List of publications and papers available on-line
Version of June 21, 2025.
-
- [1] E. Boros and Z. Füredi,
Su un teorema di Kárteszi nella geometria combinatoria,
Archimede
29 (1977), 71-76. (Italian)
- [2] Z. Füredi,
On maximal intersecting families of finite sets,
Journal of Combinatorial Theory, Ser. 28 (1980), 282-289.
- [3] Peter L. Erdős and Z. Füredi,
On automorphisms of line-graphs,
European Journal of Combinatorics 1 (1980), 341-345.
- [4] P. Frankl and Z. Füredi,
The Erdős-Ko-Rado theorem for integer sequences,
SIAM Journal on Algebraic Discrete Methods
1 (1980), 376-381.
- [5] Z. Füredi,
Erdős-Ko-Rado type theorems with upper bounds on the maximum degree,
Algebraic Methods in Graph Theory (L. Lovász ed.),
Proc. Colloq. Math. Soc. János Bolyai
25, pp. 177-207.
(Szeged, Hungary, 1978) North-Holland, Amsterdam-New York, 1981.
- [6] P. Frankl and Z. Füredi,
A short proof for a theorem of Harper about Hamming-spheres,
Discrete Mathematics 34 (1981), 311-313.
- [7] Z. Füredi,
Maximum degree and fractional matchings in uniform hypergraphs,
Combinatorica 1 (1981), 155-162.
- [8] Z. Füredi and J. Komlós,
The eigenvalues of random symmetric matrices,
Combinatorica 1 (1981), 233-241.
- [9] Z. Füredi,
Hypergraphs and finite geometries, PhD Thesis, Budapest, (1981). (Hungarian).
- [10] Z. Füredi,
An intersection problem whose extremum is the finite projective space,
Journal of Combinatorial Theory, Ser. 32 (1982), 66-72.
- [11] Z. Füredi,
Set-systems with prescribed cardinalities for pairwise intersections,
Discrete Mathematics 40 (1982), 53-67.
- [12] Z. Füredi,
On a problem of Deza and Frankl,
Ars Combinatoria 13 (1982), 221-222.
- [13] Z. Füredi,
The number of well-oriented regions,
Geometriae Dedicata 12 (1982), 397-400.
- [13b] Z. Füredi,
The number of well-oriented regions,
Diskrete Geometrie, 2. Kolloq., Inst. Math. Univ. Salzburg 1980,
pp.50-57. (1980).
- [14] P. Erdős, P. Frankl, and Z. Füredi,
Families of finite sets in which no set is covered by the union of two others,
Journal of Combinatorial Theory, Ser. 33 (1982), 158-166.
- [15] Z. Füredi,
On connectedness of a random graph with a small number of edges,
Studia Sci. Math. Hungar. 14 (1979), 419-425, (1983).
- [16] Z. Füredi,
Graphs without quadrilaterals,
Journal of Combinatorial Theory, Ser. 34 (1983), 187-190.
- [17] P. Erdős and Z. Füredi,
The greatest angle among $n$ points in the $d$-dimensional Euclidean space,
Combinatorial Mathematics
(Proc. Colloq., Marseilles-Luminy, 1981. C. Berge et al. Eds.)
North-Holland, Amsterdam, 1983.
North-Holland Math. Studies 75,
Annals of Discrete Mathematics 17 (1983), 275-283.
- [18] Z. Füredi,
On finite set-systems whose every intersection is a kernel of a star,
Discrete Mathematics 47 (1983), 129-132.
- [19] P. Frankl and Z. Füredi,
Disjoint $r$-tuples in an $r$-graph with given maximum degree,
Quarterly Journal of Mathematics Oxford, Ser. (2) 34 (1983), 423-426.
- [20] P. Frankl and Z. Füredi,
A new generalization of the Erdős-Ko-Rado theorem,
Combinatorica 3 (1983), 341-349.
- [21] Z. Füredi,
An intersection problem with 6 extremes,
Acta Math. Acad. Sci. Hungar. 42 (1983), 177-187.
- [22] J. Demetrovics, Z. Füredi, and G. Katona,
The relation between the number of individuals and dependencies in composed
databases,
Alkalmazott Mat. Lapok 9 (1983), 13-21.
(Hungarian, English summary)
- [22b] J. Demetrovics, Z. Füredi, and G. Katona,
Dependences in composite databases,
Kibernetika (Kiev) No. 5. (1985), iv, 107-110, 115, 136.
(Russian, English summary)
English translation: Cybernetics 21 (1985), 697-702.
- [23] Z. Füredi,
Minimal relational databases,
Alkalmazott Mat. Lapok 9 (1983), 23-28.
(Hungarian, English summary).
- [24] P. Frankl and Z. Füredi,
On hypergraphs without two edges intersecting in a given number of vertices,
Journal of Combinatorial Theory, Ser. 36 (1984), 230-236.
- [25] P. Frankl and Z. Füredi,
A new extremal property of Steiner triple systems,
Discrete Mathematics 48 (1984), 205-212.
- [26] Z. Füredi,
Geometrical solution of an intersection problem for two hypergraphs,
European Journal of Combinatorics 5 (1984), 133-136.
- [27] P. Frankl and Z. Füredi,
Union-free hypergraphs and probability theory,
European Journal of Combinatorics 5 (1984), 127-131.
-
Erratum, ibid 5 (1984), p. 395.
- [28] P. Frankl and Z. Füredi,
An exact result for 3-graphs,
Discrete Mathematics 50 (1984), 323-328.
- [29] I. Bárány and Z. Füredi,
Mental poker with three or more players,
Information and Control 59 (1983), 84-93.
- [30] Z. Füredi,
Hypergraphs in which all disjoint pairs have distinct unions,
Combinatorica 4 (1984), 161-168.
- [31] I. Bárány, Z. Füredi, and J. Pach,
Discrete convex functions and proof of the six circle conjecture of
Fejes Tóth,
Canadian Journal of Mathematics 36 (1984), 569-576.
