THE ERDÖS-KO-RADO THEOREM FOR INTEGER SEQUENCES*

PETER FRANKL† AND ZOLTÁN FÜREDI‡

Abstract. For positive integers n, k, t we investigate the problem how many integer sequences (a_1, a_2, \dots, a_n) we can take, such that $1 \le a_i \le k$ for $1 \le i \le n$, and any two sequences agree in at least t positions. This problem was solved by Kleitman (J. Combin. Theory, 1 (1966), pp. 209-214) for k = 2, and by Berge (in *Hypergraph Seminar*, *Columbus*, *Ohio* (1972), Springer-Verlag, New York, 1974) for t = 1. We prove that for $t \ge 15$ the maximum number of such sequences is k^{n-t} if and only if $k \ge t+1$.

1. Introduction. Let t, k, n be positive integers with $k \ge 2$, $n \ge t$, and let \mathcal{A} be a set of integer sequences (a_1, a_2, \dots, a_n) , $1 \le a_i \le k$. We say that (a_1, a_2, \dots, a_n) and $(a'_1, a'_2, \dots, a'_n)$ intersect in at least t positions if we can find $1 \le i_1 < i_2 < \dots < i_t \le n$ such that $a_{i_t} = a'_{i_t}$ for $i = 1, \dots, t$.

Let f(n, k, t) denote the maximum cardinality \mathcal{A} can have supposing that any two elements of \mathcal{A} intersect in at least t positions. Setting $\mathcal{A}_0 = \{(a_1, \dots, a_n) | 1 \le a_i \le k, a_i = 1 \text{ for } j = 1, \dots, t\}$, we obtain

$$(1) f(n, k, t) \ge k^{n-t}.$$

In the case k=2 the problem reduces to the following: What is the maximum number of subsets of an n-set such that the symmetric difference of any two has cardinality at most n-t? This problem was posed by Erdös and solved by Kleitman [5], who proved that

(2)
$$f(n, 2, t) = \begin{cases} \sum_{i=0}^{\lfloor (n-t)/2 \rfloor} {n \choose i} & \text{if } n-t \text{ is even,} \\ \sum_{i=0}^{\lfloor (n-t)/2 \rfloor} {n \choose i} & \text{if } n-t \text{ is odd.} \end{cases}$$

The expression (2) is much greater than (1) except for t = 1, when we have equality. Berge [1] proved that

(3)
$$f(n, k, 1) = k^{n-1}$$

holds for $k \ge 3$ as well. In fact he proved that if instead of $a_i \le k$ we suppose $a_i \le k_i$, $k_1 \le \cdots \le k_n$, then the corresponding bound is $k_2 k_3 \cdots k_n$. Livingston [7] proved that if equality holds in (3) then necessarily \mathcal{A} is of the form \mathcal{A}_0 (up to isomorphism). In the present paper we are mainly concerned with the problem, for which triples n, k, t is the bound (1) optimal. We have the following

Conjecture. The bound (1) is optimal if and only if $n \le t+1$ or $k \ge t+1$.

Remark. It is easy to check that the conjecture holds for $n \le t+1$, i.e., n = t and n = t+1. On the other hand, (2) and (3) settle it for t = 1.

THEOREM 1. The conjecture holds for $t \ge 15$.

We give some results for the range $2 \le t \le 14$ as well.

2. Preliminaries. Our main tool in proving Theorem 1 will be the strongest form of the Erdös-Ko-Rado theorem (see [2]), proved in Frankl [3]. To state it we need some

^{*} Received by the editors December 3, 1979, and in final form March 24, 1980.

[†] Centre National de la Recherche Scientifique, Paris, France.

