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On Automorphisms of Line-graphs 

PETER L. ERDOS AND z. FDREDI 

Let a be an automorphism of the line-graph of the r-uniform hypergraph 'Je with n points. If the 
valencies of 'Je v(x1),;; v(x2 ),;; • • ·,;; v(x.) and 

1 1
v(xz)"' v(n, r) and v(x2 ,) > v(n, r) = (n - )- (n-' - ) + 1,

r-1 r-1 

then for n > 4r a is induced by an automorphism of 'Je-(i.e. a permutation of V('Je)). 
Two examples show that the valency conditions of above theorem cannot be weakened in any 

point of 'Je. 

1. INTRODUCTION, RESULTS 

Let X= {xh ... , Xn} denote the points of an r-uniform hypergraph 'Jt. Let L('Jt) be the 
line-graph of 'Jt, i.e. the underlying set of L('Jt) is the edges of 'Jt and the pair (Eh E 2), E 1 ,e 
E 2 , E; E 'Jt is an edge of L('Jt) iff E 1 n E 2 ,e 0. Let Aut(L('Jt)) be its automorphisms. 
Denote the set of r-tuples of X by K~. 

Every permutation a E Aut 'Jt of X induces an automorphism a"' of L('Jt) in a natural 
way, namely a"' (E)= {a (x ): x E E} for every E E 'Jt. 

C. Berge and J. C. Fournier proved the following theorem [1, 2]. 

PROPOSITION 1. If a E Aut(L(K~ )) and n > 2r, then there exists a permutation a on X 
which induces a (i.e. a= aa). 

The condition n > 2r cannot be omitted. 
This question is strongly connected with the problem of reconstructing an r-graph 'Jt 

from its line-graph L('Jt). For graphs the following theorem of Whitney [5] is well known. 

PROPOSITION 2. If every vertex of the graph C§ has valency >3, then it can be 
reconstructed from its line-graph. 

Therefore, under the condition of Proposition 2 if a E Aut L(W), then there exists a 
permutation a of vertices of C§ for which a = a"'. 

The following theorem is an extension of Proposition 1 and generalized Proposition 2 to 
r-graphs. Henceforth the valency or degree of the point x of the hypergraph 'Jt is, as usual, 
v(x) =: I{E: x E E E 'Jt}l. 

THEOREM 1. If every vertex of the r-uniform hypergraph 'Jt has valency greater than 

n-1) (n-r-1)
v(n,r)= ( r-1 - r-1 +1 

and n > 2r, then for every a E Aut(L('Jt)) there exists a permutation a on X such that a = a01 • 

For graphs, Theorem 1 seems slightly weaker than Proposition 2 but, as a matter of fact, 
they are equivalent. The reason for this is that v (n, 2) = 3 is independent of n while v (n, r) 
tends to infinity for fixed r:;;,; 3. 
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The following example shows that the claim of Theorem 1 is sharp in the sense that 
v(n, r) cannot be replaced by a smaller integer if n is great enough. 

ExAMPLE 1. Let F1 = {xh ... , x,}, F 2 = {xr+h ... , x2,} and :t't1= {Fh F 2} u {F c X:
IFI = r, F nF1 = 0 iff F nF2 = 0}. Then 

v(x;)=v(n,r) ifi=s;;2r 

and 

(n-1) (n-r-1) (n-2r-1)v(x;)= r- -2 r- +2 r- ifi>2r.1 1 1 

Thus, if n > 2l, then v(x;) > v(n, r) for i > 2r. Finally the following automorphism a 1 of 
L(:t't1) cannot be induced by any permutation of X. 

Fz ifF =F1 
a1(F)=: F1 ifF=F2{ 

F otherwise. 

EXAMPLE 2. Let r;;;. 3 and 

F3 = {xl} u {x3, X4, ... , Xr+l}, 

F4 = {xz} u {x3, X4, ... , Xr+l} 
and 

Then 

v(x1) = v(xz) = v(n, r) -1, 

v(x3) = v(x4) = · · · = v(xr+l) = n -1) > v(n, r),( r-1 

and if i >r+ 1, n ;;;o3r then 

(n-1) (n-r-2)v(x;)= r- -2 r- >v(n,r).1 2 

Finally the following automorphism az of L(:t'tz) cannot be induced by any permutation of 
X. 