- [32] P. Frankl and Z. Füredi,
Families of finite sets with missing intersections,
Finite and Infinite Sets,
Proc. Colloq. Math. Soc. János Bolyai 37,
(Eger, Hungary, 1981.)
North-Holland, Amsterdam-New York, 1984. pp.
305-318.
- [33] E. Boros and Z. Füredi,
The number of triangles covering the center of an $n$-set,
Geometriae Dedicata 17 (1984), 69-77.
Unfortunately, the upper bound in Section 6 is oversimplified. A correct construction was given by
Bukh, Matoušek, and Nivasch,
Stabbing simplices by points and flats.
Discrete Comput Geom 43 (2010), 21–338.
- [34] Z. Füredi and I. Palásti,
Arrangements of lines with a large number of triangles,
Proc. Amer. Math. Soc. 92 (1984), 561-566.
- [35] Z. Füredi and F. Quinn,
Traces of finite sets,
Ars Combinatoria 18 (1984), 195-200.
- [36] Z. Füredi,
A Ramsey-Sperner theorem,
Graphs and Combinatorics 1 (1985), 51-56.
- [37] Z. Füredi,
Set-systems with three intersections,
Combinatorica 5 (1985), 27-31.
- [38] Z. Füredi,
An extremal problem concerning Kneser's conjecture,
Studia Sci. Math. Hungar. 18 (1983), 335-341. (1985).
- [39] J. Demetrovics, Z. Füredi, and G. O. H. Katona,
Minimum matrix representations of closure operations,
Discrete Applied Mathematics 11 (1985), 115-128.
- [40] P. Frankl and Z. Füredi,
Forbidding just one intersection,
Journal of Combinatorial Theory, Ser. A
39 (1985), 160-176.
- [41] Z. Füredi and Zs. Tuza,
Hypergraphs without a large star,
Discrete Mathematics 55 (1985), 317-321.
- [42] P. Erdős, P. Frankl, and Z. Füredi,
Families of finite sets in which no set is covered by the union of $r$ others,
Israel Journal of Mathematics 51 (1985), 79-89.
- [43] N. Alon, Z. Füredi, and M. Katchalski,
Separating pairs of points by standard boxes,
European Journal of Combinatorics 6 (1985), 205-210.
- [44] P. Frankl and Z. Füredi,
Nontrivial intersecting families,
Journal of Combinatorial Theory, Ser. A
41 (1986), 150-153.
- [45] S. J. Dow, D. A. Drake, Z. Füredi, and J. A. Larson,
A lower bound for the cardinality of a maximal family of mutually intersecting
sets of equal size,
Proceedings of the 16th Southeastern international conference on combinatorics,
graph theory and computing (Boca Raton, Fla., 1985)
Congressus Numerantium 48 (1985), 47-48.
- [46] Z. Füredi,
$t$-expansive and $t$-wise intersecting hypergraphs,
Graphs and Combinatorics 2 (1986), 67-80.
- [47] Z. Füredi,
The chromatic index of simple hypergraphs, (Research problem),
Graphs and Combinatorics 2 (1986), 89-92.
- [48] P. Erdős, Z. Füredi, A. Hajnal, P. Komjáth, V. Rödl, and Á. Seress,
Coloring graphs with locally few colors,
Discrete Mathematics 59 (1986), 21-34.
- [49] I. Bárány and Z. Füredi,
Computing the volume is difficult, Discrete and Computational Geometry 2 (1987), 319-326.
- [49b] I. Bárány and Z. Füredi,
Computing the volume is difficult,
Proc. 18th ACM STOC 1986, pp. 442-447.
- [50] P. Frankl and Z. Füredi,
Extremal problems concerning Kneser graphs,
Journal of Combinatorial Theory, Ser. B
40 (1986), 270-284.
- [51] P. Frankl and Z. Füredi,
Union-free families of sets and equations over fields,
Journal of Number Theory 23 (1986), 210-218.
- [52] Z. Füredi and J. Kahn,
On the dimensions of ordered sets of bounded degree,
Order 3 (1986), 15-20.
- [53] R. P. Anstee and Z. Füredi,
Forbidden submatrices,
Discrete Mathematics 62 (1986), 225-243.
- [54] Z. Füredi,
Random polytopes in the $d$-dimensional cube,
Discrete and Computational Geometry 1 (1986), 315-319.
- [55] J. Csima and Z. Füredi,
Colouring finite incidence structures,
Graphs and Combinatorics 2 (1986), 339-346.
- [56] P. Frankl and Z. Füredi,
Finite projective spaces and intersecting hypergraphs,
Combinatorica 6 (1986), 335-354.
- [57] Z. Füredi and J. R. Griggs,
Families of finite sets with minimum shadows,
Combinatorica 6 (1986), 355-363.
- [58] Z. Füredi, J. R. Griggs, A. M. Odlyzko, and J. B. Shearer,
Ramsey-Sperner theory,
Discrete Mathematics 63 (1987), 143-152.
- [59] I. Bárány and Z. Füredi,
Covering all secants of a square,
in Intuitive Geometry, (G. Fejes Tóth ed.),
Proc. Colloq. Math. Soc. János Bolyai 48
(Siófok, Hungary, 1985), pp. 19-27. North-Holland, Amsterdam, 1987.
- [60] P. Frankl and Z. Füredi,
Exact solution of some Turán-type problems,
Journal of Combinatorial Theory, Ser. A
45 (1987), 226-262.
- [61] N. Alon and Z. Füredi,
On the kernel of intersecting families,
Graphs and Combinatorics 3 (1987), 91-94.
- [62] Z. Füredi,
The maximum number of balancing sets,
Graphs and Combinatorics 3 (1987), 251-254.
- [63] P. Frankl, Z. Füredi, and J. Pach,
Bounding one-way differences,
Graphs and Combinatorics 3 (1987), 341-347.