[‡] Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary.

definitions. Let s be an integer $t \le s \le n$. Let \mathcal{B} be a family of s-element subsets of $\{1, 2, \dots, n\}$ satisfying $|B \cap B'| \ge t$ for $B, B' \in \mathcal{B}$. Such a family is called *t*-intersecting. Let us define

$$\mathcal{B}_0 = \{B \subseteq \{1, 2, \dots, n\} | \{1, 2, \dots, t\} \subseteq B, |B| = s\}$$

$$\mathcal{B}_1 = \{B \subseteq \{1, 2, \dots, n\} | | \{1, 2, \dots, t+2\} \cap B | \ge t+1, |B| = s\}.$$

Clearly both \mathcal{B}_0 and \mathcal{B}_1 are t-intersecting. Then we have

THEOREM 2[3]. There exist positive constants c, depending on t only and satisfying $c_t < 2$ for $t \ge 2$, and $c_t < 1$ for $t \ge 15$ such that for

$$\frac{n-t}{s-t} > c_t(t+1),$$

a t-intersecting family of maximum size is of the form \mathcal{B}_0 or \mathcal{B}_1 , (up to isomorphism). As remarked in [3],

$$|\mathcal{B}_0| \leq |\mathcal{B}_1| \quad \text{iff} \quad n \geq (s-t+1)(t+1).$$

Let us now return to our set of sequences \mathcal{A} , which is t-intersecting; i.e., any two sequences in \mathcal{A} intersect in at least t positions. Let us define:

$$\mathcal{A}^+ = \{(a_1, a_2, \dots, a_{n+1}) | (a_1, \dots, a_n) \in \mathcal{A}, 1 \leq a_{n+1} \leq k\}.$$

It is evident that \mathcal{A}^+ is t-intersecting, yielding

$$(6) f(n+1, k, t) \ge kf(n, k, t).$$

Consequently the function $f(n, k, t)k^{-n}$ is nondecreasing in n (and bounded by 1). Hence the following limit exists (and is at most 1):

$$g(k, t) = \lim_{n \to \infty} f(n, k) k^{-n}.$$

We will now bring \mathcal{A} to a canonical form. Such a transformation was first used by Kleitman [6]. Let $1 \le i \le n$. Define the transformation.

$$T_{j,i}(a_1, \cdots, a_j \cdots, a_n) = \begin{cases} (a_1, a_2, \cdots, a_j', \cdots, a_n) & \text{if this sequence is not in } \mathcal{A}, \text{ and} \\ a_j = i, a_j' = 1; \\ (a_1, a_2, \cdots, a_j, \cdots, a_n) & \text{otherwise.} \end{cases}$$

It is easily seen that $T_{j,i}(\mathcal{A}) = \{T_{j,i}(A) | A \in \mathcal{A}\}$ is t-intersecting and has the same cardinality as \mathcal{A} . Repeated application of the transformation yields a system \mathcal{A}' which is t-intersecting, $|\mathcal{A}'| = |\mathcal{A}|$, and for $1 \le j \le n$, $1 \le i \le k$,

$$(7) T_{j,i}(\mathcal{A}') = \mathcal{A}'.$$

Without loss of generality we may assume $\mathcal{A} = \mathcal{A}'$. Let us associate with every $(a_1, \dots, a_n) = A$, the set $B(A) = \{i | a_i = 1\}$.

PROPOSITION 1. The family $\mathcal{B} = \{B(A) | A \in \mathcal{A}\}$ is t-intersecting.

Proof. Let $A = (a_1, \dots, a_n), A' = (a'_1, \dots, a'_n) \in \mathcal{A}$. Let $\{i_1, i_2, \dots, i_r\}$ be the set of i's such that $a_i = a_i' \neq 1$. In view of (7), $A'' = (a_{1i}'', \dots, a_n'') \in \mathcal{A}$, where $a_i'' = a_i'$ for $i \notin \{i_1, \dots, i_r\}, a_i'' = 1 \text{ for } i \in \{i_1, \dots, i_r\}. \text{ As } (a_1, \dots, a_n) \text{ and } (a_{1'}'', \dots, a_n'') \text{ agree in the } i \notin \{i_1, \dots, i_r\}.$ ith position only for $i \in B(A) \cap B(A')$, the statement of the proposition follows. Now by the maximality of A we have