F4 ifF=F3 
az(F) = F3 ifF =F4 

{ F otherwise. 

As we have seen, the valency condition of Theorem 1 cannot be weakened in every point 
of J!t.. The following theorem shows that it can be done in fewer than 2r points. 

THEOREM 2. Let :t't be an r-uniform hypergraph on lXI = n ;;;o4r points, and v(xd,;;; 
v(xz),;;; · · ·,;;; v(xn). If v(x2 );;;. v(n, r) and v(x2 ,) > v(n, r), then for every a E Aut(L(:t't)) 
there exists a permutation a on X such that a = aa. 
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Examples 1 and 2 show that the conditions of Theorem 2 cannot be weakened in any 
point of fit. 

Let a set system be called intersecting if the pairwise intersections are non-empty. The 
value of v(n, r) in the theorems comes from the following theorem of Hilton and Milner 
[3]. 

THEOREM 3. If 1(5 is an r-uniform intersecting set system on X, and n 1(5 = 0 then 

(n-r-1)(n-1)
l!f51,;;:;v=v(n,r)= r-1 - r-1 +1. 

For n > 2r and r ~ 3 the equality holds iff there are a point x EX and r-tupleD eX(xe D) 
for which 

!f5 = !f5x,D ={E: X E E eX: lEI= r, EnD~ 0}u{D}. (1) 

If n > 2r and r = 3, then there is another extremum 

!f5 = !f5v ={E: E eX, lEI= 3, IE nDI ;;::2}. (2) 

2. PROOF OF THEOREM 1 

Let us suppose that fit satisfies the conditions of Theorem 1. Let a E Aut(L(flt)). The 
proof is constructive. First we define a permutation a on X, then show that a = aa. 

Let !f5i denote the system of edges of fit containing point xi. Similarly !f5v denotes the 
system of edges containing p. 

LEMMA 1. If !f5 is an r-uniform set system on X and l!f51;;:: v -1, then ln!f51,;;:; 1. 

Indeed, if n > r, then 
.\ 

(n-1) (n-r-1) (n-2)v-1= - > . 
r-1 r-2r-1 

PROOF OF THEOREM 1. Since a(!f5i) ={a(E): E E Cf5il is an intersecting set system and 
la(!f5JI = l!f5d > v(n, r), thus, according to Theorem 3, there is a common point of sets of 
a(!f5i). This point is unique by Lemma 1. Let us denote it by a(xi). Therefore if 

xi E E then a (xi) E a (E) (3) 

for every Xi EX. 
On the other hand if i ~ j, then a(xi) ~ a(xi). Suppose the contrary. Then a(!f5J u a(!f5i) 

is an intersecting set system and hence !f5i u !f5i is an intersecting system, too. 
By Theorem 3 there is a point p of X such that p E n<r:gi u Cf5j). If, e.g. p ~Xi, then 

{xi, p} e n!f5i, and it contradicts Lemma 1. So we proved that a is a permutation of X, and, 
by (3), a = aa. 

REMARK. As a matter of fact we proved the following assertion. In the class of those 
r-uniform hypergraphs (Y, fJi) for which minyE yV~(y) > v(l Yl, r), the line-graphs of the 
hypergraphs are isomorphic iff the hypergraphs themselves are isomorphic. Since v (n, 2) = 
3 for every n, it is exactly Proposition 2. 

Let us remark, if r is fixed and n tends to infinity, then almost all hypergraphs are in the 
above class. 
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3. PROOF OF THEOREM 2 (SKETCH) 

The detailed proof would contain some parts easier to prove than to understand their 
proofs. These proofs are left to the reader. 

LEMMA 2. If the conditions of Theorem 2 are satisfied, and lcgxl = v(n, r) then either 

(4) 

or there exist an Fx E cgx and an x' e a(Fx) so that 

a(<:gx) = <:g x',a(F,)• (5) 

This states that the case (2) in Theorem 3 cannot be realized. The lemma can be proved 
indirectly. 

