = BUD}.

r—k

a(#, ») is not uniquely determined by # and # in general but this
will cause no confusion.

3.5. Let 0<c< 1, and (X, #) aset system with max |B|= k.
Be =

The optimum value of the linear programming problem (8) is called
the capacity of # belonging to c.
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w: Z > R

w(B)>0 forall Be#

®) w(B)< 1 forall BE#,

> w(B)< c(Zw(B)) =cl|wl|, forall x€ X.

B>x
Capg(c) =:max{|wl|: w satisfies (8)}.
It may of course occurs Cap,(c) = and Cap,(c)= 0.

The following Main Lemma explains how useful the concept of
capacity is and that Cap,(c) shows how large a set system F € F(n,r,c)
can be if its nucleus of rank k is 4.

Lemma 15 (Main Lemma). If # € F(n,r,¢) and # is its v-
critical nucleus of rank k then

9 |# 1< Cap, ), ") + K(r, o "_1).

k) r—k

On the other hand for any intersecting v-critical set system # of order k
there exists an F'€ F(n,r,c) such that

(10 |9’"|>Capg(c)(rilk) —K(r,c)(r_;clm )
If Cap 4 (c) =< the instead of (10) we have

!
| < |

sup
e (rf k)

We are goint to prove this Main Lemma in chapter 5. Before this we
discuss the function Cap,(c) in chapter 4. Now we only prove some
simple properties of this function helping us in obtaining the Main Theorem
from Main Lemma.

Lemma 16. Cap,(c)>0 iff W{/}) <ec.

This is a consequence of Lemma 14, and the definitions of v and Cap.
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Lemma 17. If # is an intersecting set system of rank k and

1 1 1

VR S V@B SV - D
then
v¥(#8) < Capylc) < T:_c—'lvi?—ﬁlﬂ_)
<k

Proof. The lower bound is obtained from the fact that an optimal

fraction matching w satisfies (8) if ¢ > v—*l(??) and clearly | w| = v*(£).

To prove the upper bound let w be any function satisfying (8). We
apply Lemma 14 to the restriction of w on #_, and then we use that
w fulfils (8):

1 ; 1
— — | # <~ B)} <
) (W= 14D < 5o (BEQZ;kW( )
< max ( > w(B)) < max ( Z w(B)) < ciwl
xex B>3x xex ' B>x
Bea ., Be #

Comparing the first and last part of this inequality we get Lemma 17.

The proof of Theorem 3. Let # € F(n,r,c)

1 1
VR SCSTE - 1)

By Lemma 15 (9)

| F | < Cap‘%(c)(ril L)+ Ko, c)(r_ 1)

where # 1is a v-critical nucleus of rank k. # is intersecting. There are
only finitely many v-critical, intersecting set-systems of rank & by
Theorem G. Moreover Cap,(c) << for all such #-s by Lemma 17. Thus

an | # | < maxCap%(c)(rfk]+K(r,c)(,,_/r€l_1)’

where the maximum extends over all v-critical, intersecting set-systems of
rank k.
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Suppose Capg.(c) = max Capgz(c) then Lemma 15 (10) gives an
F'e F(n,r,c) such that

) n n
a2 1#F1>Capa @, ") -k ol, )
The inequalities (11) and (12) proves that

fn,r,c)= max | #|= max Cap, (c)( n k) +
¥ € & (n,r,c) r—

+o(krol,_5_ )

This establishes Theorem 3. Moreover we have

1 1
Corollary 18. If RET7) <c< Tk = 1) then

C(c) = max {Capg (c): # has rank k, is v-critical,

and intersecting}.

4. A SURVAY OF THE FUNCTION Cap (¢)

4.1. In this chapter # is a fixed hypergraph of rank &k, and
Cap g (c) = Cap (¢).

Lemma 19.

(i) The function Cap: (0, 1) > R U {=} is monoton increasing and

. . . . |
is continuous except in the point \)*(Q).

