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Abstract

The cube Q is the usual 8-vertex graph with 12 edges. Here we give a new
proof for a theorem of Erdős and Simonovits concerning the Turán number of
the cube. Namely, it is shown that e(G) ≤ n8/5+(2n)3/2 holds for any n-vertex
cube-free graph G.

Our aim is to give a self-contained exposition. We also point out the best
known results and supply bipartite versions.

1 History of Turán type problems

As usual, we write |G|, e(G), degG(x) for the number of vertices, number of edges,
and the degree of a vertex x of a graph G. Denote by NG(x) (or just N(x)) the
neighborhood of x, note that x /∈ N(x). Let Kn and Ka,b denote the complete graph
on n vertices and the complete bipartite graph with bipartition classes of sizes a and b.
K(A,B) denotes the complete bipartite graph with partite sets A and B (A∩B = ∅).

A graph G not containing H as a (not necessarily induced) subgraph is called H-
free. Let us denote by ex(n,H) the Turán number for H, i.e. the maximum number of
edges of an H-free graph on n vertices. More generally, let ex(G,H) be the maximum
number of edges in an H-free subgraph of G. Then ex(n,H) = ex(Kn, H). We also
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Z. Füredi: Graphs not containing a cube 2

use the notation ex(a, b,H) for ex(Ka,b, H) and call it the bipartite version of Turán
number. Also, if F ⊂ H then ex(n, F ) ≤ ex(n,H).

Turán [29] determined ex(n,Kp+1). The extremal graph is the almost equipartite
complete graph of p classes. He also proposed the general question, ex(n,H), in
particular the determination of the Turán number of the graphs obtained from the
platonic polyhedrons, the cube Q = Q8 (it is an 8-vertex 3-regular graph), the oc-
tahedron O6 (six vertices, 12 edges), the icosahedron I12 (12 vertices, 5-regular) and
for the dodecahedron D20 (20 vertices, 30 edges). Erdős and Simonovits [12] gave an
implicit formula for ex(n,O6) (they reduced it to ex(n,C4)) and Simonovits solved
exactly ex(n,D20) in [26] and ex(n, I12) in [27] (for n > n0).

In fact, Turán’s real aim was not only these particular graphs but to discover
a general theory. His questions, and the answers above, indeed lead to an asymp-
totic (the Erdős-Simonovits theorem [10]) and to the Simonovits stability theorem
concerning the extremal graphs [25] in the case when the sample graph H has chro-
matic number at least three. For a survey and explanation see Simonovits [28] or the
monograph of Bollobás [5].

However, the bipartite case is different, see the recent survey [16]. Even the
extremal problem of the cube graph Q, which was one of Turán’s [30] originally posed
problems, is still unsolved. Our aim here is to give a gentle introduction to this
topic. We survey the results and methods concerning ex(n,Q), give new or at least
streamlined proofs. We only use basic ideas of multilinear optimization (Lagrangian,
convexity, etc.) and in most cases just high school algebra. We also consider the case
of bipartite host graph, i.e., ex(a, b,Q).

2 Walks

Let W3 = W3(G) denote the number of walks in G of length 3, i.e., the number of
sequences of the form x0x1x2x3 where xi−1xi is an edge of G (for i = 1, 2, 3). Note
that, e.g., xyxy is a walk (if xy ∈ E(G)) and it differs from yxyx. A d-regular graph
has exactly nd3 3-walks.

Theorem 1. For every n-vertex graph G for the number of 3-walks one has

W3 ≥ n

(
1

n

∑
x∈V

deg(x)3/2

)2

. (1)
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The r-order power mean of the nonnegative sequence a1, . . . , am is Mr(a) :=(
1
m

∑
ari
)1/r

. Then for 1 ≤ r ≤ s ≤ ∞ one has

aave := M1(a) ≤Mr(a) ≤Ms(a) ≤M∞(a) := max
i
|ai|. (2)

We will frequently use it in the equivalent form∑
1≤i≤m

ari ≤
(∑

asi

)r/s
m1−(r/s). (3)

This is just a special case of the Hölder inequality, i.e., for any two non-negative
vectors x,y ∈ Rm and for reals p, q ≥ 1 with 1

p
+ 1

q
= 1 one has

∑
i

xiyi ≤

(∑
i

xpi

)1/p(∑
i

yqi

)1/q

.

We get (3) by substituting here x = (ari )1≤i≤m, y = (1, 1, . . . , 1), 1/p = r/s and
1/q = 1− (r/s).

