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Let Y be a positive integer. A finite family 2 of pairwise intersecting r-sets is a 
maximal clique of order r, if for any set A $2, j A 1 < r there exists a member 
E E X such that A n E = O. For instance, a finite projective plane of order 
r - 1 is a maximal clique. Let N(r) denote the minimum number of sets in a 
maximal clique of order r. We prove N(r) Q $rz whenever a projective plane of 
order r/2 exists. This disproves the known conjecture N(r) > r2 - r + 1. 

1. THE STATEMENT OF THE RESULTS 

Let r be a positive integer. We say that the hypergraph X is a maximal 
clique of order r if 

(1) lEl =rforeachBEZ: 
(2) EnFZ DforanyE,FEZ, 

(3) foranysetA$H, 1 Al <rwehaveAnE= o forsomeEE%. 

For example, the following hypergraphs are maximal cliques of order r: 

(a) the r-subsets of a given (2r - I)-set; 

(b) the systems of lines of a finite projective plane of order r - 1. 

Let us set 
N(r) = min{ 1 X’ I: 2 is a maximal clique of order r]. The determination 

of the value of N(r) is one of the few questions dealing with the problem of 
determination of the minimal cardinality of set-families satisfying certain 
restrictions in which no set can be added to it without violating these restric- 
tions. This type of problem was raised by ErdGs and Kleitman in [2, p. 282 (b)]. 
There has been very little progress in these investigations up to the present 
moment. 

Example (b) shows that for an infinite number of r’s, N(r) < r2 - r + 1 
holds. Meyer [4, 51 (cf. Erdos [I], 11th problem) conjectured that N(r) = 
r2 - I’ + 1 whenever a projective plane of order r - 1 exists and proved 
that N(3) = 7. Tn what follows we give a better upper bound for N(r) for 
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some special values of r, using families derived from the projective plane; 
in particular we give counterexamples to Meyer’s conjecture. 

THEOREM 1. If there exists a projective plane of order n, then N(2n) < 3n2, 
i.e., for an infinite number of r’s N(r) < $r” holds. 

This result raises the question of the magnitude of N(r) for other values of Y. 
The following construction, originally constructed for the case n = 2, and 
later generalized for all values of n greater than 2 by Babai and the author, 
gives other counterexamples for the conjecture. 

PROPOSITION 1. If there exists a projective plane of order n then we halle 
N(n2 + n) < n4 + n3 + n2. 

Theorem 1 and Proposition 1 provide presumably infinite families of 
counterexamples to the conjecture of Meyer, namely when n and 2n - 1 
(n and n2 - n + 1, respectively) are simultaneously prime powers. 

The exact value of N(r) or at least its order of magnitude is unknown. It is 
not even clear whether or not N(r) = O(r*) holds. I can prove only 
N(r) < rC’T”12. We should mention that the best known lower bound, which 
is due to Erdijs and Lovasz [3], says N(r) 3 @r/3) - 3. 

PROPOSITION 2. If A? is a maximal clique of order r then either / 2 j > r2 
or j V(SP)I > r2/(2 log r), where V(S) = u {H: HE Z}. 

We have the following 

Conjecture. If A? is a maximal clique then 1 A? / > 1 V(X)l. 
Our conjecture in view of Proposition 2 would imply N(r) > r2/(2 log Y). 

Let us set m(r) = max{i 2 /: Z is a maximal clique of order r]. ErdGs and 
Lovasz [3] give an example showing N(r) > [r 1 (e - I)]. On the other hand 
they prove R(r) < rT. More exactly they prove that 1 z-‘? ( < rr holds if SF 
satisfies (I), (2), and 

(3’) foranysetA,]AI =r- 1 wehaveAnE= m forsomeEEZ. 

The proof is not complicated. Here we prove another easy assertion which 
is a bit more general. 

PROPOSITION 3. Let us suppose for the hypergraph A6 that for every 
E, ,..., E,<+, E SF we have I Ui,j (& n EJl 3 maxEEs I E I =: r. Then 
/ 2 1 < kT. 