.. 1
(i) If m< ¢, <t<c, and Capg(c,) <= then

Cap (c,) Cap (¢,)(c; —¢;)

13)  Cap (D> Gare e, — N+ Cap (¢, — ;)

Lemma 19 means that Cap (¢) is not smaller than the value at ¢ of the
rectangular hyperbola joining the points (c;; Cap(c;)) and (c,;
Cap (c,)). See Figure 2.
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I
!
|
/ |
// |
/ Cap (1) o :
/ I
/ |
Cap(t) e 7 y I
e / |
- 7 |
o _ |
e '
. ; e — ' —1
¢y t Cy ¢y t c,
0< Cap (¢ )< Cap (c,y) <oo 0<Cap(c;), Cap{c,) =
Figure 2
If we substitute c, by G?*Tlg'f)’ t by ¢—h, ¢, by ¢ in(13), and

use Lemma 17, according to which Cap [;%%)) >v*(#) we get

Cap (c)?
v*(:éf)(c —

(14) Cap(c—h)=Cap(c) —h

1
v*(%))
. 1
since W<c~h<c and Cap (¢) < o=,

1

We need this Lemma on the interval [ *1 , % . In this
v¥k) v¥k —-1)

interval Cap,(c) < by Lemma 17. However the proof will show that
the proposition of the lemma can also be formulated for the case when
Cap (c,) = .

In this case (13) becomes the simpler formula

Cap (¢ )(cy —¢;)

(15)  Cap, (> e

Also the function Cap ,(c) is ((O, 1) \{3*(17)}) - R U {«} continuous
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in the sense that R U {=} is the Alexandroff-compactification of the real
numbers.
Theorem 20. The function Cap,(c) is constant on the interval

(O,F,ﬁ) and on an other interval [t(#),1) (with some H#)< 1)

and on the interval (\)T(l%,t(%)) it is the union of finitely-many

rectangular hyperbola arcs.

(All these hyperbola arcs are of the type ¢ - Zt—l—vc’ and the number of

24kI® |

them is between O and See Figure 3.)

According to Lemma 19 (ii) the hyperbola arcs mentioned in Theorem
20, get less and less steep when c¢ increases. The proofs will be presented
in the following order: 19 (ii), 19 (i), 20.

S

—q

\)*(B) t(B)

Figure 3

4.2. The proof of Lemma 19 (ii).

Suppose that w;: % - R* satisfies (8) substituting ¢ by C;s and
suppose |w;|=Cap (¢;) (i=1,2). Then > w;(B) < c;|w;| thus

B>x

B%; aw, (B) + (1 —a)w,(BY< ac; Iw, | + (1 — a)e, w, |,
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for 0< a< 1 arbitrary. Hence the function aw; + (1 — ©yw, has weight
alw, |+ (1 —a)lw, |, and satisfies (8) substituting ¢ by
ozcllw1 f+ (1 -a)czlwzl
ofw [+~ alw, |

From this we get

occllw1|+ (1 —a)ec,lw, |
Cap (—gr TH @ Tw, 1) >

= aCap (c;) + (1 — &) Cap (¢c;).
Putting

B (c, —Dlw, |
T Tw, e =D+ Iw, [F—c;)

we get (13).
Q.E.D.

4.3. The proof of Lemma 19 (i)

The function Cap 4(c) is clearly monoton increasing. This and (14)

show that if ¢ > v_*(—l._@—j then Cap ,(c) is left continuous.

The rightside continuity is proved by a simple argument. In view of

the monotonity we only have to prove that if ¢; ; <¢; and lim ¢;=c¢

then Cap (c)>= lim Cap (cl.). Let T be a real number such that T'<

i—>

j— o

< lim Cap (¢;) further on let w;: # > R* some function satisfying (8)
(with ¢=c¢) and T<|w;|<2T. A function w; with such an upper
bound can be found since when w; satisfies (8) so does aw; for all
O0<a< 1.

