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THE ERDOS-KO-RADO THEOREM FOR INTEGER SEQUENCES*

PETER FRANKL? aND ZOLTAN FUREDI}

Abstract. For positive integers n, k, ¢ we investigate the problem how many integer sequences
(@, az, **+,a,) we can take, such that 1=a;, =k for 1=i/=n, and any two sequences agree in at least 1
positions. This problem was solved by Kleitman (J. Combin. Theory, 1 (1966), pp. 209-214) for k =2, and by
Berge (in Hypergraph Seminar, Columbus, Ohio (1972), Springer-Verlag, New York, 1974) for r=1. We
prove that for ¢ =15 the maximum number of such sequences is k"' if and only if k=1 +1.

1. Introduction. Let 1, k, n be positive integers with k =2, n ¢, and let &/ be a set

of integer sequences (aj, ds,**+,a,), 1=a;=k. We say that (ay, a2, -, a,) and
(ai, ab,*+,ay) intersect in at least ¢ positions if we can find 1=/, <i,< < =n
such that a;, =aj forj=1,---, 1

Let f(n, k, ) denote the maximum cardinality ¢ can have supposing that any two
elements of &/ intersect in at least r positions. Setting oo ={(a;, '+, a.)|1=a; =k,
a;=1forj=1,---,1}, we obtain
(1) fln, k,)zk"™"

In the case k =2 the problem reduces to the following: What is the maximum
number of subsets of an n-set such that the symmetric difference of any two has
cardinality at most n — ¢? This problem was posed by Erdds and solved by Kleitman [5],
who proved that

[(n=0/2] s 5y .
X () if n —¢ is even,

i=0 4

) fn,2,1)=

[n=1)/2] /5y —
2 (”_1) if n—¢ is odd.

i=0 l

The expression (2) is much greater than (1) except for t = 1, when we have equality.

Berge [1] proved that
(3) fn, k, 1)=k"""

holds for k =3 as well. In fact he proved that if instead of a; =k we suppose a; =k,
ki=---=k,, then the corresponding bound is k,k3 - - - k,. Livingston [7] proved that
if equality holds in (3) then necessarily & is of the form o/, (up to isomorphism). In the
present paper we are mainly concerned with the problem, for which triples n, k,  is the
bound (1) optimal. We have the following

CoNIECTURE. The bound (1) is optimal if and only if n=t+1ork=t+1.

Remark. It is easy to check that the conjecture holds for n =¢+1, i.e.,, n =1t and
n =t+1. On the other hand, (2) and (3) settle it for t = 1.

THEOREM 1. The conjecture holds for t = 15.
We give some results for the range 2=1 = 14 as well.

2. Preliminaries. Our main tool in proving Theorem 1 will be the strongest form of
the Erdos-Ko-Rado theorem (see [2]), proved in Frankl [3]. To state it we need some
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definitions. Let s be an integer t=s5=n. Let & be a family of s-element subsets of
{1,2,+ -+, n}satisfying |[BNB'|=t for B, B'€ ®. Such a family is called t-intersecting.
Let us define

Bo={B<={1,2,---,n}{1,2,- -+, 1} B, |B|=s}

Bi={B<(1,2,- -, n}|[{1,2, -+, t+2}NB|z¢t+1, |B|=s}.

Clearly both %, and %, are r-intersecting. Then we have
THEOREM 2[3]. There exist positive constants c,, depending on t only and satisfying
<2 fort=2, and ¢, <1 for t =15 such that for

=
@ S+ 1),
Som=l
a t-intersecting family of maximum size is of the form Bo or B, (up to isomorphism).
As remarked in [3],
(5) |Bo| Z[B| iff nZB(s—t+1)(+1).

Let us now return to our set of sequences s, which is t-intersecting; i.e., any two
sequences in & intersect in at least ¢ positions. Let us define:

A ={ay, a3, +, anel@y, -+, @) €A, 1= 0501 Sk}
It is evident that & is r-intersecting, yielding
(6) fin+1,k t)=kf(n, k, ).

Consequently the function f(n, k, r)k™" is nondecreasing in n (and bounded by 1).
Hence the following limit exists (and is at most 1):

a(k, 1) = lim f(n, k)k™".