Proof of Theorem 1. Considering the middle edge of the 3-walks one obtains that

W3 =
∑
x∈V

∑
y∈N(x)

deg(x) deg(y).

Here we have 2e = ndave terms. We use for this sum the 2e-dimensional Chauchy-
Schwartz inequality (∑

i

a2i

)(∑
i

b2i

)
≥

(∑
i

aibi

)2

valid for any two vectors a,b ∈ Rm. Our aim is to separate the variables in
the products deg(x) deg(y) so we take a = {

√
deg(x) deg(y)}x∈V, y∈N(x) and b =

{
√

1/ deg(x)}x∈V, y∈N(x). One obtains that

W3 n =

∑
x∈V

∑
y∈N(x)

deg(x) deg(y)

∑
x∈V

∑
y∈N(x)

1

deg(x)

 =

(∑
i

a2i

)(∑
i

b2i

)

≥

(∑
i

aibi

)2

=

∑
x∈V

∑
y∈N(x)

√
deg(x) deg(y)√

deg(x)

2

=

∑
x∈V

∑
y∈N(x)

√
deg(y)

2

=

(∑
y∈V

deg(y)3/2

)2

.
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Historical remarks. One can rewrite Theorem 1 as

W3 ≥ nM3/2(d)3. (4)

Then the power mean inequality (2) with (r, s) = (1, 3/2) gives that

W3 ≥ n(dave)
3 = 8e3/n2. (5)

This inequality W3 ≥ n(dave)
3 is due to Mulholland and C. A. B. Smith [20] and

was generalized by Attkinson, Watterson and Moran [3] for Wk for every k ≥ 3 in a
form of a matrix inequality. Then it was further generalized by Blakley and Roy [4]
for all nonnegative symmetric matrices. As far as the author knows the obvious
consequence of their works, Wk ≥ n(dave)

k, was first explicitly stated in a paper of
Erdős and Simonovits [13]. For the interested reader we supply a direct proof for (5)
using only high school algebra in the Appendix (Section 8).

Theorem 1 is not really new. It is an easy consequence (of a special case) of a
result of Jagger, Št́ov́ıček, and Thomason [18], who while working on a conjecture of
Sidorenko [24] showed the inequality

∑
xw(x)1/2 ≥

∑
x deg(x)3/2 where w(x) is the

number of 3-walks whose second vertex is x.

The exponent 3/2 is the best possible. Consider a complete bipartite graph
Ka,b, we have W3 = 2a2b2. Then W3/nMp(d)3 → 0 for any fixed p > 3/2 whenever
b/a→∞.

For Ka,b we have W3 = 2a2b2, while the right hand side of (1) is a2b2 (
√
a+
√
b)2

a+b

which is between a2b2 and 2a2b2. Using this observation one can show the following:
Suppose that d1, . . . , dn is the degree sequence of a graph G. There is a graph H with
degree sequence d′i for which d′i ≥ di and W3(H) ≤ 4n(

∑
(d′i)

3/2/n)2 = 4nM3/2(d
′)3.

3 3-paths in bipartite graphs

Let P3 = P3(G) denote the number of 3-paths of G. We have 2P3 ≤ W3. Using the
method of the previous Section we show the following lower bound for P3.

Theorem 2. Let G(A,B) be a bipartite graph with e edges and with color classes A
and B, |A| = a, |B| = b. Suppose that every vertex has degree at least 2. Then for
the number of 3-paths one has

P3 ≥
e(e− a)(e− b)

ab
. (6)
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Proof. Considering the middle edge of the 3-paths one obtains that

P3 =
∑
x∈A

∑
y∈N(x)

(deg(x)− 1)(deg(y)− 1).

Here we have e terms. One obtains that

aP3 = a
∑
x∈A

∑
y∈N(x)

(deg(x)− 1)(deg(y)− 1)

= a
∑
x∈A

∑
y∈N(x)

−(deg(y)− 1) + a
∑
x∈A

∑
y∈N(x)

deg(x)(deg(y)− 1)

= −a
∑
y∈B

deg(y)(deg(y)− 1) +

∑
x∈A

∑
y∈N(x)

1

deg(x)

∑
x∈A

∑
y∈N(x)

deg(x)(deg(y)− 1)


Here the second term is at least

≥

∑
x∈A

∑
y∈N(x)

√
deg(x)(deg(y)− 1)√

deg(x)

2

=

∑
x∈A

∑
y∈N(x)

√
deg(y)− 1

2

=

(∑
y∈B

deg(y)
√

deg(y)− 1

)2

.