Let B, € #. The sequence {w;(B, )}i=1,2,... is bounded (C [0, 271)
thus there exists an infinite subsequence Il C N such that lim {w, (Bl):
i€} exists. Let B, be an edge of # —{B,;} and I, an infinite sub-
sequence of 11 such that lim {wl.(Bz): i€ 12} exists. E.t.c. for all m
edges of #(#|=m). Let wO(B].) = lim {W,-(Bj): i€l }. Thisfunction
satisfies (8). Thus Cap,(c) = [wy |2 T.

Q.E.D.
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4.4. Proof of Theorem 20

We use the simple fact that the optimum of the linear programming
problem (8) can be obtained on a vertex of the | X|-dimensional polytope
defined by (8). So there exists a w such that Capg(c)=|w| and w is
the unique solution of the system of equations:

(w(B) =0 for some BE #

w(B)=1 for some B€E @,

(16) ;
1 2 w(B)=c|w| forsome x€ X, and
E]

x

Z'w(B):%chI.

We consider c|w| as a new variable (y). Solving this system of
equations by Cramer’s Rule, the value of y = ¢lw]| is defined as the ratio
of two determinations. The determinant in the numerator contains only
0,1,—1, the one in the denominator has also 0,1, — 1 only expect in

the last row, where one single —% occurs. Thus

_ det[0,1,-1] _ A
clwl= TR i
det [0,1,-1,-~] B+D-
C C
Iwl= =2
~ D+ Bc

and A,B,D are integers and depend on the choose of (16) only.

(8) contains at most 2|4 |+ | X| inequalities, (16) can be chosen on
at most 2%%'*! ways. So far we have that the value of Capg(c) is

obtained by one of the finitely many hyperbolas Cap, is

—vc’
continuous by Lemma 19 (i), thus it cannot change arbitrarily from a
hyperbola to another, this change must allways take place on a common

point of some hyperbola arcs. There are at most 24%'#! common points.

Finally Lemma 19 (ii) shows that once the graph of the function
Cap, contains an interval on which it is constant, it can not contain any
more hyperbola arcs (for larger values of c¢).
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5. PROOF OF LEMMA 15
5.1. Proof of (9)

First we apply Lemma 13.

17 - s@mi<Lo(® -5

where we use the notation L(r) = L(r, 1).

If |FnF#]< Capa(c)(';___ Ilz)’ then we are done. Suppose on
the contrary. In this case Capg(c)<e and |a(#, F)| ('; _ z)

=1# 0 F(#]1> Capa (" _ k) (The definition of a(#, #) isin
3. 4.) From here we get ’
an lal > Capg(c)= 0

For an arbitrary point x € X we have
(’;: ’,z) 2 a(BY< |{F: x€ FE #, there existsa BC F}|<

S |{F: x€Fe F}|<c|F|<
SclFgn F|1B)+clF — F[B]1<

n—k—1)=

<c(*ZMal+ e (PN T

- ("= )|a|(c+c L()Ial]

r—

This implies

max > a(B)< Ial(c+c L() )
xeXx B>3x |al
This shows that the function a satisfies (8) with the value ¢ + %:(EI%LIE—;)

instead of c¢. This implies

(r—k)L(r)
(18) O<|a|<Cap, (C+ m)
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First assume Capg,(c) = 0.

Then Lemma 16 and (18) show

1 r—FKL@
C<SVF@ St = klal
So we have
k C
| |<—_—kL(") 1 ~
v (@) ¢
and
- n—k—1 n—=~k
lF1<Lo(l "y " P +1a(t”7)<
(19)

" 1 n—k—1
<L =@ (k1)

So next assume Cap,(c)> 0. According to (17) Lemma 17 and
Theorem E (iii) we get

la]> Capg,|c|>v*(k)>12‘.