- [64] P. Frankl and Z. Füredi,
Colored packing of sets,
in Combinatorial Design Theory Annals of Discrete Mathematics
34 (1987), 165-178.
- [65] Z. Füredi,
The number of maximal independent sets in connected graphs,
Journal of Graph Theory 11 (1987), 463-470.
- [66] I. Bárány and Z. Füredi,
Empty simplices in the Euclidean space,
Canad. Math. Bull. 30 (1987), 436-445.
- [66b] Z. Füredi, Empty simplices in R^m,
Diskrete Geometrie, 3. Kolloq., Salzburg 1985, 111-118. (1985)
- [67] I. Bárány and Z. Füredi,
On the shape of the convex hull of random points,
Probability Theory and Related Fields
(formerly Z. Wahrscheinlichkeitsrechnung verw. Gebiete)
77 (1988), 231-240.
- [68] F. R. K. Chung, Z. Füredi, M. R. Garey, and R. L. Graham,
On the fractional covering number of hypergraphs,
SIAM Journal on Discrete Mathematics 1 (1988), 45-49.
- [69] I. Bárány and Z. Füredi,
Approximation of the sphere by polytopes having few vertices,
Proc. Amer. Math. Soc. 102 (1988), 651-659.
- [70] Z. Füredi,
Matchings and covers in hypergraphs,
Graphs and Combinatorics 4 (1988), 115-206.
- [71] E. Boros and Z. Füredi,
Rectangular dissections of the unit square,
European Journal of Combinatorics 9 (1988), 271-280.
- [72] Z. Füredi and J. Kahn,
Dimension versus size,
Order 5 (1988), 17-20.
- [73] Z. Füredi and I. G. Rosenberg,
Multicolored lines in a finite geometry,
Discrete Mathematics 71 (1988), 149-163.
- [74] F. R. K. Chung, Z. Füredi, R. L. Graham, and P. Seymour,
On induced subgraphs of the cube,
Journal of Combinatorial Theory, Ser. A
49 (1988), 180-187.
- [75] P. Frankl and Z. Füredi,
Solution of the Littlewood-Offord problem in high dimensions,
Annals of Math. 128 (1988), 259-270.
- [76] P. Frankl and Z. Füredi,
Extremal problems whose solutions are the blow-ups of the small Witt-designs,
Journal of Combinatorial Theory, Ser. A 52 (1989), 129-147.
- [77] E. Boros, Z. Füredi, and J. Kahn,
Maximal intersecting families and affine regular polygons in $PG(2,q)$,
Journal of Combinatorial Theory, Ser. A
52 (1989), 1-9.
- [78] N. Alon, R. Faudree, and Z. Füredi,
A Turán-like neighborhood condition and cliques in graphs,
in Combinatorial Mathematics, (Proc. 3rd Internat. Conf.,
New York, 1985, G. S. Bloom et al. eds.),
Annals of the New York Academy of Sciences 555 (1989),
pp. 4-8.
- [79] P. Frankl, Z. Füredi, and G. Kalai,
Shadows of colored complexes,
Mathematica Scandinavica 63 (1988), 169-178.
- [80] Z. Füredi, J. Kahn, and D. J. Kleitman,
Sphere coverings of the hypercube with incomparable centers,
Discrete Mathematics 83 (1990), 129-134.
- [81] N. Alon and Z. Füredi,
Legitimate colorings of projective planes,
Graphs and Combinatorics 5 (1989), 95-106.
- [82] Z. Füredi, J. R. Griggs, R. Holzman, and D. J. Kleitman,
Representations of families of triples over $GF(2)$,
Journal of Combinatorial Theory, Ser. A 53 (1990), 306-315.
- [83] Z. Füredi, J. R. Griggs, and D. J. Kleitman,
A minimal cutset of the Boolean lattice with almost all members,
Graphs and Combinatorics 5 (1989), 327-332.
- [84] Z. Füredi,
Covering pairs by $q^2 + q + 1$ sets,
Journal of Combinatorial Theory, Ser. A 54 (1990), 248-271.
- [85] Z. Füredi,
A projective plane is an outstanding 2-cover,
Discrete Mathematics 74 (1989), 321-324.
- [86] Z. Füredi,
The maximum number of unit distances in a convex $n$-gon,
Journal of Combinatorial Theory, Ser. A 55 (1990), 316-320.
- [87] Z. Füredi,
On $r$-graphs and $r$-multihypergraphs with given maximum degree,
Journal of the Australian Math. Soc., Ser. A 50
(1991), 204-212.
- [88] Z. Füredi,
Covering the complete graph by partitions, Discrete Mathematics 75 (1989), 217-226.
- [88b] Z. Füredi, same in
Annals of Discrete Mathematics 43 (1989), 217-226,
(Proc. Colloq. Combinatorics, Cambridge, 1988, ed. by
B. Bollobás).
- [89] P. Frankl and Z. Füredi,
Extremal problems and the Lagrange function for hypergraphs,
Bulletin of the Institute of Mathematics, Academia Sinica
16 (1988), 305-313.
- [90] I. Bárány, Z. Füredi, and L. Lovász,
On the number of halving planes,
Combinatorica 10 (1990), 175-183.
- [90b] I. Bárány, Z. Füredi, and L. Lovász,
On the number of halving planes,
Proc. 5th ACM Symp. on Computational Geometry,
Saarbrücken, West-Germany, June 1989. pp. 140-144.
- [91] Z. Füredi,
The maximum number of edges in a minimal graph of diameter 2,
Journal of Graph Theory 16 (1992), 81-98.
- [92] E. Boros, Z. Füredi, and L. M. Kelly,
On representing Sylvester-Gallai designs,
Discrete and Computational Geometry 4 (1989), 345-348.
- [93] Z. Füredi and I. G. Rosenberg,
Orders admitting an isotone majority operation,
Multi. Val. Logic 3 (1998), 39-53.
- [94] Z. Füredi,
The second and the third smallest distances on the sphere,
Journal of Geometry 46 (1993), 55-65.