PROPOSITION 2. $\mathcal{A} = \{A = (a_1, \dots, a_n) | 1 \le a_i \le k, B(A) \in \mathcal{B}\}, \text{ and consequently } \}$

(8)
$$|\mathcal{A}| = \sum_{B \in \mathcal{B}} (k-1)^{n-|B|}.$$

Hence the problem of determining f(n, k, t) reduces to finding the maximum of (8) over all *t*-intersecting families \mathcal{B} . We need an easy probabilistic result.

PROPOSITION 3. For every positive ε and δ the number of sequences (a_1, \dots, a_n) with $1 \le a_i \le k$ which contain more than $(1+\varepsilon)(n/k)$ 1's or less than $(1-\varepsilon)(n/k)$ 1's is less than δk^n for $n > n_0(\delta, \varepsilon)$.

Instead of a proof, just observe that $p(a_i = 1) = 1/k$; hence the mean value of 1's is n/k, and the events $a_i = 1$ are independent for $i = 1, \dots, n$.

3. The main results. We prove Theorem 1 in a somewhat surprising way; namely we prove first that it holds asymptotically, i.e., $f(n, k, t) \le (1 + o(1))k^{n-t}$ for k, t fixed, $k > t \ge 15$. Then we deduce $f(n, k, t) = k^{n-t}$ from it for every $n \ge t$.

THEOREM 3. For $k > t \ge 15$ we have

$$g(k, t) = \lim_{n \to \infty} f(n, k, t) k^{-n} = k^{-t}.$$

In view of Proposition 2,

$$f(n, k, t)k^{-n} = \left(\sum_{B \in \mathcal{B}} (k-1)^{n-|B|}\right)k^{-n},$$

for some t-intersecting family \mathcal{B} . Moreover, Proposition 3 gives that for any δ , $\varepsilon > 0$, $n > n_0(\delta, \varepsilon)$, we have

(9)
$$f(n, k, t)k^{-n} < \left(\sum_{B} (k-1)^{n-|B|}\right)k^{-n} + \delta,$$

where B runs over those elements of \mathcal{B} which satisfy

$$(1-\varepsilon)(n/k) \le |B| \le (1+\varepsilon)(n/k).$$

Now for $(1-\varepsilon)(n/k) \le s \le (1+\varepsilon)(n/k)$, set

$$\mathcal{B}(s) = \{ B \in \mathcal{B} \mid |B| = s \}.$$

As $k \ge t+1$, for $n > n_0(\varepsilon)$ we have $(n-t)/(s-t) > c_t(t+1)$; i.e., (4) is satisfied and we may apply Theorem 2 to the *t*-intersecting family $\mathcal{B}(s)$. We deduce

$$(10) \quad |\mathcal{B}(s)| \leq \max(|\mathcal{B}_0|, |\mathcal{B}_1|) = \max\left(\binom{n-t}{s-t}, (t+2)\binom{n-t-2}{s-t-1} + \binom{n-t-2}{s-t-1}\right).$$

By (5) for k > t+1 the value of (10) is $\binom{n-t}{s-t}$. If k = t+1, then

$$\frac{1-\varepsilon}{t+1} < \frac{s}{n} < \frac{1+\varepsilon}{t+1}.$$

We can still obtain for $n > n_0(t, \varepsilon)$,

$$\binom{n-t-2}{s-t-1} / \binom{n-t}{s-t} = \frac{(s-t) \cdot (n-s)}{(n-t) \cdot (n-t+1)} < \frac{(t+\varepsilon)(1+\varepsilon)}{t^2 + 2t + 1 - \varepsilon},$$

and

$$\binom{n-t-s}{s-t-2} / \binom{n-t}{s-t} = \frac{s-t}{n-t} \cdot \frac{s-t-1}{n-t-1} < \frac{(1+\varepsilon)^2}{t^2+2t+1},$$