As a consequence of Theorem 20 Cap,(c) has Lipschitz property (form
the right, too), for every ¢, whenever Cap,z(c)<e. So there are
constants L = Lg(c), €= €4(c)> 0 such that

20) Cap 4(c + h)< Cap,(c) + Lh
forall O0<Ah<e.

(Let T(B)=sup{c: c< 1 and Cap,(c)< e}, with other words T(B) =
=tB) if Cap, is unbounded, and T(B)= 1 otherwise. Now if €=

=%(T—c) then L < 2——P—C;_(?.)

So suppose

(r— kL) rL(r) 2
“Taln—k) ~¢n k€

that is
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2rL(r)c <n

@1 e <m,

then we can apply in (18) the Lipschitz property formulated by (20):

(r—k)L(r)
lal < Cap ,(c) + Lc ————(n O] <
< Cap,(c) + —k 2cL(n) L.

n—k k

So we can write

(Fi<la(tZ )+ Lo (K 1<
(22)
<Cap%(c)(’;:];) +L(r)('::: )(1+2C—L)
Finally Theorem G says that there are finitely many v-critical, intersecting
set systems for any given ¢ and so any given k. According to this there
are only finitely many constants occuring in (21) and (22).

So there is a K(r,c) such that arbitrarily % € F(n,r,c) we have

|7 1< Capa @27 F) + KGro(" " K Y).

Q.E.D.
5.2. The proof of (10)

We have to show a good construction. We only deal with the case

then 0< Capg(c) < o, that is v_*l(‘k—) < ¢ < T(%).

We distinguish two cases.

Case 1. U*l(*k)< c<T(#). We use the Lipschitz property of

Cap,(c); Let c—h<c (h will be chosen later on). Let

1
v <
w: # > R be an optimal solution of (8) when we write ¢ — 4 instead of
¢ in (8). |w|= Capg4(c — h). We construct a set system F'€ F(n,r,c)
on the n-element set X using this w. We can assume that U % =D c X.

By Theorem G |D|<4*k (< n). For each BE # we choose a set-
system &, having [w(B)[nr__lle)] sets. Each member of #, has
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r elements, contains B and intersects X — D in r— |B| elements. If

@ we (" 2Y<(T13)

then we can achieve that the members of %, are pairwise different and
Z 5 is almost regular in X — D.

(A set system # is almost regularonaset Y if |d,(x) —d,()I<1
forall x,y€Y).

The almost regularity of 7, is guaranteed by the following theorem
due to Zs. Baranyai.

Theorem H [1]. Suppcse 0<m< (Z), then there exists an almost

regular p uniform set system on n elements with m members.
Note, that if n> Cap,(c)r+ |D| then(23) holds. Put #'=U #,.

Now we are going to choose k. We show, that we can do this so
that #' will be in Z(n,r,c). Clearly

@) 171=317,1=3 [we(" P > (" 1PN - 4.

If xeX—-D then

~ - 11
ds)= 3 d, < 2 ([we)(" )] =5 |D|

<twi(" P11 v a.
If xeD
D
e 0= 3 d, =3 [we)("_1PN]<

<(,Z »@) ("2 < c—mwi(", 2.

Thus we have '€ F(n,r,c) if ds.(x)<c|F'|, thatis

~ D] IDI)

c=miwl(" ) <elwl("7 1) —clal,

that is
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c|l®|

hz ———————.
—1D
|w|(nr_lkl)

So let
__cl#|
h (n — |DI) .
r—k
If n is large enough (n>ny(c,r)), then this is smaller than c¢ —
1
V(A

Applying (14) we get from (24):
o= n— |D| ,,
| 71> Cap ,c — (" 1Y) - 141>

> Capy (" 101 -
Cap,(c)? D
—h *( 1 (nr'—lk |)—|,@I=
v (J)(C — \)—g(—%‘)‘)

cl#|Cap,(c)?

* 1
Vv (%)(c— W

+ | #1).