We will now bring ¢/ to a canonical form. Such a transformation was first used by
Kleitman [6]. Let 1 =/ = n. Define the transformation,

(a1, a2 - -,aj,+--,a,) if this sequence is not in 5, and
. r
T@y, - vy a0, 8,) = a=ha;=1,

(ar,a», - +,a,+++,a,) otherwise.

It is easily seen that T};(&/) ={T;;(A)|A € &/} is t-intersecting and has the same cardi-
nality as &/. Repeated application of the transformation yields a system &' which is
t-intersecting, |#'| = ||, and for 1=j=n, 1=i=k,

(7 Tt =",

Without loss of generality we may assume & =sf'. Let us associate with every
(a1, ++,a,)=A, the set B(A) ={i|a; = 1}.

PropoSITION 1. The family B ={B(A)|A e o4} is t-intersecting.

Proof. LetA=(ay,* -, a,),A'=(a}, - -,an)ed.Let{iy, i, - * -, i.} be the set of
i’s such that a;=ai{ # 1. In view of (7), A"=(a{, -+, al)esd, where a =a} for
ig{i, -, i}hai =1foriefiy, -, i}. As(ay," "+, a,)and (af, -, al)agree in the
ith position only for i € B(A) N B(A"), the statement of the proposition follows. Now by
the maximality of & we have '

PROPOSITION 2. of ={A =(ay, -+, a,)|l =a; =k, B(A) € B}, and consequently
(8) l|= T (k=1)"7"%.
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378 PETER FRANKL AND ZOLTAN FUREDI

Hence the problem of determining f(n, k, r) reduces to finding the maximum of (8) over
all z-intersecting families 9. We need an easy probabilistic result.

PROPOSITION 3. For every positive € and 8 the number of sequences (a,- -+, a,)
with 1= a; = k which contain more than (1+¢)(n/k) 1’s or less than (1—¢)(n/k) 1’s is
less than k" for n > ny(8, €).

Instead of a proof, just observe that p(a; =1)=1/k; hence the mean value of 1’g
is n/k, and the events a; =1 are independent fori=1,-+, n.

3. The main results. We prove Theorem 1 in a somewhat surprising way; namely
we prove first that it holds asymptotically, i.e., f(n, k, 1) =(1+0(1))k" " for k, ¢ fixed,
k >t=15. Then we deduce f(n, k, t)=k" ' from it for every n =+.

THEOREM 3. Fork >t =15 we have :

glk,t)=1lim f(n, k, )k™"=k "
In view of Proposition 2,

fln, k,)k™" :( Y (k- 1)"—i9!)k—n’

Be®R
for some ft-intersecting family 8. Moreover, Proposition 3 gives that for any &, £ >0,
n>ng(d, ), we have
©) fln, k, z)k"‘<(§(k—1)""”')k"‘+6,
where B runs over those elements of &8 which satisfy
(1-g)(n/k)=|B|=(1+¢)(n/k).
Now for (1—e)(n/k)=s=(1+¢)(n/k), set

B(s)={BeB||B|=s5).

As k=t+1, for n>no(e) we have (n —1)/(s —t)>c(t+1); i.e., (4) is satisfied and we
may apply Theorem 2 to the r-intersecting family % (s). We deduce

(10) |®(s)|=max (|%Bo|, |4]) = max ((’:::) (,+2)(n —r—z) +(n _,_2))‘

s—t—1 s—t—1

By (5) for k >¢+1 the value of (10) is (” “‘).
If k =t+1, then =¥
1-¢ s 1l4+¢

t+1 n t+1°

We can still obtain for n > nolt, €),

(n—t—Z)/(u—t) (s—1)-(n—3s) <(H—s)(1+£}

s—t—1 s—t =(n—t)-(n—t+1) 2+2t+1-¢’