- [95] Z. Füredi and J. R. Griggs, and D. J. Kleitman,
Pair labellings with given distance,
SIAM Journal on Discrete Mathematics 2 (1989), 491-499.
- [96] Z. Füredi,
The densest packing of equal circles into a parallel strip,
Discrete and Computational Geometry 6 (1991), 95-106.
- [97] P. Frankl and Z. Füredi,
A sharpening of Fisher's inequality,
Discrete Mathematics 90 (1991), 103-107.
- [98] Z. Füredi and Klaus Reuter,
The jump number of suborders of the power set order,
Order 6 (1989), 101-103.
- [99] Z. Füredi,
Competition graphs and clique dimensions,
Random Structures and Algorithms 1 (1990), 183-189.
- [100] P. Frankl and Z. Füredi,
Beyond the Erdős,-Ko-Rado theorem,
Journal of Combinatorial Theory, Ser. A 56 (1991), 182-194.
- [101] Z. Füredi,
Maximal independent subsets in Steiner systems and in planar sets,
SIAM Journal on Discrete Mathematics 4 (1991), 196-199.
- [102] Z. Füredi,
On a Turán type problem of Erdős,
Combinatorica 11 (1991), 75-79.
- [103] Z. Füredi and R. P. Kurshan,
Minimal length test vectors for multiple-fault detection,
Theoretical Computer Science 315 (2004), 191-208.
(Special issue: Mathematical Foundations of Programming Semantics,
Edited by M. Mislove).
- [103b] Z. Füredi and R. P. Kurshan,
Minimal length test vectors for multiple-fault detection with electron beam
scanning, AT&T Bell Labs. Technical Report, 1987.
- [104] Z. Füredi,
Perfect error-correcting databases,
Discrete Applied Mathematics 28 (1990), 171-176.
- [105] Z. Füredi,
Graphs with maximum number of star-forests,
Studia Sci. Math. Hungar. 27 (1992), 403-407.
- [106] Z. Füredi,
Graphs of diameter 3 with minimum number of edges,
Graphs and Combinatorics 6 (1990), 333-337.
- [107] Z. Füredi and M. Ruszinkó,
Superimposed codes are almost big distance ones,
Proc. 1997 IEEE Int. Symp. Imform. Theory, p. 118., Ulm, Germany, 1997.
- [108] Z. Füredi and L. Spissich,
The minimum size of a maximal partial plane,
Ars Combinatoria 34 (1992), 143-145.
- [109] Z. Füredi and D. J. Kleitman,
On zero-trees,
Journal of Graph Theory , 16 (1992), 107-120.
- [110] Z. Füredi,
Decomposition of a convex region with lines,
Archiv der Mathematik 56 (1991), 300-312.
- [111] Z. Füredi, P. Hajnal, V. Rödl, and W. T. Trotter,
Interval orders and shift graphs, Sets, graphs and numbers,
Proc. Colloq. Math. Soc. János Bolyai
60, pp. 297-313. (Budapest, Hungary, 1991), North-Holland,
Amsterdam 1992.
- [112] Z. Füredi and P. Hajnal,
Davenport-Schinzel theory of matrices,
Discrete Mathematics 103 (1992), 233-251.
- [113] Z. Füredi and N. Linial,
A geometric parallel search problem related to group testing,
The Journal of Combinatorial Mathematics and Combinatorial Computing
12 (1992), 3-6.
- [114] P. Erdős, Z. Füredi, and Z. Tuza,
Saturated $r$-uniform hypergraphs,
Discrete Mathematics 98 (1991), 95-104.
- [115] Z. Füredi and A. Gyárfás,
Covering $t$-element sets by partitions,
European Journal of Combinatorics 12 (1991), 483-489.
- [116] Z. Füredi,
Indecomposable regular graphs and hypergraphs,
Discrete Mathematics 101 (1992), 59-64.
- [116b] Z. Füredi, same in Topics in Discrete Mathematics, The Julius Petersen
Graph Theory Centennial, (B. Toft ed.), North-Holland, 1992.
- [117] P. Erdős, P. Fishburn, and Z. Füredi,
Midpoints of diagonals of convex $n$-gons,
SIAM Journal on Discrete Mathematics 4 (1991), 329-341.
- [118] Z. Füredi and Á. Seress,
Maximal triangle-free graphs with restrictions on the degrees,
Journal of Graph Theory 18 (1994), 11-24.
- [119] M. E. Dyer, Z. Füredi, and C. McDiarmid,
Random volumes in the $n$-cube,
in Polyhedral Combinatorics
(Proceedings of the DIMACS Workshop held in Morristown, NJ, June 1989),
P. D. Seymour and W. Cook, Eds.,
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 1 (1990), 33-38.
- [120] Z. Füredi and D. J. Kleitman,
The prison-yard problem,
Combinatorica 14 (1994), 287-300.
- [121] Z. Füredi, J. Kahn, and P. Seymour,
On the fractional matching polytope of a hypergraph,
Combinatorica 13 (1993), 167-180.
- [122] Z. Füredi,
Intersecting designs from linear programming and graphs of diameter two,
Discrete Mathematics 127 (1993), 187-207. (1994).
(The Proceedings of The Second Japan Conference on Graph Theory
and Combinatorics, Hakone, 1990)
- [123] M. E. Dyer, Z. Füredi, and C. McDiarmid,
Volumes spanned by random points in the hypercube,
Random Structures and Algorithms 3 (1992), 91-106.
- [124] P. Erdős, Z. Füredi, J. Pach, and I. Z. Ruzsa,
The grid revisited,
Discrete Mathematics 111 (1993), 189-196.
(Proc. Colloq., Marseilles-Luminy, 1990).
- [125] Z. Füredi,
Turán type problems, in Surveys in Combinatorics. 1991,
(Proc. of the 13th British Combinatorial Conference),
ed. A. D. Keedwell, Cambridge Univ. Press.
London Math. Soc. Lecture Note Series 166 (1991), 253-300.