Let F (y1, y2, . . . , yb) be a real function defined as

−a
∑
1≤i≤b

(y2i − yi) +

(∑
i

yi
√
yi − 1

)2

,

where yi ≥ 2 and
∑
yi ≥ 2a. We obtained that aP3 ≥ F (y) where y ∈ Rb is the

vector with coordinates formed by the degrees {deg(y) : y ∈ B}. We will see that F
is convex in this region hence, all yi can be replaced with the average of the degrees,
i.e.,

∑
y∈B deg(y)/b = e/b. One obtains

aP3 ≥ −ab
e

b

(e
b
− 1
)

+

(
b
e

b

√
e

b
− 1

)2

.

Rearranging one gets (6).
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Proof of convexity. Let Fij, Fii denote the partial derivatives, H the Hessian of
F . Then for i 6= j one has

Fij =
1

2

3yi − 2√
yi − 1

3yj − 2√
yj − 1

,

and

Fii = −2a+G(y)
1

2

(3yi − 2)2

yi − 1
+G(y)

3yi − 1

2(yi − 1)
√
yi − 1

≥ −2a+ (G(y)− 1)
1

2

(3yi − 2)2

yi − 1
+

1

2

3yi − 2√
yi − 1

3yi − 2√
yi − 1

,

where G(y) =
∑
yi
√
yi − 1. Since (3y − 2)2/2(y − 1) ≥ 6 for y > 1 and G(y) ≥∑

yi = e ≥ 2a we can write H as a sum of a positive semidefinite matrices, namely
1/2 times the tensor product of the vector { 3yi−2√

yi−1
} with itself, and a diagonal matrix

with diagonal entries are exceeding −2a+6(G(y)−1), again a positive definite matrix.
Thus H is positive definite and then F is convex in the region.

The above theorem is a slightly improved version of a result of Sidorenko [23]
which states P3 ≥ e3/ab − ∆e, where ∆ is the maximum degree of G. Concerning
general (non-bipartite) graphs Theorem 1 implies that P3 ≥ 1

2
n(dave)

3 − 3
2
n∆dave.

This inequality may also be deduced from a Moore-type bound, established by Alon,
Hoory and Linial [2].

4 Graphs without C6

Theorem 3. Let G(A,B) be a bipartite graph with e edges and with color classes A
and B, |A| = a, |B| = b. Suppose that G has girth eight. Then for the number edges
one has

e ≤ (ab)2/3 + a+ b. (7)

Proof. We use induction on the number of vertices if there is any isolated vertex, or
a vertex of degree 1. Otherwise, observe, that every pair x ∈ A, y ∈ B is connected
by at most one path of length 3. Thus P3 ≤ ab. Comparing this to the lower bound
for P3 in (6) and rearranging we get the Theorem.

D. de Caen and Székely [7] showed that e(G) = O((ab)2/3) assuming a = O(b2)
and b = O(a2). Later they showed [8] that if G has girth eight and every vertex
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has degree at least two, then e ≤ 21/3(ab)2/3 and here the coefficient 21/3 is the best
possible by exhibiting a graph with a = 2s, b = s2 and e = 2s2. (Note that this does
not contradicts to our result (7) since here b = e/2).

Győri [17] observed that in a C6-free graph G the maximal complete bipartite
graphs Kα,β’s with α, β ≥ 2 are edge disjoint (indeed, these are K2,β’s). Thus one can
remove edges from G such that the resulting graph G0 is C4-free and e(G0) ≥ 1

2
e(G).

Thus Győri’s result combined with Theorem 3 gives that

Corollary 4. If G is a C6-free bipartite graph with parts of sizes a and b then e(G) ≤
2(ab)2/3 + 2a+ 2b.

More is true. In [14] it was proved that for such a graph

e(G) < 21/3(ab)2/3 + 16(a+ b) (8)

holds. Moreover infinitely many examples show that the coefficient 21/3 in the best
possible for large a and b with b = 2a.

Concerning general (not necessarily bipartite) graphs, it was proved by Bondy
and Simonovits [6] in 1974 that a graph on n vertices with at least 100kn1+1/k edges
contains C2k, a cycle of length 2k. This was extended into bipartite graphs with
parts of sizes of a and b by G. N. Sárközy [22] who shoved that such a graph with
max{90k(a + b), 20k(ab)1+1/k} edges contains a C2k. Our Corollary 4 gives these for
C6, even a slightly better statement, using the following important reduction theorem.