(n—t—s)/(n+r)_s—r_s—r—l< (1+¢)?
s—t=2 s—t/ n—t n—t=1 *+2t+1’

and
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yielding

(t+2)t+e)1+e)+(1 +g}_2

. (” _I)(l F0a].
o 1
whenever ¢ is sufficiently small. Now from (9) and (11) we obtain

fn, k, k™" < (1+2¢) ; (::;) k=1)""%k"+85

= (1+2)k™ "f(";‘)(k—nua

=0
=(1+2e)k k" +8
=(1+2e)k ™" +8,

which implies, since §, £ >0 were arbitrary,
gk, )=k

As |#lo| = k""" we have g(k, t)= k™" as well, which concludes the proof of Theorem 3.
Proof of Theorem 1. Suppose that for some r-intersecting family &/ we have
|#f|= k""" +1. Then using (6) we deduce

fn' k,)Zk™ ", k, )= k" "L = k" (k™ + k™),

whence g(k, )=k "+ k™" >k, a contradiction (observe that now n is fixed and we
have n'- 00), which proves the if part of Theorem 1.
For the only if part, let us define

di={A=(as,  ,a)|1=a; =k, |B()N{1, -, t+2}|z¢+1}

Obviously «; is t-intersecting, and we have forn = +2, k =1,
i = k"2t +2)k -1+ D) =k""" A+ +1-k)k ) >k" "

4. Some remarks. Using the same argument we could deduce
THEOREM 4. Ifr=k > ¢, (1 +1), then

gk, D=k~ X((t+ 1)k —1)+1).

(By [3] we know that ¢, < 0.8 for t =15.) Now Theorem 4 yields
THEOREM 5. Ift=k =c,(t+1), then

fln, k, ) =k" "2t +1)(k—1)+1).

5. Probabilistic arguments. Now we want to apply the random walk method
developed in [4] to obtain a general bound on g(k, ), k >2.

Let @ be the r-intersecting family associated with the maximal set of /-intersecting
sequences . With & we proceed as in [3]. For 1=/ <j=n, the canonical trans-

formation is the following.
Kf,,-(B)={Br=B_{f}U{i} ifiEB,.}’eB,B'EQQ,
B otherwise;

K. (®B)={K.;(B)|B € B}.
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Applying K;; repeatedly we obtain a t-intersecting family 2’ which satisfies
K;;j(#B')=3"for all 1 =i <j =n. We may suppose B = RB'. The following propositions
are taken essentially from [3].

ProrosITION 4. No subset S of T={1,2,---,t=1,1+1, -, 1 +2]+1,.. 3}
belongs to %A.

Proof. Otherwise an application of K .2y,42:+1 for all /=0 would yield S’ @ for
S'cT'={1,2," -+, t,t+2,- -, t+2l,---}. But [SNS'|=|TNT|=t-1, a contradic-
tion. :

Let us associate with asequence A = (ay, - * -, a,) arandom walk in the plane in the
following way. We start from (0, 0). Suppose that after (i — 1) moves we are in (x, y),
Then we move to (x, y +1) or (x + 1, y) according to whether a; = 1 ornot. The random
walks associated with different sets are different. Proposition 4 yields (see [3])

PROPOSITION 5. The random walk associated with A € s{ hits the line y = x +1,

In probability language, considering the space of all possible sequences
(a1,*,an), 1=a; =k, we move upward with probability 1/k and to the right with
probability (k —1)/k. Now let us continue to walk indefinitely. Then for the probability
of hitting the line y = x +1¢, p(¢) we obtain

p0)=1,
p()=Q1/k)p(t—-D+({(k-1)/k)p(t+1) fort=l,
and
p(t)=>0 as r->co, because k > 2.
Hence, we deduce
p(t)=(k—-1)"

Consequently we have
THEOREM 6. For k =3 we have k™"f(n, k, t) = (k — 1)7', and consequently

(12) gl N=(k—-1)""

From (2) it follows that g(2, r)=2"" for every ¢ = 1, which is a great contrast to (12).

On the other hand, for k, ¢ fixed, let (s, s +1¢) be the point of the line y = x +1 for
which the probability that a random walk goes through it is the largest. Let </, be the set
of the corresponding sequences. Then obviously

(13) A ={A=(ar, -, a)|IBA)N{L,2, -, t+2s} =t +s}.
Thus
|A|
2...._.._..
glk, )= P

Then elementary computation shows that for some constant dy dependingon k only, we
have

(k-1)"*
dvt

Let us finish with a conjecture, setting the general case.
CONJECTURE. Let o, be defined by (13). Then

fin, k, r)zmjlg( | s .

gk, 1)>
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