- [126] Noga Alon and Z. Füredi,
Spanning subgraphs of random graphs (A research problem),
Graphs and Combinatorics 8 (1992), 91-94.
- [127] Z. Füredi, D. Reimer, and Á. Seress,
Hajnal's triangle-free game and extremal graph problems,
Proceedings of the 22th Southeastern international conference
on combinatorics, graph theory and computing (Boca Raton, Fla., 1991)
Congressus Numerantium 82 (1991), 123-128.
- [128] Z. Füredi, J. Lagarias, and F. Morgan,
Singularities of minimal surfaces and networks and related extremal problems
in Minkowski space, in
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 6 (1991), 95-109.
- [129] Z. Füredi,
Random Ramsey graphs for the four-cycle,
Discrete Mathematics 126 (1994), 407-410.
- [130] Z. Füredi and R. Stanley,
Sets of vectors with many orthogonal pairs (A research problem),
Graphs and Combinatorics 8 (1992), 391-394.
- [131] Noga Alon, I. Bárány, Z. Füredi, and D. J. Kleitman,
Point selections and weak $\varepsilon$-nets for convex hulls,
Combinatorics, Probability and Computing 1 (1992), 189-200.
- [132] Z. Füredi, M. X. Goemans, and D. J. Kleitman,
On the maximum number of triangles in wheel-free graphs,
Combinatorics, Probability and Computing 3 (1994), 63-75.
- [132b] Z. Füredi, M. X. Goemans, and D. J. Kleitman,
same in Combinatorics, Geometry and Probability,
A Tribute to Paul Erdős (Proc. Colloq. Cambridge, 1993, B. Bollobás
and A. Thomason, Eds.), Cambridge University Press, 1997. pp. 305-317.
- [133] Z. Füredi and D. J. Kleitman,
The minimal number of zero sums, in Combinatorics, Paul Erdős is
eighty, Vol. 1, pp. 159-172. Keszthely, Hungary, 1993,
(D. Miklós et al., Eds.). Bolyai Society Mathematical Studies
1, Budapest, Hungary, 1993.
- [134] Noga Alon and Z. Füredi,
Covering the cube by affine hyperplanes,
European Journal of Combinatorics 14 (1993), 79-83.
- [135] Z. Füredi and J. Pach,
Traces of finite sets: extremal problems and geometric applications,
in Extremal Problems for Finite Sets, Proc. Colloq., Visegrád,
Hungary, 1991. (P. Frankl et al., Eds.)
Bolyai Society Mathematical Studies 3 (1994) pp. 251-282.
- [136] Z. Füredi and Peter Loeb,
On the best constant for the Besicovitch covering theorem,
Proc. Amer. Math. Soc. 121 (1994) 1063-1073.
- [137] P. Frankl, Z. Füredi, G. Katona, and
D. Miklós (Eds.) Extremal Problems for Finite Sets, Proc. Colloq.,
Visegrád, Hungary, 1991. Bolyai Society Mathematical Studies,
3, Budapest, Hungary, 1994. 514 pp.
- [138] Z. Füredi,
Intersection representations of the complete bipartite graph,
in The Mathematics of Paul Erdős, II. 86-92.
(R. L. Graham and J. Nesetril, Eds.), Algorithms Combin. 14
Springer, Berlin, 1997.
- [138b] Z. Füredi,
Intersection representations of the complete bipartite graph,
in The Mathematics of Paul Erdős, II., Second Edition, 127-134.
(R. L. Graham, J. Nesetril, and S. Butler, Eds.),
Springer, New York, 2013.
- [139] Z. Füredi, Carl G. Jockusch, and Lee A. Rubel,
Difference sets and inverting the difference operator, Combinatorica
16 (1996), 87-106.
- [140] P. Erdős, Z. Füredi, R. J. Gould, and D. S. Gunderson,
Extremal graphs for intersecting triangles, Journal of Combinatorial
Theory, Ser. B 64 (1995), 89-100.
- [141] Z. Füredi,
The order dimension of two levels of the Boolean lattice.
Order 11 (1994), 15-28.
- [142] Z. Füredi,
New asymptotics for bipartite Turán numbers. Journal
of Combinatorial Theory, Ser. A 75 (1996), 141-144.
same with a longer introduction
- [143] Z. Füredi,
Cross-intersecting families of finite sets, Journal of Combinatorial
Theory, Ser. A 72 (1995), 332-339.
- [144] P. Erdős, Z. Füredi, M. Loebl, and V. T. Sós,
Discrepancy of trees, Studia Sci. Math. Hungar. 30
(1995), 47-57.
- [145] Z. Füredi, F. Lazebnik, Á. Seress, V. A. Ustimenko, and A. J. Woldar,
Graphs of prescribed girth and bi-degree, Journal of
Combinatorial Theory, Ser. B 64 (1995), 228-239.
- [146] Z. Füredi,
The expected size of a random sphere-of-influence graph,
Intuitive Geometry
Proc. Colloq., Budapest, Hungary, 1995.
Edited by I. Bárány et al., Bolyai Society Mathematical Studies, 6
Budapest, Hungary 1997. pp. 319-326.
- [147] Z. Füredi, Extremal hypergraphs and combinatorial geometry,
Proceedings of the International Congress of Mathematicians,
Zürich, Switzerland 1994. 1343-1352. Birkhäuser, Basel, 1995.
- [148] Z. Füredi, On the number of edges of quadrilateral-free graphs,
Journal of Combinatorial Theory, Ser. B 68 (1996), 1-6.
- [148b] Z. Füredi, Quadrilateral-free graphs with maximum number of edges,
Proceedings of the Japan Workshop on Graph Th. and Combinatorics,
Keio University, Yokohama, Japan 1994, pp. 13-22.
- [148c] Z. Füredi, Quadrilateral-free graphs with maximum number of edges,
(a complete version from 1988, not published in journals but selfcontained and proves the uniquness of the extremum)
- [149] Z. Füredi, An upper bound on Zarankiewicz' problem,
Combinatorics, Probability and Computing 5 (1996), 29-33.