Lemma 5. (Erdős [9]) Let G be an arbitrary graph. Then there exists a bipartite
subgraph G0 with degG0

(x) ≥ 1
2

degG(x) for all vertices. Especially, e(G0) ≥ 1
2
e(G).

Corollary 6. If G is a C6-free graph on n vertices then e(G) ≤ 22/3n4/3 + 4n.

It is known that there are C6-free graphs with at least (1
2
+o(1))n4/3 edges [19], and

the best known lower and upper bounds can be found in [14], (namely 0.533n4/3 <
ex(n,C6) < 0.628n4/3 for n > n0). Yuansheng and Rowlinson [31] determined
ex(n,C6) and all extremal graphs for n ≤ 26.

5 Cube-free graphs

Theorem 7 (Erdős and Simonovits [11]). Let Q denote the 8-vertex graph formed by
the 12 edges of a cube. Then ex(n,Q) ≤ O(n8/5).
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The original proof of this is rather complicated. It applies a remarkable regulariza-
tion process for non-dense bipartite graphs. A somewhat simpler proof was found by
Pinchasi and Sharir [21], who were interested in certain geometric incidence problems,
and who also extended it to a bipartite version

e(G(A,B)) ≤ O((ab)4/5 + ab1/2 + a1/2b). (9)

Here we give an even simpler proof which also gives the bipartite version, see (10)
below. We only use Theorem 2, Corollary 4 and the power mean inequality (3), but
the main ideas are the same as in [11].

Proof of Theorem 7. Let G be an n-vertex Q-free graph. First, applying Erdős’
Lemma 5 we choose a large bipartite subgraph G(A,B) of G, e(G) ≤ 2e(G(A,B)).

We say that a hexagon z1z2 . . . z6 lies between the vertices x and y if z1, z3, z5
are neighbors of x and the other vertices of the hexagon are neighbors of y, i.e.,
z1, z3, z5 ∈ N(x) and z2, z4, z6 ∈ N(y) and {x, y} ∩ {z1, . . . , z6} = ∅. The crucial
observation is that x and y together with the 6 vertices of a hexagon between them
contain a cube Q. So there is no such hexagon in a Q-free graph. Thus we can apply
the upper bound for the Turán numbers of C6, i.e., Theorem 4 and obtain an upper
bound for the number of edges uv, u ∈ N(x), v ∈ N(y). This gives an upper bound
for the number of paths with endvertices x and y. For given x and y we have

#xuvy paths = |{uv ∈ E(G(A,B)) : u ∈ N(x) \ {y}, v ∈ N(y) \ {x}}
≤ 2|N(x)|2/3|N(y)|2/3 + 2|N(x)|+ 2|N(y)|.

Add this up for every x ∈ A, y ∈ B. Let e := e(G[A,B]) and use (3) with (r, s) =
(1, 3/2). We have

P3(G(A,B)) ≤
∑
x∈A

∑
y∈B

2 deg(x)2/3 deg(y)2/3 + 2 deg(x) + 2 deg(y)

= 2

(∑
x∈A

deg(x)2/3

)(∑
y∈B

deg(y)2/3

)
+ 2be+ 2ae

≤ 2× e2/3a1/3 × e2/3b1/3 + 2(a+ b)e.

Comparing this to the lower bound in Theorem 2 one obtains that

(e− a)(e− b) ≤ 2e1/3(ab)4/3 + 2(a+ b)ab.

This implies that
e ≤ 23/5(ab)4/5 + 2ab1/2 + 2a1/2b. (10)
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Using e(G) ≤ 2e we obtain
e(G) ≤ n8/5 + (2n)3/2 (11)

finishing the proof.

If we use (8) instead of Corollary 4 then the above calculation give

Theorem 8.
ex(a, b,Q) ≤ 21/5(ab)4/5 + 9(ab1/2 + a1/2b) (12)

and
ex(n,Q) ≤ 2−2/5n8/5 + 13n3/2. (13)

6 A lower bound on the number of C4’s

Let N(G,H) denote the number of subgraphs of G isomorphic to H. This function is
even more important than the original Turán’s problem. Here we consider only one
the simplest cases, H = C4.

It was observed and used many times that for sufficiently large e the graph G
contains at least Ω(e4/n4) copies of C4. This result goes back to Erdős (1962) and
was published, e.g., in Erdős and Simonovits [11] in an asymptotic form (N(G,C4) >
(1/3)e4/n4 for n > Cn3/2). The following simple form has the advantage that it is
valid for arbitrary n and e.