In the case of equality we can find pairwise disjoint k-element sets S, ,..., S, 
such that 

2F = (A: 1 A / = r, / A n Si 1 = 1 for i = I,..., r}. 

This proposition, although not too difficult, gives a sharp bound. 
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2. THE PROOFS 

Let 9’ denote the system of lines of a projective plane of order n. Let us 
fix an arbitrary E,E~:, E, ={x,,,...,x,}. LetussetPi={E-Xxi:EEY, 
xi E E, E # E,,}. The family UL, PC is the corresponding affine plane, JZ?, 
with 1/(d) = V(Y) - E,, . The Zi’s are different classes of parallel lines, 
[ ,Epi 1 = n. (See Fig. 1. On the figures the places of O’s are left empty; we 
mark only the incidences.) 

Lo 

Ll 

L” 

FIG. 1. cf. Lemma 1. (n = 3) Gamma-tableau of the projective plane of order 3. 

LEMMA 1. Let S C V(d), / S 1 < n such that for some i, 0 < i < n, we 
haveSnE# DforeveryEEuj+iZj. ThenSEZi. 

The proof of the lemma. We have j &’ - g6 j = n2. Every 9j consists of 
n pairwise disjoint sets, which cover V(d). Thus the members of &’ - =.Y& 
cover every point of V(d) exactly n times. As S meets at most [ S 1 * n 
lines of ~2 - &, / S / = II follows. Moreover we conclude that different 
points of S cover different lines. On the other hand for any two points of 
V(d) there is exactly one A E JZZ containing them. So it holds for any two 
points of S as well. We conclude that the corresponding lines belong to 5&, 
and consequently it is always the same line, yielding the assertion. 

The proof of Theorem 1. Let us consider the so-called gamma-tableau 
of a projective plane 9 of order n. We may obtain it from an arbitrary inci- 
dence matrix C of B by interchanging rows and columns of C in such a way 
that the first 12 + 1 columns correspond to x,, ,..., x, ; the first row is E,, . 
The next n rows are the remaining lines passing through x0, then come the 
lines containing x1 , and so on. In this way, in the rows 2 + in on through 
1 + (i + 1)n are the lines & u {xi} = {E E 9: xi E E # E,} (0 < i < n). 
Let C’ denote the matrix which we obtain from C after deleting the first 
n + 1 rows and columns. Let CO denote the n2 x n2 zero-matrix and C1 the 
direct sum of n copies of J, , the n x n matrix which has l’s in every position. 
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From these matrices we compose the following 3n2 x 3n2 O-l matrix: c, C’ c, 
A.p = Co Cl C’ [ I C’ c, Cl 

Let .X be the hypergraph having AZ for its incidence matrix (cf. Fig. 2.) 
We assert that Z is a maximal clique of order 2n. As I 2 I = 39, this it 

would imply Theorem 1. 
It is evident that 2 satisfies (1). From the construction it is not hard to see 

that for ~8, (2) holds as well. Let us now consider a set S, j S 1 < 2n such 
that S n E + m holds for every E E X. All we have to prove is S E %. 

Let us partition V’(s) into BI , B, , B3 according to the n2 x n2 submatrices, 
and .8 into A, , Aa, As. If I S n B, / < n then for some i, 0 f i < n, we 
have S n {bi,+i: j = l,..., n} = .D, where b, is the qth element of B, . As S 
has nonempty intersection with each of the corresponding edges, i.e., with 
E 17L+j for j = I,..., n, but these edges are pairwise disjoint outside of B, and 
do not intersect B, , we infer I S n B, / > n. In essentially the same way 
! S n B, I < n implies j S n B, j 3 n, and I S n B3 I < n implies 
j S n B, / 3 n. By symmetry reasons we may assume ) S n B, / 3 n, 
lSnB,I an. Consequently ISI <2n yields ISnB,] =n, ]SnB,! = 
n, / S n B, 1 = 0. 