- [150] Z. Füredi, Scrambling permutations and entropy of hypergraphs,
Random Structures and Algorithms 8 (1996), 97-104.
- [151] Z. Füredi and P. Komjáth,
On the existence of countable universal graphs, Journal of Graph Theory
25 (1997), 53-58.
- [152] Z. Füredi, G. J. Székely, and Z. Zubor,
On the lottery problem, Journal of Combinatorial Designs
4 (1996), 5-10.
- [153] Z. Füredi, On $r$-cover-free families, Journal of
Combinatorial Theory, Ser. A 73 (1996) 172-173.
- [154] Z. Füredi and P. Komjáth,
Nonexistence of universal graphs without some trees,
Combinatorica 17 (1997), 163-171.
- [155] Z. Füredi, P. Horak, Chandra M. Paarek, and Xuding Zhu,
Minimal oriented graphs of diameter 2, Graphs and
Combinatorics 14 (1998), 345-350.
- [156] Z. Füredi,
On the double competition number,
Discrete Applied Mathematics 82 (1998), 251-255.
- [157] Z. Füredi and B. Reznick,
The maximum angular gap among rectangular grid points,
Period. Math. Hungar. 36 (1998), 119-137.
- [158] Rod Downey, Z. Füredi, Carl Jockusch, Jr., and Lee Rubel,
Difference sets and computability theory,
Annals of Pure and Applied Logic, 93 (1998), 63-72.
- [159] P. Erdős, Z. Füredi, B. L. Rothschild, and V. T. Sós,
Induced subgraphs of given sizes,
Discrete Mathematics 200 (1999), 61-77.
Paul Erdős memorial collection.
- [160] Z. Füredi and Dhruv Mubayi,
Signed domination in regular graphs and set-systems,
Journal of Combinatorial Theory, Ser. B 76 (1999),
223-239.
- [161] Z. Füredi and M. Ruszinkó,
An improved upper bound of the rate of Eucledian superimposed codes,
IEEE Trans. Inform. Theory 45 (1999), 799-802,
- [162] Z. Füredi,
On the Prague dimension of Kneser graphs,
in, Numbers, Information and Complexity, (Bielefeld, 1998),
pp. 125-128.
(Ingo Althöfer, Ning Cai, Günter Dueck, Levon Khachatrian,
Mark S. Pinsker, András Sárközy, Ingo Wegener, and Zhen Zhang, Eds.),
Kluwer Academic Publishers, Boston, MA, 2000.
- [163] Dominique de Caen and Z. Füredi,
The maximum size of 3-uniform hypergraphs not containing a Fano plane,
Journal of Combinatorial Theory, Ser. B, 78 (2000), 274-276.
- [164] Maria Axenovich, Z. Füredi, and Dhruv Mubayi,
On generalized Ramsey theory: the bipartite case,
Journal of Combinatorial Theory, Ser. B, 79 (2000), 66-86.
- [165] Z. Füredi, Dhruv Mubayi, and Douglas B. West,
Multiple vertex coverings by specified induced subgraphs,
Journal of Graph Theory 34 (2000), 180-190.
{\tt arXiv:math/9912188}
- [166] Z. Füredi and John E. Wetzel,
The smallest convex cover for triangles of perimeter two,
Geometriae Dedicata, 81 (2000), 285-293.
- [167] Maria Axenovich and Z. Füredi,
Embedding of graphs in two-irregular graphs,
Journal of Graph Theory 36 (2001), 75-83.
- [168] Z. Füredi,
Maximal $\tau$-critical linear hypergraphs,
Graphs and Combinatorics 17 (2001), 73-78.
- [169] Z. Füredi and A. Kündgen,
Covering a graph with cuts of minimum total size,
Discrete Mathematics 237 (2001), 129-148.
- [170] Endre Boros, Yair Caro, Z. Füredi, and Raphael Yuster,
Covering non-uniform hypergraphs,
Journal of Combinatorial Theory, Ser. B 82 (2001), 270-284.
- [171] Z. Füredi and Douglas B. West,
Ramsey theory and bandwidth of graphs,
Graphs and Combinatorics, 17 (2001), 463-471.
- [172] I. Bárány and Z. Füredi,
On the lattice diameter of a convex polygon,
Selected papers in honor of Helge Tverberg.
Discrete Mathematics, 241 (2001), 41-50.
- [173] Yachen Chen and Z. Füredi,
Hamiltonian Kneser graphs,
Combinatorica 22 (2002), 147-149.
- [174] Z. Füredi and A. Kündgen,
Turán problems for weighted graphs,
Journal of Graph Theory 40 (2002), 195-225.
- [175] Z. Füredi and Radhika Ramamurthi,
On splittable colorings of graphs and hypergraphs,
Journal of Graph Theory (2002), 226-237.
- [176] Z. Füredi, András Gyárfás, and Miklós Ruszinkó,
On the maximum size of $(p,Q)$-free families,
Discrete Mathematics 257 (2002), 385-403.
- [176b] Z. Füredi, András Gyárfás, and Miklós Ruszinkó,
On the maximum size of $(p,Q)$-free families,
Comb01 -- Euroconference on Combinatorics, Graph Theory and Applications
Electron. Notes Discrete Math. 10 (2001), 247-249,
Elsevier, Amsterdam, 2001.
- [177] Z. Füredi,
Covering a triangle with homothetic copies,
Discrete Geometry (edited by A. Bezdek) Dekker, New
York-Basel, 2003. pp. 435-445.
- [178] Z. Füredi, O. Pikhurko, and M. Simonovits,
The Turán density of the hypergraph $\{ abc$, $ade$, $bde$, $cde\}$,
Electronic Journal of Combinatorics 10 (2003), R18, pp. 7.