Lemma 9 (see [15]). Let G be a graph with e edges and n vertices. Then

N(G,C4) ≥ 2
e3(e− n)

n4
− e2

2n
≥ 2

e4

n4
− 3

4
en. (14)

Allen, Keevash, Sudakov, and Verstraëte [1] gave a bipartite version of Lemma 9.
Here we state their result in a slightly stronger form (it is valid for all vales of a, b
and e). Note that the formula is not symmetric in A and B.

Lemma 10. Let G be a bipartite graph with parts A and B of sizes a and b and e
edges. Then the number of 4-cycles in G is at least

e2(e− b)2 − e(e− b)ba(a− 1)

4b2a(a− 1)
. (15)

For completeness we present the proofs of the above Lemmas (below and in the
Appendix). But we will need a slightly stronger and more technical version.
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Lemma 11. Let G be a bipartite graph with parts A and B of sizes a and b and e
edges. Let D(x) denote

∑
y∈N(x)(deg(y)− 1). Then the number of 4-cycles in G is at

least
1

4(a− 1)

(∑
x∈A

D(x)2

)
− 1

4

(∑
x∈A

D(x)

)
. (16)

Proof. We have

N(G,C4) =
∑

{x,x′}⊂A

(
d(x, x′)

2

)
=

1

2

∑
x∈A

 ∑
x′∈A\x

(
d(x, x′)

2

)
=

1

2

∑
x∈A

(a− 1)

(∑
x′∈A\x d(x, x′)/(a− 1)

2

)
=

a− 1

2

∑
x∈A

(
D(x)/(a− 1)

2

)

=
1

4(a− 1)

(∑
x∈A

D(x)2

)
− 1

4

(∑
x∈A

D(x)

)
.

Note that Lemma 11 easily implies Lemma 10. Indeed, observe that for e(e −
b) < ba(a − 1) the right hand side of (15) is negative, so we may suppose that
(e2/b)− e ≥ a(a− 1). Use Chauchy-Schwartz for

∑
x∈AD(x). We obtain

∑
x∈A

D(x) =
∑
x∈A

 ∑
y∈B,xy∈E(G)

(deg(y)− 1)

 =
∑
y∈B

deg(y)2 −
∑
y∈B

deg(y) ≥ e2

b
− e.

Use Chauchy-Schwartz again for
∑
D(x)2. We have

∑
x∈A

D(x)2 ≥ 1

a

(∑
x∈A

D(x)

)2

.

Now Lemma 11 gives that N(G,C4) ≥ (N2/4a(a− 1))− (N/4) for N :=
∑

x∈AD(x).
Since N ≥ (e2/b)−e ≥ a(a−1) the polynomial p(N) := N2/a(a−1)−N is increasing
and we get N(G,C4) ≥ p(N) ≥ p(e(e− b)/b)).
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7 Cubes with a diagonal

Theorem 12 (Erdős and Simonovits [11]). Let Q+ denote the 8-vertex graph formed
by the 12 edges of a cube with a long diagonal. Then ex(n,Q+) ≤ O(n8/5).

Here we give a simpler proof which also gives a stronger bipartite version.

Theorem 13. ex(a, b,Q+) = 23/5(ab)4/5 +O(ab1/2 + a1/2b).

Using again Erdős’ Lemma 5 and a+ b = n we get

ex(n,Q+) ≤ n8/5 +O(n3/2). (17)

Proof of Theorem 13. Let G be an n-vertex Q+-free bipartite graph with classes
A and B. The main idea is the same as in [11] and in the proof of Theorem 7.
The crucial observation is that an edge xy ∈ E(G) together with the 6 vertices of a
hexagon between them form a Q+. So there is no such hexagon in a Q+-free graph
between the neighborhoods of two connected vertices. Thus we can apply the upper
bound for the Turán numbers of C6, i.e., Theorem 4 and obtain an upper bound for
the number of edges x′y′, y′ ∈ N(x), x′ ∈ N(y) for xy ∈ E(G). This gives an upper
bound for the number of fourcycles containing the edge xy.

#xy′x′y four cycles = |{x′y′ ∈ E(G(A,B)) : y′ ∈ N(x) \ {y}, x′ ∈ N(y) \ {x}}
≤ 2(|N(x)| − 1)2/3(|N(y)| − 1)2/3 + 2|N(x)|+ 2|N(y)| − 2.