According to the valency of the points of X let us divide the set X into three disjoint 
parts; X<v• Xv. X>v = {x EX: v(x) ~ v(n, r)}. (Naturally X<v = 0 or {x 1}.) The definition 
of the map a on the X\X<v is similar to definition of a in the proof of Theorem 1. If lcgx I~ v 
and na(<:gx) ¥- 0 then let a(x) = na(<:gx). The points X E (X\X<v) are called regular for 
which claim (3) is realized. In particular, every point of X>v is regular. For a non-regular 
point xof Xv let a(x) = x' as was defined in Lemma 2. By Lemma 1, if x, y EX\X<v• x ¥- y, 
then a(x) ¥-a (y ). Moreover, the restriction of a on X>v is a permutation of X>v· 

LEMMA 3. If x E X\X<v is a regular point, then 

x E E iff a (x) E a (E). (6) 

For points of X>v• (6) is evidently true. If x E Xv is a regular point, then a (x) E Xv, so 
la(<:gx)l = lcga(x)l· On the other hand, by the regularity, a(<:gx) c cga(x) so they coincide. 

LEMMA 4. If the point x E Xv is non-regular, and a (x) ¥- x~o then there exists an edge 
Exe cgx, which intersects all edges in cgx except for Fx defined in Lemma 2. Moreover 

(i) cgx = {Fx}u{E s;:X: lEI= r, X EE, E nEx ¥- 0}, 
(ii) no point in Ex is regular (if n ~4r- 2), 
(iii) the point a (x) is regular. 

x'=a(x) 

X 

PROOF. (i) is trivial and then a(<:gxu{Ex})=<:gx',a(F,Ju{a(Ex)} for an x'Ea(Ex). (ii) 
is proved indirectly. If y is regular point in Ex, letHE cgx be an edge, which contains points 
x, y and further (r- 2) regular points, the a-image of which is not in a(Fx). Such an edge 
exists, because n ~ 4r- 2 and there are at least 2r- 1 regular points of X, and there are at 
most r of them the a-image of which is in a(Fx). By (i), HE C. But H ¥- Fx, therefore 
a(H) ={a(z): z EH}, a(H) does not intersect a(Fx). This contradicts to x EH nF ¥- 0. 
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(iii) According to IFxuExl=2r and IX<vUXvl<2r, there exists a point ZE 
(Fx uEx)nX>v• and, by (ii), z EFx. So a(z)ea(F.. )nX>v• because z is regular. On the 
other hand we show, if x' is not regular then (ii) is satisfied by x' in place of x which 
contradicts to a (z) E a (Fx). Indeed, Lemma 2 states that at least v among the images of the 
elements of the system C€x·u{a(Fx)} contain a(x'), so a(x')~X<v· 

LEMMA 5. Suppose v(x1)<v and there exists a point u for which a(u)=x1. Let 
a(x1) =X\{a(z): z ¥ x1}. Then the cycle of the permutation a containing Xt. i.e. (xh 
a (x 1), •.• , aK (x 1) = u), has regular points only except possibility for x1 and u. 

The proof of this lemma is similar to the proof of the Lemma 4(iii). It is not given here. 

PROOF OF THEOREM 2 
1. First we show that there are at most r non-regular points. Indeed, if there is no 

u E Xv for which a (u) = Xt. then a is a permutation of X- X<v· Let us look at the cycles of 
a in Xv. Lemma 4(iii) claims that at least the half of the points are regular in every cycle. 
Therefore the number of non-regular points is ~IX<vi+!IXvl~r. 

If there exists u E Xv for which a(u) = x1 then, by (iii) ofLemma4 and by Lemma 5, the 
number of non-regular points is at most 

2 + [IX<v u Xvl-2] ~ 2 +[2r;3] = r. 
2

2. After these the application of Lemma 4(ii) gives that every xEXv,a(x)¥x1 is a 
regular point. 

3. Now it can be shown that there is no u EXv for which a(u)=x1. 
4. It was proven that every point of X- X<v is regular and a is a permutation of 

X\X<v· If X<v = 0 then a= a"', by Lemma 3. If v(x1) < v, then let a(x1) = X1- In this case, 
if x 1~ E then every point of E is regular, so a (E) = {a (x): x E E}. Finally, if x 1 E E then, 
according to Lemma 3, a (E) contains at most r- 1 regular points, so x 1 E a (E) and a = a01 • 
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