- [179] M. Axenovich and Z. Füredi,
Exact bounds on the sizes of covering codes,
Designs, Codes, and Cryptography 30 (2003), 21-38.
- [180] Z. Füredi and B. Sudakov,
Extremal set systems with restricted $k$-wise intersections,
J. of Combinatorial Theory, Ser. A 105 (2004), 143-159.
- [181] Z. Füredi and Zs. Katona,
Multiply intersecting families of sets,
Journal of Combinatorial Theory, Ser. A 106 (2004), 315-326.
- [182] Z. Füredi and J-H. Kang,
Distance graph on ${\mathbb Z}^n$ with $\ell_1$ norm,
Theoretical Computer Science
319 (2004), 357-366.
(Special issue on combinatorics of the discrete plane and tilings.)
- [183] Z. Füredi,
Gráfok lokális szinezései
(On local colorings of graphs. In Hungarian)
(not published in journals)
- [184] Z. Füredi,
A Feuerbach kör érinti az érintő köröket,
KöMaL 54 (2004)
-
(The 9-point circle touches the incircle and the escribed circles. In Hungarian)
in English (the main proof)
http://www.komal.hu/cikkek/2004-05/furedi/furedi.h.shtml
- [185] Z. Füredi, A. Gyárfás, and G. Simonyi,
Connected matchings and Hadwiger's conjecture,
Combinatorics, Computing and Probabality 14 (2005), 435-438.
- [186] Z. Füredi and M. Simonovits,
Triple systems not containing a Fano configuration,
Combinatorics, Computing and Probabality 14 (2005), 467-484.
- [187] Z. Füredi, O. Pikhurko, and M. Simonovits,
On triple systems with independent neighborhoods,
Combinatorics, Computing and Probabality 14 (2005), 795-813.
- [188] Z. Füredi, A. Kostochka, R. S̆krekovski,
M. Stiebitz, and D. West,
Nordhaus-Gaddum-type theorems for decompositions into many parts,
Journal of Graph Theory 50 (2005), 273-292.
- [189] Ya-Chen Chen and Z. Füredi,
Minimum vertex-diameter-2-critical graphs,
Journal of Graph Theory 50 (2005), 293-315.
- [190] P. L. Erdős, Z. Füredi, and G. O. H. Katona,
Two-part and $k$-Sperner families: new proofs
using permutations,
SIAM Journal on Discrete Mathematics 19 (2005), 489-500.
- [191] R. Anstee, Balin Fleming, Z. Füredi, and A. Sali,
Color critical hypergraphs and forbidden configurations,
Discrete Math. and Theoretical Computer Science AE (2005) 117-122.
(2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)),
-
\hbox{\tt http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/issue/view/77}
- [192] Z. Füredi and A. Kündgen,
Moments of graphs in monotone families,
Journal of Graph Theory 51 (2006), 37-48.
- [193] Z. Füredi and G. O. H. Katona,
2-bases of quadruples,
Combinatorics, Computing and Probabality 15 (2006), 131-141.
- [194] Z. Füredi, O. Pikhurko, and M. Simonovits,
4-books of three pages, Journal of Combinatorial Theory, Ser. A
113 (2006), 882-891.
- [195] Z. Füredi, A. Naor, and J. Verstraëte,
On the Turán number for the hexagon,
Advances in Math. 203 (2006), 476-496.
- [196] Z. Füredi, K-W. Hwang, and P. Weichsel,
A proof and generalizations of the Erdős-Ko-Rado theorem
using the method of linearly independent polynomials,
in, Topics in discrete mathematics, pp. 215-224,
Algorithms Combin. 26 Springer, Berlin, 2006.
- [197] Z. Füredi, Robert H. Sloan, Ken Takata, and
György Turán,
On set systems with a threshold property,
Discrete Mathematics 306 (2006), 3097-3111.
- [198] N. Eaton, Z. Füredi, A. Kostochka, and J. Skokan,
Tree representations of graphs,
European Journal of Combinatorics 28 (2007), 1087-1098.
- [199] D. Danev, Z. Füredi, and M. Ruszinkó,
Multiple access Euclidean channel,
in:
Multiple Access Channels - Theory and Practice
(Edited by Ezio Biglieri, László Győrfi),
NATO Security through Science Series, D: Information and Communication Security,
Volume 10, 2007. pp. 54-72.
Introduction by the Editors
- [200] Z. Füredi,
Covering a triangle with positive and negative homothetic copies,
Discrete and Computational Geometry 38 (2007), 273-288.
- [201] Z. Füredi and M. Ruszinkó,
Large convex cones in hypercubes,
Discrete Applied Mathematics 156 (2008), 1536-1541.
- [201b] Z. Füredi and M. Ruszinkó,
Large convex cones in hypercubes,
General Theory of Information Transfer and Combinatorics,
Electronic Notes in Discrete Mathematics 21 (2005), 283-284.
- [202] Z. Füredi, A. Gyárfás, G. N. Sárközy, and S. Selkow,
Inequalities for the First-fit chromatic number, Journal of Graph Theory
59 (2008), 75-88.
- [203] Z. Füredi and J-H. Kang,
Covering the $n$-space by convex bodies and its chromatic number,
Discrete Mathematics 308 (2008), 4495-4500.
- [204] Z. Füredi, D. Mubayi, and O. Pikhurko,
Quadruple systems with independent neighborhoods,
Journal of Combinatorial Theory, Ser. A 115 (2008), 1552-1560.
- [205]
Z. Füredi and L. Özkahya,
On 14-cycle-free subgraphs of the hypercube,
Combinatorics, Computing and Probability 18 (2009), 725-729.
- [206]
Z. Füredi and L. Özkahya,
Unavoidable subhypergraphs: $\mathbf a$-clusters,
J. Combinatorial Theory, Ser. A 118 (2011), 2246-2256.
- [206b]
Z. Füredi and L. Özkahya,
Unavoidable subhypergraphs: $\mathbf a$-clusters,
European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009) 63-67,
Electron. Notes Discrete Math. 34 Elsevier Sci. B. V., Amsterdam, 2009.