vielding

$$(11) |\mathcal{B}(s)| \leq |\mathcal{B}_0| \frac{(t+2)(t+\varepsilon)(1+\varepsilon) + (1+\varepsilon)^2}{t^2 + 2t + 1 - \varepsilon} < {n-t \choose s-t} (1+2\varepsilon),$$

whenever ε is sufficiently small. Now from (9) and (11) we obtain

$$f(n, k, t)k^{-n} < (1 + 2\varepsilon) \sum_{s=t}^{n} {n-t \choose s-t} (k-1)^{n-s}k^{-n} + \delta$$

$$= (1 + 2\varepsilon)k^{-n} \sum_{j=0}^{n-t} {n-t \choose j} (k-1)^{j} + \delta$$

$$= (1 + 2\varepsilon)k^{-n}k^{n-t} + \delta$$

$$= (1 + 2\varepsilon)k^{-t} + \delta,$$

which implies, since δ , $\varepsilon > 0$ were arbitrary,

$$g(k, t) \leq k^{-t}$$
.

As $|\mathcal{A}_0| = k^{n-t}$ we have $g(k, t) \ge k^{-t}$ as well, which concludes the proof of Theorem 3. Proof of Theorem 1. Suppose that for some *t*-intersecting family \mathcal{A} we have $|\mathcal{A}| \ge k^{n-t} + 1$. Then using (6) we deduce

$$f(n', k, t) \ge k^{n'-n} f(n, k, t) \ge k^{n'-n} |\mathcal{A}| \ge k^{n'} (k^{-t} + k^{-n}),$$

whence $g(k, t) \ge k^{-t} + k^{-n} > k^{-t}$, a contradiction (observe that now n is fixed and we have $n' \to \infty$), which proves the *if* part of Theorem 1.

For the only if part, let us define

$$\mathcal{A}_1 = \{A = (a_1, \dots, a_n) \mid 1 \le a_i \le k, |B(\mathcal{A}) \cap \{1, \dots, t+2\}| \ge t+1\}.$$

Obviously \mathcal{A}_1 is t-intersecting, and we have for $n \ge t + 2$, $k \le t$,

$$|\mathcal{A}_1| = k^{n-t-2}((t+2)(k-1)+1) = k^{n-t}(1+(t+1-k)k^{-2}) > k^{n-t}.$$

4. Some remarks. Using the same argument we could deduce THEOREM 4. If $t \ge k > c_t(t+1)$, then

$$g(k, t) = k^{-t-2}((t+1)(k-1)+1).$$

(By [3] we know that $c_t < 0.8$ for $t \ge 15$.) Now Theorem 4 yields THEOREM 5. If $t \ge k > c_t(t+1)$, then

$$f(n, k, t) = k^{n-t-2}((t+1)(k-1)+1).$$

5. Probabilistic arguments. Now we want to apply the random walk method developed in [4] to obtain a general bound on g(k, t), k > 2.

Let \mathcal{B} be the *t*-intersecting family associated with the maximal set of *t*-intersecting sequences \mathcal{A} . With \mathcal{B} we proceed as in [3]. For $1 \le i < j \le n$, the canonical transformation is the following.

$$K_{i,j}(B) = \begin{cases} B' = B - \{j\} \cup \{i\} & \text{if } i \notin B, j \in B, B' \notin \mathcal{B}, \\ B & \text{otherwise;} \end{cases}$$

$$K_{i,j}(\mathcal{B}) = \{K_{i,j}(B) \mid B \in \mathcal{B}\}.$$

Applying $K_{i,j}$ repeatedly we obtain a *t*-intersecting family \mathcal{B}' which satisfies $K_{i,j}(\mathcal{B}') = \mathcal{B}'$ for all $1 \le i < j \le n$. We may suppose $\mathcal{B} = \mathcal{B}'$. The following propositions are taken essentially from [3].