FIG. 2. cf. Theorem 1. (n = 3) Incidence matrix of a maximal clique of order 6. 
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Now we deduce that S n (B, U B3) = S n B, covers the edges in C’. But 
C’ consist of the line classes p1 ,..., 9% of the affine space whence Lemma 1 
yields (S n Bl) E g0 . This means that for some i, 1 < i < n, S n Bl coincides 
with E, n Bl for q = in - n + j, where 1 < j < n. Consequently S n B, covers 
the line classes 9j, 1 < j < n, j # i, in B, . Moreover considering the edges in 
A, we derive that S n B, covers go as well. Applying Lemma 1 we obtain that 
(S n BJ E & ; consequently S = (S n BJ u (S n B,) E A, C X. Q.E.D. 

The proof of Proposition 1. Let C be the incidence matrix of a projective 
plane of order n. As any regular bipartite graph has a l-factorization, one 
can color the nonzero elements of C using n + 1 colors in such a way that 
every color occurs in every row and column exactly once (cf. Fig. 3). Let us 
consider the line classes gi, 0 < i < n, of the alllne space & and let us 
construct an n2 x n2 matrix Ki in such a way that each line of 9i occurs 
exactly n times as a row of Ki and the main diagonal of Ki consists merely 
of 1’s. Now let us replace every 1 of color number i by a copy of Ki and 
every zero, an n2 X n2 zero-matrix. 

In such a way we obtain an (tz4 + n3 + n2) x (n3 + n3 + n2) matrix 
which is the incidence matrix of a hypergraph that is a maximal clique of 
order n2 7 n. 

The proof of this Proposition runs analogously to that of Theorem 1. 
Statements (1) and (2) can be seen easily. To prove (3) one divides V(X) 
into the classes B, , B, ,..., B,2~+n+l according to the n2 x n2 submatrices, and 
G+? into the classes A, ,..., A,o+,, tl 

Let S be a subset of V(s) with at most n2 + n elements such that S meets 
any E E 2. It can be proved that if 1 Bi n S / < n for some i then Bi n S = 
1-3. Applying Lemma 1 first for the system {Bi: 1 < i < n2 + JI t I), 

next for the systems {B, n E: E E Z] and finally for an Ai we get SE 2. 
The details are left to the reader. 

The proof of Proposition 2. r = 1 has no practical interest. For r = 2 the 
statement is true (because the only maximal clique of order 2 is a triangle). 
Jn what follows r 3 3. 

Let B C V(Z), 1 B 1 = r. Then either BE 3y1 or B n E = o for some 
E E X. Hence we obtain: 

and putting ( ~(2) = z 
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K,= K,= K,= 

FIGURE 3 

Clearly u > 2r - 1. Tf u = 2r - 1 -or 2r then 1 .Z’ 1 = (2rTl) > rz. In the 
interval [2r + 1; co) the function f(v) is monotone decreasing, as one can 
easily see by derivation. We have 

Using that 1 + a/@ - a) > eaib whenever b > a > 0, we get 
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= exp 

[ 

$ + ;g;$$ - l 

( )I 

v-r 
r 

> exp 

[ 

r2(r - 1) 
$ + Zv’ - l 

( )I 

v-r ’ 
r 

If v = r2/(2 log r) then (2v2/rz(r - 1)) < r < (&) < (&). So we get that 

I L@ I 3 f(v) bf(r2/(2 log r>> > r2 

if v < r2/(log r), that was to be proved. 

The proof of Proposition 3. Let c(r, k) denote the maximum cardinality 
a hypergraph Z satisfying the assumptions of the proposition can have. We 
apply induction on k; once k is fixed we apply induction on r to prove 
c(r, k) = k’. The cases k = 1 or r = 1 are trivial. Let E, be an arbitrary 
edge of S which satisfies the assumptions. We have 

IX] = 1 ~{E:E~X,EnE,==X]~. (9 
XCE, 

For the hypergraphs {E - E,: E E 2, E n E,, = X> =: Sx we apply the 
inductional hypothesis r’ < r - 1 X 1, k’ = k - 1. We deduce 

1 Sx / ,( (k - l)T--IXI (ii) 

Combining (i) and (ii) we obtain 

/ S 1 < 1 + c (k - l)T--Ix! < 
X$Eo 

go (;)(k - I)?+ = k’, 

as desired. 
It is quite clear that equality occurs only in the case described in the state- 

ment of Proposition 3. 
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