- [207]
Z. Füredi and Ida Kantor,
List colorings with distinct list sizes, the case of complete bipartite graphs,
J. Graph Th. 82 (2016), 218-227.
{\tt arXiv:1111.0234}
- [207b]
Z. Füredi and Ida Kantor,
List colorings with distinct list sizes, the case of complete bipartite graphs,
European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009) 323-327,
Electron. Notes Discrete Math. 34 Elsevier Sci. B. V., Amsterdam, 2009.
- [208]
Z. Füredi and L. Özkahya,
On even-cycle-free subgraphs of the hypercube,
J. Combin. Theory, Ser. A 118 (2011), 1816-1819.
- [208b]
Z. Füredi and L. Özkahya,
On even-cycle-free subgraphs of the hypercube,
European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009) 515-517,
Electron. Notes Discrete Math. 34, Elsevier Sci. B. V., Amsterdam, 2009.
- [209]
Z. Füredi and A. Sali,
Some new bounds on partition critical hypergraphs,
European J. of Combin. 33 (2012), 844-852.
- [209b]
Z. Füredi and A. Sali,
Partition critical hypergraphs,
European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009) 573-577,
{Electron. Notes Discrete Math. 34 Elsevier Sci. B. V., Amsterdam, 2009.
- [210]
Z. Füredi and J. Lehel,
Tight embeddings of partial quadrilateral packings.
Journal of Combinatorial Theory, Ser. A 117 (2010), 466-474.
- [211]
Z. Füredi, Ida Kantor, A. Monti, and B. Sinaimeri,
On reverse-free codes and permutations,
SIAM J. Discrete Math. 24 (2010), 964-978.
- [211b]
Z. Füredi, Ida Kantor, A. Monti, and B. Sinaimeri,
Reverse-free codes and permutations,
European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2011) 383-387,
{Electron. Notes Discrete Math. 38 Elsevier Sci. B. V., Amsterdam, 2011.
- [212]
Z. Füredi and J. Wetzel,
Covers for closed curves of length two,
Periodica Math. Hungar. 63 (2011), 1-17.
- [213]
Z. Füredi, Ago-Erik Riet, and M. Tyomkyn,
Completing partial packings of bipartite graphs,
Journal of Combinatorial Theory, Ser. A 118 (2011), 2463-2473.
{\tt arXiv:1007.4287},
- [214]
Z. Füredi,
$2$-cancellative hypergraphs and codes,
Combinatorics, Probability and Computing 21 (2012), 159-177.
{\tt arXiv:1103.1934},
- [215]
J. Barát, Z. Füredi, Ida Kantor, Younjin Kim, and B. Patkós,
Large $B_d$-free and union-free subfamilies,
SIAM J. Disc. Math. 26 (2012), 71-76.
{\tt arXiv:1012.3918},
- [215b]
J. Barát, Z. Füredi, Ida Kantor, Younjin Kim, and B. Patkós,
Large $B_d$-free and union-free subfamilies,
European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2011) 101-104,
{Electron. Notes Discrete Math. 38 Elsevier Sci. B. V., Amsterdam, 2011.
- [216]
P. Frankl and Z. Füredi, A new short proof of the EKR theorem,
Journal of Combinatorial Theory, Ser. 119 (2012), 1388-1390.
{\tt arXiv:1108.2179}
- [217] Z. Füredi and A. Sali,
Optimal multivalued shattering,
SIAM J. Discrete Math. 26 (2012), 737-744.
{\tt arXiv:1109.1748}
- [218] Z. Füredi and Younjin Kim,
The structure of the typical graphs of given diameter.
Discrete Math. 313 (2013), 155-163.
- The number of graphs of given diameter, {\tt arXiv:1204.4580}
- [219]
Z. Füredi and M. Ruszinkó,
Uniform hypergraphs containing no grids,
Advances in Math. 240 (2013), 302-324.
{\tt arXiv:1103.1691}
- [219b]
Z. Füredi,
Superimposed codes and hypergraphs containing no grids,
Notices of the South African Mathematical Society 43 (2012), 24-34.
- [220]
Z. Füredi and Younjin Kim,
Cycle-saturated graphs with minimum number of edges,
J. of Graph Theory 73 (2013), 203-215.
{\tt arXiv:1103.0067}
- [220b]
Z. Füredi and Younjin Kim,
Minimum $C_k$-saturated graphs,
European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2011) 505-510,
{Electron. Notes Discrete Math. 38 Elsevier Sci. B. V., Amsterdam, 2011.
- [221]
Cs. Biró, Z. Füredi, and Sogol Jahanbekam,
Large chromatic number and Ramsey graphs,
Graphs and Combin. 29 (2013), 1183-1191.
{\tt arXiv:1103.3917}
- [222]
Zoltán Füredi and Miklós Simonovits,
The history of degenerate (bipartite) extremal graph problems,
Bolyai Math. Studies 25 pp. 169-264,
Erdős Centennial (L. Lovász, I. Ruzsa, and V. T. Sós, Eds.) Springer, 2013.
{\tt arXiv:1306.5167}
- [223]
Z. Füredi,
Linear trees in uniform hypergraphs,
European J. Combin. 35 (2014), 264-272.
{\tt arXiv:1204.1936}
- [223b]
Z. Füredi,
Linear paths and trees in uniform hypergraphs,
European Conference on Combinatorics, Graph Theory and Applications
(EuroComb 2011) 377-382,
{Electron. Notes Discrete Math. 38 Elsevier Sci. B. V., Amsterdam, 2011.
- [224]
Z. Füredi and Tao Jiang,
Hypergraph Turan numbers of linear cycles,
Journal of Combinatorial Theory, Ser. 123 (2014), 252-270.
{\tt arXiv:1302.2387}
- [225]
Z. Füredi, A. Kostochka, and Mohit Kumbhat,
Choosability with separation of complete multipartite graphs and hypergraphs,