PROPOSITION 4. No subset S of $T = \{1, 2, \dots, t-1, t+1, \dots, t+2l+1, \dots\}$ belongs to \mathcal{B} .

Proof. Otherwise an application of $K_{t+2l,t+2l+1}$ for all $l \ge 0$ would yield $S' \in \mathcal{B}$ for $S' \subseteq T' = \{1, 2, \dots, t, t+2, \dots, t+2l, \dots\}$. But $|S \cap S'| \le |T \cap T'| = t-1$, a contradiction.

Let us associate with a sequence $A = (a_1, \dots, a_n)$ a random walk in the plane in the following way. We start from (0, 0). Suppose that after (i-1) moves we are in (x, y). Then we move to (x, y+1) or (x+1, y) according to whether $a_i = 1$ or not. The random walks associated with different sets are different. Proposition 4 yields (see [3])

PROPOSITION 5. The random walk associated with $A \in \mathcal{A}$ hits the line y = x + t.

In probability language, considering the space of all possible sequences (a_1, \dots, a_n) , $1 \le a_i \le k$, we move upward with probability 1/k and to the right with probability (k-1)/k. Now let us continue to walk indefinitely. Then for the probability of hitting the line y = x + t, p(t) we obtain

$$p(0) = 1,$$

 $p(t) = (1/k)p(t-1) + ((k-1)/k)p(t+1)$ for $t \ge 1$,

and

$$p(t) \to 0$$
 as $t \to \infty$, because $k > 2$.

Hence, we deduce

$$p(t) = (k-1)^{-t}$$
.

Consequently we have

THEOREM 6. For $k \ge 3$ we have $k^{-n}f(n, k, t) \le (k-1)^{-t}$, and consequently

(12)
$$g(k, t) \leq (k-1)^{-t}$$
.

From (2) it follows that $g(2, t) = 2^{-1}$ for every $t \ge 1$, which is a great contrast to (12).

On the other hand, for k, t fixed, let (s, s+t) be the point of the line y=x+t for which the probability that a random walk goes through it is the largest. Let \mathcal{A}_s be the set of the corresponding sequences. Then obviously

(13)
$$\mathcal{A}_s = \{ A = (a_1, \dots, a_n) | |B(A) \cap \{1, 2, \dots, t+2s\}| \ge t+s \}.$$

Thus

$$g(k,t) \ge \frac{|A_s|}{k^n}$$
.

Then elementary computation shows that for some constant d_k depending on k only, we have

$$g(k, t) > \frac{(k-1)^{-t}}{dt}$$

Let us finish with a conjecture, setting the general case.

Conjecture. Let A_s be defined by (13). Then

$$f(n, k, t) = \max_{s \ge 0} |\mathcal{A}_s|.$$

REFERENCES

- [1] C. BERGE, Nombres de coloration de l'hypergraphe h-parti complet, Hypergraph seminar, Columbus, Ohio, 1972, Springer-Verlag, New York, 1974, pp. 13-20.
- [2] P. ERDÖS, C. KO AND R. RADO, Intersection theorems for systems of finite sets, Quart. J. Math., Oxford Ser., 12 (1961), pp. 313-320.
- [3] P. FRANKL, *The Erdös-Ko-Rado theorem is true for n = ckt*, Proc. Fifth Hung. Comb. Coll. Keszthely, 1976, North-Holland, Amsterdam, 1978, pp. 365–375.
- [4] ——, Families of finite sets satisfying an intersection condition, Bull. Austral. Math. Soc., 15 (1976), pp. 73-79.
- [5] D. J. KLEITMAN, On a combinatorial conjecture of Erdös, J. Combin. Theory, 1 (1966), pp. 209-214.
- [6] ——, Families of non-disjoint subsets, J. Combin. Theory, 1 (1966), pp. 153-155.
- [7] M. L. LIVINGSTON, An ordered version of the Erdös-Ko-Rado theorem, J. Combin. Theory, Ser. A, 26 (1979), pp. 162–165.