Add this up for every x ∈ A, y ∈ B, xy ∈ E(G) and apply (3) for
∑

xy∈E(deg(y)−1)2/3

with (r, s) = (1, 3/2) for every x. We obtain

4N(G,C4) ≤
∑
x∈A

∑
y∈N(x)

2(deg(x)− 1)2/3(deg(y)− 1)2/3 + 2 deg(x) + 2 deg(y)− 2

= 2

(∑
x∈A

(deg(x)− 1)2/3 deg(x)1/3D(x)2/3

)
+ 2

(∑
y∈B

D(y)

)
+ 2

(∑
x∈A

D(x)

)
.

Apply Hölder inequality with 1/p = 2/3 and 1/q = 1/3 in the first term. We obtain
it is at most

≤ 2

(∑
x∈A

(deg(x)− 1) deg(x)1/2

)2/3(∑
x∈A

D(x)2

)1/3

. (18)
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From now on, to save time and energy, and to better emphasize the main steps
of calculation we only sketch the proof. Compare the obvious leading terms in the
lower and upper bounds (16) and (18) for N(G,C4), we have

1

a− 1

(∑
x∈A

D(x)2

)
� 4N(G,C4)� 2

(∑
x∈A

(deg(x)− 1) deg(x)1/2

)2/3(∑
x∈A

D(x)2

)1/3

yielding (∑
x∈A

D(x)2

)
� (2(a− 1))3/2

(∑
x∈A

(deg(x)− 1) deg(x)1/2

)
. (19)

On the left hand side we can use Cauchy-Schwartz and on the right hand side we
apply (3) with (r, s) = (3/2, 2). We obtain

1

a

(∑
x∈A

D(x)

)2

� (2(a− 1))3/2a1/4

(∑
x∈A

(deg(x)− 1)d(x)

)3/4

.

Rearranging we have(∑
x∈A

D(x)

)2

� 23/2a11/4

(∑
y∈B

D(y)

)3/4

. (20)

Exchange the role of A and B, we get(∑
x∈A

D(x)

)2

� 23/2b11/4

(∑
x∈A

D(x)

)3/4

.

Multiply the above two inequalities, take 4th power, we get

212(ab)11 �

(∑
x∈A

D(x)

)5(∑
y∈B

D(y)

)5

≥
(
e2

a
− e
)5(

e2

b
− e
)5

leading to 212(ab)16 � e20.
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8 Appendix

1. A direct proof of the Mulholland-Smith inequality (5) concerning the number of
3-walks using only high school algebra.

Considering the middle edge of the 3-walks one obtains that

W3 =
∑
x∈V

∑
y∈N(x)

deg(x) deg(y).

Here we have 2e = ndave terms. Our aim is to separate the variables in the prod-
ucts deg(x) deg(y) so next we use first that the 2e-dimensional Quadratic inequality
(Quadratic mean is greater or equal than the Arithmetic mean), second we use (for
2 variables) that the Arithmetic mean is greater or equal than the Harmonic mean,
then third time we use again (this time for 2e variables) that Arithmetic ≥ Harmonic.
One obtains that√

W3

ndave
=

√∑
x∈V

∑
y∈N(x) deg(x) deg(y)

2e

≥
∑

x∈V
∑

y∈N(x)

√
deg(x) deg(y)

2e

≥ 1

2e

∑
x∈V

∑
y∈N(x)

2
1

deg(x)
+ 1

deg(y)


≥ 2e

∑
x∈V

∑
y∈N(x)

1
deg(x)

+ 1
deg(y)

2

−1 =
2e∑
x∈V 1

=
2e

n
= dave.

2. Proof of Lemma 9 concerning the number of C4’s.

Denote the number of x, y-paths of length two by d(x, y). We have

d :=

(
n

2

)−1 ∑
x,y∈V (G)

d(x, y) =

(
n

2

)−1 ∑
x∈V (G)

(
deg(x)

2

)
≥
(
n

2

)−1
n

(
2e/n

2

)
. (21)

Therefore, d ≥ 2e(2e−n)
n2(n−1) . Moreover

N(G,C4) =
1

2

∑
x,y∈V (G)

(
d(x, y)

2

)
≥ 1

2

(
n

2

)(
d

2

)
. (22)



Z. Füredi: Graphs not containing a cube 14

We may suppose that the middle term in (14) is positive, which implies that 2e(2e−n)
n2(n−1) ≥

1/2. The paraboloid
(
x
2

)
is increasing for x ≥ 1/2. So we may substitute the lower

bound of d from (21) into (22) and a little algebra gives (14).
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