~ cap, (", P - (

Using again Theorem G as we have done it several times we get (10).

1 _

Case 2. (@D c.
v*(#) is rational so the optimum of (8) can be obtained by a rational

w. Thus there is a natrual number K such that w(B)K isinteger for all

Be #. Now let n=Kr!nl+|D|+q, where 0< g < Kr!

We define a set system £’ on a subset X , of X whichhas n—gq
elements. We define %' on a similar way as we did it in the previous case.

So #, isan r-uniform set-system on X, . Each of its members
contains B and meets X, —|D| in r— |B| elements, and the members

of #, are pairwise different.
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Furtheron 9"8 is almost regular on X  — D, and

|75 1=w) ("~ Pl ).

n—|D|—gq is divisible by Kr! so this number is an integer. So we get
by easy counting &' € #(n,r,c) and that (10) holds for #'.

6. PROOFS

Proposition 15 and Corollary 18 give us a relatively simple and
efficient tool to determine fin,r,c) and c(n,r, N). Their usefulness can
be seen for example in the proof of Theorem 1 and 2.

6.1. Proof of Theorem 2
Let #€ #(n,r,¢) and |&|=f(n,r,c) and n> ny(r,c). We
know by 1.2 that

k
f(n, r, C) = f(n, rm) =

> (k2 —k+ 1)(rfk)+ o((, _+_ J)-

Let # be a v-critical nucleus of rank k£ of %. If BT P, then

Capg(c) = 0 according to Theorem D (i) and Lemma 16, thus in this case

| #F | < K(r, c)(r _ Z_ 1) , a contradiction.

So #= Z, if | #|=fln,r,o0).
If we use Lemma 13 we get

n

*> —k+ (")) —kr,o(,

) <Afn,r,e)=17|<

<|&F - ff[?k]HBZ [{F: BC Fe #}|<
ca

k
<L(r)(r_,’:_ )+ K2 —k+ 1)(’;:2).

Now Cle)=k2 —k+1 is immediate).

From this inequalities we see that
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[{F: BC FE #}|> (rf k) — (K(r, &) + L)

n
r—k—ll’

for all B€ #,. Moreover for n> n(r,c) this implies

(25) 1tF: BcFe #H>r(,_ [ )

for all Beg’k.

Using (25) we prove that all edges of # intersect all edges of #.
To do this we need the following lemma.

Lemma 21. If 3 is a p-uniform set systemon Y, and |#|>

> q(p| )_fll) then 1(HX)>q.

Proof. If namely there were a Q in Y, with g elements, Q
intersecting all edges of 47, then

_ 1Y|—1 | Yl
|,;f|<x§Q [{He #: x€ Hy < |0l p—1 ) <¢1(p_1)

a contradiction.

Returning to the proof of Theorem 2 we apply Lemma 21 to Y =
=X—-B, q=r, p=r—k—1 and to the set system #, ={F— B:
BCFe #}. Soaset F, with r elements may intersect all edges of
#p onlyif BNF, + ¢.

But & is intersecting and B was arbitrarily, so we get.

(26) BﬂFO#:q) forallBeg‘k and Foefi'.

It is a well-known fact that if a set - S meets all edges of £, then
|S1> k. This is improved by the following theorem dueto J. Pelikdn.

Theorem I [9]. Suppose k>4 and S meets all edges of P, but

contains none of them. Then |S|> k + Vz;

It easy to see there is no such S in the cases k=1, 2, 3.

Using Theorem I we obtain from (26) that
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|5"'—.?F[—?—k]|<2k2_k+l[ " k] if k>4 and
r—k—V;—

& — #(#,11=0 if k<3.
Kk
k2 —k+ U
system % U & [755;] would also be in #(n, r, ¢). This would contradict
to the maximality of #.

Clearly if ¢> then #([#,]C# since otherwise the

On the other hand if c¢= ﬁ then using the notation
U #=DcCX, we have
Beo,
max d(x) > d(x)
c= k x€D /xeD —
kK2 —k+1~  |#] DI # |
1 > |[FnDj_ 1 k k

“TF1rEs 1Dl ~ 1ZF1rEe k2 —k+1 k% —k+1

So equality stands throughout the formula. Thus |Fn D|= k for ar-
bitrary F € #. According to Theorem I # C #[2,] hence F = F[#].

Q.E.D.
6.2. The proof of Theorem 1 and Corollary 4 and 5

Theorem 1, follows simple from Corollary 4 and Theorem D (i),
namely

c(n, r, e(rf k]) = v*(lk) —o()= —15-2—:—12—;—1 —o(1).

The proof of Corollary 4, runs as follows. Let # € #(n,r, )
where ¢, < ﬁ arbitrary. Let # the v-critical nucleus of rank k of

Z. Applying (9) we get.
| #1< Capalc)(,” ) + KCroe)(, £ )

Cap g(cy) = 0 according to Lemma 16 thus




if n is large enough. Consequently c{n,r, € n >c, if n> n(r,cy).
r—k ] 0

¢, Was arbitrary so

c(n,r, e(r_n_ k)) > \)—*(1—]5—— o(1).

Q.E.D.

Corollary 5, is a simple consequence of Theorem 1 and Theorem D
(i) which can be proved on the same way.

6.3. The proofs of Propositions 6, 7 and 8

These statements are trivial consequences of the analogous statements
for the function Cap, using that C(c) = max {Cap,(c): # is intersecting,

o . 1 1
v-critical and of order k} if NT05) <c< k1)’ by Corollary 18.

(We also use the fact that Cap (c), and C(c) too, is finite by Lemma 17).
According to all this Proposition 6 follows by the fact Capg(c) is
continuous from the right (see Lemma 19 (i)). Proposition 7 follows from
the upper bound given in Lemma 17 and finally Proposition 8 follows
from the structure of Cap,(c) described Lemma 19 (ii).

6.4. Proofs of Propositions 9 and 10

Proof of Proposition 9. Let v—*z_k) <c< F—(Tclfi_) Let # be an

intersecting, v-critical set system of rank k, such that v¥(8)>v*k - 1.
(Such a # exists, see Proposition E (i).)

|8 | L(k)
Capg(c) < 1 —cv*(:?i<k)\ 1 — v (#_,)

according to Lemma 17 and Theorem G.
C(c) = max Cap 4 (¢)

by Corollary 18, where the maximum is taken over the #’s mentioned
above.
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Thus

. 1
27 li Cle)< L(k lim ~———— ).
(27) im . (© ()mjx(fnl—c\’(«%k))

1
Y (NN
So if 1lim C(c) = then there exists a # satisfying (a) and (b) in
Proposition 9.

On the other hand if there exists a 4, satisfying (a) and (b) in
Proposition 9 then £, can be reduced into a v-critical #, by the
contraction of some edges. We can use the following trivial lemma.

Lemma 21. If we get %, from #, by contracting some of its
edges then we v*(#,)>v*(#,) and Cap, (c)= Cap, (c)-

So #, also satisfies (a) and (b) in Proposition 9. But clearly

1 e . 1 .

Capa, (Grp=y) == Copa, 5 [ DG5St > RUE
-continuous (see Remark after Lemma 19.) This proves Proposition 9.

Proof of Proposition 10. Theorem I implies that there is no set with
k elements intersecting all edges of # x_1 but containing none of them.
So there is no intersecting set system # of rank exactly k£ such By =
=& .

k-1

According to the inequality of Theorem D (i) we have

VA )<k-2=vik-D - i @, # 2

1 -1 k-1-
So (27) implies
lm  C(e)< L(kymax (lim 1 —) <
c—»m—o I*C[V*(k— 1)—75—_——1—]
< L(BWv*(k — 1) (k- 1).
O.E.D.
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